Package 'tssim'

June 25, 2021

Title Simulation of Daily and Monthly Time Series

Version 0.1.7

Maintainer Daniel Ollech <daniel.ollech@bundesbank.de>

Description Flexible simulation of time series using time series components, including seasonal, calendar and outlier effects. Algorithm described in Ollech, D. (2021) <doi:10.1515/jtse-2020-0028>.

License GPL-3

Depends R (>= 3.1.0)

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

Imports utils, xts, zoo, timeDate, stats, dsa, tsbox

NeedsCompilation no

Author Daniel Ollech [aut, cre]

Repository CRAN

Date/Publication 2021-06-25 11:20:02 UTC

R topics documented:

stretch_re	2
sim_calendar	3
sim_daily	4
sim_monthly	6
sim_outlier	7
sim_sfac	9
	11

Index

.stretch_re

Description

Reduce the number of observations in a month using time warping / stretching. Only relevant if a daily time series is simulated

Usage

.stretch_re(seas_component)

Arguments

seas_component Seasonal component for day-of-the-month

Details

Usually time warping would be used to stretch the number of observations of a time series in a given interval to more observations. Here it is used to reduce the number of observations (31) to the number of days in a given month while maintaining the underlying trajectory of the data. This is done by first creating a very long time series for each month, interpolating missing values by spline interpolation and then reducing the number of observations to the number suitable for a given month.

Value

Returns a xts time series containing the day-of-the-month effect.

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

sim_calendar

Description

Simulate a time series containing specified calendar effects

Usage

```
sim_calendar(
    n,
    which = c("Easter", "Ascension"),
    from = 0,
    to = 0,
    freq = 12,
    effect_size = 3,
    start = "2020-01-01",
    multiplicative = TRUE,
    time_dynamic = 1,
    center = TRUE
)
```

Arguments

n	Time series length
which	Holidays to be used, functions from timeDate package used
from	days before the Holiday to include
to	days after the Holiday to include
freq	Frequency of the time series
effect_size	Mean size of calendar effect
start	Start Date of output time series
multiplicative	Boolean. Is multiplicative time series model assumed?
time_dynamic	Should the calendar effect change over time
center	Should calendar variable be center, i.e. mean=0

Details

If multiplicative is true, the effect size is measured in percentage. If is not true, the effect size is unit less and thus adopts the unit of the time series the calendars are added to. The time_dynamic parameter controls the change of the calendar effect. The effect of the previous year is multiplied by the time_dynamic factor.

Value

The function returns a time series of class xts

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

Examples

plot(sim_calendar(60, from=0, to=4, freq=12))

sim_daily

Simulate a daily seasonal series

Description

Simulate a daily seasonal series as described in Ollech (2021).

Usage

```
sim_daily(
 Ν,
  sd = 2.5,
 change_sd = 0.05,
 week_sd = NA,
 month_sd = NA,
 year_sd = NA,
 week_change_sd = NA,
 month_change_sd = NA,
 year_change_sd = NA,
  innovations_sd = 1,
  sa_sd = NA,
 model = list(order = c(3, 1, 1), ma = 0.5, ar = c(0.2, -0.4, 0.1)),
 beta_1 = 0.9,
 beta_tau = 0,
  start = c(2020, 1),
 multiplicative = TRUE,
  extra_smooth = FALSE,
  calendar = list(which = "Easter", from = -2, to = 2),
 outlier = NULL,
  timewarping = TRUE,
  as_index = FALSE
)
```

sim_daily

Arguments

Ν	length in years
sd	Standard deviation for all seasonal factors
change_sd	Standard deviation of simulated change for all seasonal factors
week_sd	Standard deviation of the seasonal factor for day-of-the-week
month_sd	Standard deviation of the seasonal factor for day-of-the-month
year_sd	Standard deviation of the seasonal factor for day-of-the-year
week_change_sd	Standard deviation of simulated change to seasonal factor for day-of-the-week
<pre>month_change_sd</pre>	
	Standard deviation of simulated change to seasonal factor for month-of-the-week
year_change_sd	Standard deviation of simulated change to seasonal factor for year-of-the-week
innovations_sd	Standard deviation of the innovations used in the non-seasonal regarima model
sa_sd	Standard deviation of the non-seasonal time series
model	Model for non-seasonal time series. A list.
beta_1	Persistance wrt to previous period of the seasonal change
beta_tau	Persistance wrt to one year/cycle before of the seasonal change
start	Start date of output time series
multiplicative	Boolean. Should multiplicative seasonal factors be simulated
extra_smooth	Boolean. Should the seasonal factors be smooth on a period-by-period basis
calendar	Parameters for calendar effect, a list, see sim_calendar
outlier	Parameters for outlier effect, a list, see sim_outlier
timewarping	Should timewarping be used to obtain the day-of-the-month factors
as_index	Shall series be made to look like an index (i.e. shall values be relative to reference year = second year)

Details

Standard deviation of the seasonal factor is in percent if a multiplicative time series model is assumed. Otherwise it is in unitless. Using a non-seasonal ARIMA model for the initialization of the seasonal factor does not impact the seasonality of the time series. It can just make it easier for human eyes to grasp the seasonal nature of the series. The definition of the ar and ma parameter needs to be inline with the chosen model. If only change_sd is specified, the change parameters for the single seasonal factors are set individually as change_sd/365*(length of seasonal cycle) The parameters that can be set for calendar and outlier are those defined in sim_outlier and sim_calendar.

Value

Multiple simulated daily time series of class xts including:

original The original series

seas_adj The original series without calendar and seasonal effects

sfac7 The day-of-the-week effectsfac31 The day-of-the-month effectcfac The calendar effectsoutlier The outlier effects

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

Examples

```
x=sim_daily(5, multiplicative=TRUE, outlier=list(k=5, type=c("AO", "LS"), effect_size=50))
ts.plot(x[,1])
```

sim_monthly

Simulate a monthly seasonal series

Description

Simulate a monthly seasonal series

Usage

```
sim_monthly(
    N,
    sd = 1,
    beta_1 = 0.9,
    change_sd = 0.025,
    model = list(order = c(3, 1, 1), ma = 0.5, ar = c(0.2, -0.4, 0.1)),
    start = c(2010, 1),
    multiplicative = TRUE,
    extra_smooth = FALSE
)
```

Arguments

N	Length in years
sd	Standard deviation for all seasonal factors
beta_1	Persistance wrt to previous period of the seasonal change
change_sd	Standard deviation of simulated change for all seasonal factors
model	Model for non-seasonal time series. A list.

sim_outlier

start	Start date of output time series
multiplicative	Boolean. Should multiplicative seasonal factors be simulated
extra_smooth	Boolean. Should the seasonal factors be smooth on a period-by-period basis

Details

Standard deviation of the seasonal factor is in percent if a multiplicative time series model is assumed. Otherwise it is in unitless. Using a non-seasonal ARIMA model for the initialization of the seasonal factor does not impact the seasonality of the time series. It can just make it easier for human eyes to grasp the seasonal nature of the series. The definition of the ar and ma parameter needs to be inline with the chosen model.

Value

Multiple simulated monthly time series of class xts including:

original The original series

seas_adj The original series without seasonal effects

sfac The seasonal effect

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

Examples

x=sim_monthly(5, multiplicative=TRUE)
ts.plot(x[,1])

sim_outlier Simulate an outlier

Description

Simulate an outlier

Usage

```
sim_outlier(
    n,
    k,
    freq = 12,
    type = c("AO", "LS", "TC"),
    effect_size = 10,
    start = c(2020, 1),
    multiplicative = TRUE
)
```

Arguments

n	Time series length
k	Number of outliers
freq	Frequency of the time series
type	Type of outlier
effect_size	Mean size of outlier
start	Start date of output time series
multiplicative	Boolean. Is multiplicative time series model assumed?

Details

Three types of outliers are implemented: AO=Additive outlier, LS=Level shift, TC=Temporary Change. The effect size is stochastic as it is drawn from a normal distribution with mean equal to the specified effect_size and a standard deviation of 1/4*effect_size. This is multiplied randomly with -1 or 1 to get negative shocks as well. If multiplicative is true, the effect size is measured in percentage. If is not true, the effect size is unit less and thus adopts the unit of the time series the outliers are added to.

Value

The function returns k time series of class xts containing the k outlier effects

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

Examples

```
plot(sim_outlier(60, 4, type=c("A0", "LS")))
```

8

sim_sfac

Description

Simulate a seasonal factor

Usage

```
sim_sfac(
 n,
 freq = 12,
  sd = 1,
  change_sd = 0.02,
 beta_1 = 0.9,
 beta_tau = 0,
 start = c(2020, 1),
 multiplicative = TRUE,
 ar = NULL,
 ma = NULL,
 model = c(1, 1, 1),
 sc_model = list(order = c(1, 1, 1), ar = 0.65, ma = 0.25),
 smooth = TRUE,
 burnin = 3,
 extra\_smooth = FALSE
)
```

Arguments

n	Number of observations
freq	Frequency of the time series
sd	Standard deviation of the seasonal factor
change_sd	Standard deviation of simulation change to seasonal factor
beta_1	Persistance wrt to previous period of the seasonal change
beta_tau	Persistance wrt to one year/cycle before of the seasonal change
start	Start date of output time series
multiplicative	Boolean. Should multiplicative seasonal factors be simulated
ar	AR parameter
ma	MA parameter
model	Model for initial seasonal factor
<pre>sc_model</pre>	Model for the seasonal change
smooth	Boolean. Should initial seasonal factor be smoothed
burnin	(burnin*n-n) is the burn-in period
extra_smooth	Boolean. Should the seasonal factor be smooth on a period-by-period basis

Details

Standard deviation of the seasonal factor is in percent if a multiplicative time series model is assumed. Otherwise it is in unitless. Using a non-seasonal ARIMA model does not impact the seasonality of the time series. It can just make it easier for human eyes to grasp the seasonal nature of the series. The definition of the ar and ma parameter needs to be inline with the chosen model.

Value

The function returns a time series of class ts containing a seasonal or periodic effect.

Author(s)

Daniel Ollech

References

Ollech, D. (2021). Seasonal adjustment of daily time series. Journal of Time Series Econometrics. doi: 10.1515/jtse2020028

Examples

ts.plot(sim_sfac(60))

Index

 $.stretch_re, 2$

sim_calendar, 3
sim_daily, 4
sim_monthly, 6
sim_outlier, 7
sim_sfac, 9