
Package ‘spatstat.core’
May 18, 2022

Version 2.4-4

Date 2022-05-17

Title Core Functionality of the 'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), spatstat.data (>= 2.1-0), spatstat.geom (>=
2.4-0), spatstat.random (>= 2.2-0), stats, graphics, grDevices,
utils, methods, nlme, rpart

Imports spatstat.utils (>= 2.3-1), spatstat.sparse (>= 2.0-0), mgcv,
Matrix, abind, tensor, goftest (>= 1.2-2)

Suggests sm, maptools (>= 0.9-9), gsl, locfit, spatial, RandomFields
(>= 3.1.24.1), RandomFieldsUtils(>= 0.3.3.1), fftwtools (>=
0.9-8), nleqslv, spatstat.linnet (>= 2.0-0), spatstat (>=
2.3-3)

Description Functionality for data analysis and modelling of
spatial data, mainly spatial point patterns,
in the 'spatstat' family of packages.
(Excludes analysis of spatial data on a linear network,
which is covered by the separate package 'spatstat.linnet'.)
Exploratory methods include quadrat counts, K-functions and their simulation en-

velopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation func-
tion, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selec-
tion, mark correlation functions, segregation indices, mark dependence diagnostics, and ker-
nel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kol-
mogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-
stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-
Smirnov, ANOVA) are also supported.
Parametric models can be fitted to point pattern data using the func-
tions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Pois-
son, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinan-
tal point processes. Models may involve dependence on covariates, inter-point interaction, clus-
ter formation and dependence on marks. Models are fitted by maximum likelihood, logistic re-
gression, minimum contrast, and composite likelihood methods.
A model can be fitted to a list of point patterns (replicated point pattern data) using the func-
tion mppm(). The model can include random effects and fixed effects depending on the experi-
mental design, in addition to all the features listed above.

1

2 R topics documented:

Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fit-
ted model are supported (likelihood ratio test, analysis of de-
viance, Monte Carlo tests) along with basic tools for model selection (step-
wise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simula-
tion envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, par-
tial residuals, and added variable plots.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.core/issues

Author Adrian Baddeley [aut, cre] (<https://orcid.org/0000-0001-9499-8382>),
Rolf Turner [aut] (<https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut] (<https://orcid.org/0000-0002-6675-533X>),
Kasper Klitgaard Berthelsen [ctb],
Achmad Choiruddin [ctb],
Jean-Francois Coeurjolly [ctb],
Ottmar Cronie [ctb],
Tilman Davies [ctb],
Chiara Fend [ctb],
Julian Gilbey [ctb],
Yongtao Guan [ctb],
Ute Hahn [ctb],
Kassel Hingee [ctb],
Abdollah Jalilian [ctb],
Frederic Lavancier [ctb],
Marie-Colette van Lieshout [ctb],
Greg McSwiggan [ctb],
Tuomas Rajala [ctb],
Suman Rakshit [ctb],
Dominic Schuhmacher [ctb],
Rasmus Plenge Waagepetersen [ctb],
Hangsheng Wang [ctb]

Repository CRAN

Date/Publication 2022-05-18 07:30:02 UTC

R topics documented:
spatstat.core-package . 12
adaptive.density . 25
addvar . 26
allstats . 28
alltypes . 30
anova.mppm . 33
anova.ppm . 35

http://spatstat.org/
https://github.com/spatstat/spatstat.core/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

R topics documented: 3

anova.slrm . 38
AreaInter . 39
as.data.frame.envelope . 41
as.function.fv . 42
as.function.leverage.ppm . 44
as.function.rhohat . 45
as.fv . 46
as.interact . 48
as.layered.msr . 50
as.owin.ppm . 51
as.ppm . 53
auc . 55
BadGey . 56
bc.ppm . 58
berman.test . 60
bind.fv . 62
bits.envelope . 64
bits.test . 66
blur . 68
bw.abram . 70
bw.CvL . 72
bw.CvLHeat . 74
bw.diggle . 75
bw.frac . 77
bw.pcf . 78
bw.ppl . 80
bw.pplHeat . 82
bw.relrisk . 83
bw.scott . 85
bw.smoothppp . 86
bw.stoyan . 88
cauchy.estK . 89
cauchy.estpcf . 91
CDF . 93
cdf.test . 94
cdf.test.mppm . 98
circdensity . 101
clarkevans . 102
clarkevans.test . 104
closepaircounts . 106
clusterfield . 107
clusterfit . 109
clusterkernel . 111
clusterradius . 112
clusterset . 113
coef.mppm . 115
coef.ppm . 117
coef.slrm . 118

4 R topics documented:

collapse.fv . 119
compareFit . 121
compatible.fasp . 123
compatible.fv . 124
compileK . 125
Concom . 127
cov.im . 129
data.ppm . 130
dclf.progress . 131
dclf.sigtrace . 133
dclf.test . 135
density.ppp . 139
density.psp . 144
density.splitppp . 146
densityAdaptiveKernel . 148
densityfun.ppp . 150
densityHeat . 152
densityHeat.ppp . 153
densityVoronoi . 156
deriv.fv . 158
detpointprocfamilyfun . 160
dfbetas.ppm . 162
dffit.ppm . 164
dg.envelope . 165
dg.progress . 167
dg.sigtrace . 170
dg.test . 172
diagnose.ppm . 174
DiggleGatesStibbard . 180
DiggleGratton . 181
dim.detpointprocfamily . 182
dimhat . 183
distcdf . 184
dkernel . 185
domain.ppm . 187
dppapproxkernel . 188
dppapproxpcf . 189
dppBessel . 190
dppCauchy . 191
dppeigen . 192
dppGauss . 193
dppkernel . 194
dppm . 194
dppMatern . 199
dppparbounds . 200
dppPowerExp . 201
dppspecden . 202
dppspecdenrange . 203

R topics documented: 5

dummify . 203
dummy.ppm . 204
edge.Ripley . 206
edge.Trans . 207
eem . 209
effectfun . 211
Emark . 212
emend . 215
emend.ppm . 216
emend.slrm . 217
envelope . 219
envelope.envelope . 230
envelope.pp3 . 232
envelopeArray . 235
eval.fasp . 236
eval.fv . 238
exactMPLEstrauss . 240
Extract.fasp . 242
Extract.fv . 243
Extract.influence.ppm . 245
Extract.leverage.ppm . 246
Extract.msr . 247
F3est . 248
fasp.object . 250
Fest . 252
Fiksel . 256
Finhom . 258
fitin.ppm . 260
fitted.mppm . 262
fitted.ppm . 263
fitted.slrm . 265
fixef.mppm . 266
FmultiInhom . 267
formula.fv . 269
formula.ppm . 270
fryplot . 271
fv . 273
fv.object . 276
fvnames . 277
G3est . 278
Gcom . 280
Gcross . 283
Gdot . 286
Gest . 289
Geyer . 293
Gfox . 294
Ginhom . 296
Gmulti . 299

6 R topics documented:

GmultiInhom . 301
Gres . 303
Hardcore . 305
hardcoredist . 306
harmonic . 307
harmonise.fv . 309
harmonise.msr . 310
Hest . 311
HierHard . 313
hierpair.family . 315
HierStrauss . 316
HierStraussHard . 317
hopskel . 319
hotbox . 321
Hybrid . 322
hybrid.family . 324
ic.kppm . 325
idw . 326
Iest . 328
improve.kppm . 330
increment.fv . 332
influence.ppm . 333
inforder.family . 335
integral.msr . 335
intensity.dppm . 337
intensity.ppm . 338
intensity.slrm . 339
interactionorder . 341
ippm . 342
is.dppm . 344
is.hybrid . 345
is.marked.ppm . 346
is.multitype.ppm . 348
is.ppm . 349
is.stationary.ppm . 350
isf.object . 352
Jcross . 353
Jdot . 355
Jest . 358
Jinhom . 361
Jmulti . 363
K3est . 366
kaplan.meier . 367
Kcom . 368
Kcross . 372
Kcross.inhom . 375
Kdot . 379
Kdot.inhom . 381

R topics documented: 7

kernel.factor . 385
kernel.moment . 386
kernel.squint . 387
Kest . 388
Kest.fft . 393
Kinhom . 394
km.rs . 399
Kmark . 400
Kmeasure . 403
Kmodel . 406
Kmodel.dppm . 407
Kmodel.kppm . 408
Kmodel.ppm . 409
Kmulti . 410
Kmulti.inhom . 413
kppm . 417
Kres . 424
Kscaled . 425
Ksector . 428
LambertW . 430
laslett . 431
Lcross . 433
Lcross.inhom . 435
Ldot . 437
Ldot.inhom . 438
LennardJones . 440
Lest . 442
leverage.ppm . 443
leverage.slrm . 445
lgcp.estK . 446
lgcp.estpcf . 449
Linhom . 452
localK . 454
localKcross . 456
localKcross.inhom . 458
localKdot . 460
localKinhom . 462
localpcf . 464
logLik.dppm . 467
logLik.kppm . 469
logLik.mppm . 471
logLik.ppm . 473
logLik.slrm . 475
lohboot . 476
lurking . 479
lurking.mppm . 483
markconnect . 485
markcorr . 487

8 R topics documented:

markcrosscorr . 491
markmarkscatter . 493
marktable . 494
markvario . 496
matclust.estK . 497
matclust.estpcf . 500
measureContinuous . 502
measureVariation . 503
methods.dppm . 504
methods.fii . 506
methods.influence.ppm . 507
methods.kppm . 509
methods.leverage.ppm . 510
methods.objsurf . 511
methods.rho2hat . 513
methods.rhohat . 514
methods.slrm . 516
methods.ssf . 517
methods.zclustermodel . 519
methods.zgibbsmodel . 521
mincontrast . 522
miplot . 524
model.depends . 526
model.frame.ppm . 527
model.images . 529
model.matrix.mppm . 531
model.matrix.ppm . 532
model.matrix.slrm . 534
mppm . 535
msr . 538
MultiHard . 541
MultiStrauss . 542
MultiStraussHard . 544
nnclean . 546
nncorr . 548
nndensity.ppp . 551
nnorient . 552
npfun . 554
objsurf . 555
Ops.msr . 556
Ord . 557
ord.family . 559
OrdThresh . 560
pairMean . 561
pairorient . 562
PairPiece . 563
pairs.im . 565
pairsat.family . 567

R topics documented: 9

Pairwise . 568
pairwise.family . 570
panel.contour . 570
parameters . 572
parres . 573
pcf . 576
pcf.fasp . 578
pcf.fv . 580
pcf.ppp . 582
pcf3est . 585
pcfcross . 587
pcfcross.inhom . 590
pcfdot . 592
pcfdot.inhom . 594
pcfinhom . 596
pcfmulti . 598
Penttinen . 600
plot.bermantest . 602
plot.cdftest . 603
plot.dppm . 605
plot.envelope . 606
plot.fasp . 607
plot.fv . 609
plot.influence.ppm . 613
plot.kppm . 614
plot.laslett . 615
plot.leverage.ppm . 616
plot.mppm . 619
plot.msr . 620
plot.plotppm . 622
plot.ppm . 624
plot.profilepl . 626
plot.quadrattest . 628
plot.rppm . 629
plot.scan.test . 630
plot.slrm . 631
plot.ssf . 632
plot.studpermutest . 634
Poisson . 636
polynom . 637
pool . 638
pool.anylist . 639
pool.envelope . 640
pool.fasp . 641
pool.fv . 642
pool.quadrattest . 644
pool.rat . 645
ppm . 647

10 R topics documented:

ppm.object . 653
ppm.ppp . 655
ppmInfluence . 665
PPversion . 667
predict.dppm . 668
predict.kppm . 669
predict.mppm . 670
predict.ppm . 672
predict.rppm . 677
predict.slrm . 679
print.ppm . 680
profilepl . 681
prune.rppm . 684
pseudoR2 . 685
psib . 687
psst . 688
psstA . 690
psstG . 693
qqplot.ppm . 695
quad.ppm . 700
quadrat.test . 701
quadrat.test.mppm . 706
quadrat.test.splitppp . 708
quantile.density . 709
ranef.mppm . 710
range.fv . 711
rat . 712
rdpp . 713
reach . 714
reach.dppm . 717
reach.kppm . 718
rectcontact . 719
reduced.sample . 720
reload.or.compute . 721
relrisk . 723
relrisk.ppm . 724
relrisk.ppp . 726
repul.dppm . 729
residuals.dppm . 731
residuals.kppm . 732
residuals.mppm . 733
residuals.ppm . 734
residuals.slrm . 737
response . 739
rex . 740
rho2hat . 742
rhohat . 743
rmh.ppm . 749

R topics documented: 11

rmhmodel.ppm . 752
roc . 754
rose . 756
rotmean . 758
rppm . 760
SatPiece . 761
Saturated . 763
scan.test . 764
scanLRTS . 766
sdr . 768
sdrPredict . 770
segregation.test . 771
sharpen . 772
simulate.dppm . 774
simulate.kppm . 776
simulate.mppm . 778
simulate.ppm . 779
simulate.slrm . 781
slrm . 782
Smooth . 785
Smooth.fv . 786
Smooth.msr . 787
Smooth.ppp . 789
Smooth.ssf . 792
Smoothfun.ppp . 793
Softcore . 794
spatcov . 796
spatialcdf . 798
split.msr . 800
ssf . 801
stieltjes . 802
stienen . 803
Strauss . 805
StraussHard . 806
studpermu.test . 808
subfits . 810
subspaceDistance . 811
suffstat . 812
summary.dppm . 814
summary.kppm . 815
summary.ppm . 816
thomas.estK . 818
thomas.estpcf . 820
thresholdCI . 823
thresholdSelect . 824
transect.im . 825
triplet.family . 827
Triplets . 828

12 spatstat.core-package

Tstat . 829
unitname . 831
unstack.msr . 832
update.detpointprocfamily . 833
update.interact . 834
update.kppm . 835
update.ppm . 836
valid . 839
valid.detpointprocfamily . 840
valid.ppm . 841
valid.slrm . 842
varblock . 843
varcount . 845
vargamma.estK . 846
vargamma.estpcf . 849
vcov.kppm . 851
vcov.mppm . 853
vcov.ppm . 854
vcov.slrm . 858
Window.ppm . 860
with.fv . 861
with.msr . 863
with.ssf . 864
zclustermodel . 866
zgibbsmodel . 867
[.ssf . 868

Index 869

spatstat.core-package The spatstat.core Package

Description

The spatstat.core package belongs to the spatstat family of packages. It contains the core func-
tionality for statistical analysis and modelling of spatial data.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.core contains all the main user-level functions that perform statistical
analysis and modelling of spatial data.

(The main exception is that functions for linear networks are in the separate sub-package spat-
stat.linnet.)

spatstat.core-package 13

Structure of the spatstat family

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

• spatstat.utils containing basic utilities

• spatstat.sparse containing linear algebra utilities

• spatstat.data containing datasets

• spatstat.geom containing geometrical objects and geometrical operations

• spatstat.core containing the main functionality for statistical analysis and modelling of spatial
data

• spatstat.linnet containing functions for spatial data on a linear network

• spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for
"spatstat-package" in the spatstat package.

Additionally there are several extension packages:

• spatstat.gui for interactive graphics

• spatstat.local for local likelihood (including geographically weighted regression)

• spatstat.Knet for additional, computationally efficient code for linear networks

• spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

Overview of Functionality in spatstat.core

The spatstat family of packages is designed to support a complete statistical analysis of spatial
data. It supports

• creation, manipulation and plotting of point patterns;

• exploratory data analysis;

• spatial random sampling;

• simulation of point process models;

• parametric model-fitting;

• non-parametric smoothing and regression;

• formal inference (hypothesis tests, confidence intervals);

• model diagnostics.

14 spatstat.core-package

For an overview, see the help file for "spatstat-package" in the spatstat package.

Following is a list of the functionality provided in the spatstat.core package only.

To simulate a random point pattern:
Functions for generating random point patterns are now contained in the spatstat.random package.

To interrogate a point pattern:

density.ppp kernel estimation of point pattern intensity
densityHeat.ppp diffusion kernel estimation of point pattern intensity
Smooth.ppp kernel smoothing of marks of point pattern
sharpen.ppp data sharpening

Manipulation of pixel images:
An object of class "im" represents a pixel image.

blur apply Gaussian blur to image
Smooth.im apply Gaussian blur to image
transect.im line transect of image
pixelcentres extract centres of pixels
rnoise random pixel noise

Line segment patterns
An object of class "psp" represents a pattern of straight line segments.

density.psp kernel smoothing of line segments
rpoisline generate a realisation of the Poisson line process inside a window

Tessellations
An object of class "tess" represents a tessellation.

rpoislinetess generate tessellation using Poisson line process

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

runifpoint3 generate uniform random points in 3-D
rpoispp3 generate Poisson random points in 3-D
envelope.pp3 generate simulation envelopes for 3-D pattern

Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

runifpointx generate uniform random points

spatstat.core-package 15

rpoisppx generate Poisson random points

Classical exploratory tools:

clarkevans Clark and Evans aggregation index
fryplot Fry plot
miplot Morisita Index plot

Smoothing:

density.ppp kernel smoothed density/intensity
relrisk kernel estimate of relative risk
Smooth.ppp spatial interpolation of marks
bw.diggle cross-validated bandwidth selection for density.ppp
bw.ppl likelihood cross-validated bandwidth selection for density.ppp
bw.CvL Cronie-Van Lieshout bandwidth selection for density estimation
bw.scott Scott’s rule of thumb for density estimation
bw.abram Abramson’s rule for adaptive bandwidths
bw.relrisk cross-validated bandwidth selection for relrisk
bw.smoothppp cross-validated bandwidth selection for Smooth.ppp
bw.frac bandwidth selection using window geometry
bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:

clusterset Allard-Fraley feature detection
nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of effect of two covariates
spatialcdf Spatial cumulative distribution function
roc Receiver operating characteristic curve

Summary statistics for a point pattern:

Fest empty space function F
Gest nearest neighbour distribution function G
Jest J-function J = (1−G)/(1− F)
Kest Ripley’s K-function
Lest Besag L-function
Tstat Third order T -function
allstats all four functions F , G, J , K
pcf pair correlation function
Kinhom K for inhomogeneous point patterns
Linhom L for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom F for inhomogeneous point patterns
Ginhom G for inhomogeneous point patterns

16 spatstat.core-package

Jinhom J for inhomogeneous point patterns
localL Getis-Franklin neighbourhood density function
localK neighbourhood K-function
localpcf local pair correlation function
localKinhom local K for inhomogeneous point patterns
localLinhom local L for inhomogeneous point patterns
localpcfinhom local pair correlation for inhomogeneous patterns
Ksector Directional K-function
Kscaled locally scaled K-function
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals

for a summary function
lohboot bootstrap for a summary function

Related facilities:

plot.fv plot a summary function
eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible
eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth.fv apply smoothing to a summary function
deriv.fv calculate derivative of a summary function
pool.fv pool several estimates of a summary function
density.ppp kernel smoothed density
densityHeat.ppp diffusion kernel smoothed density
Smooth.ppp spatial interpolation of marks
relrisk kernel estimate of relative risk
sharpen.ppp data sharpening
rknn theoretical distribution of nearest neighbour distance

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an
object X of class "ppp" such that marks(X) is a factor.

relrisk kernel estimation of relative risk
scan.test spatial scan test of elevated risk
Gcross,Gdot,Gmulti multitype nearest neighbour distributions Gij , Gi•
Kcross,Kdot, Kmulti multitype K-functions Kij ,Ki•
Lcross,Ldot multitype L-functions Lij , Li•
Jcross,Jdot,Jmulti multitype J-functions Jij , Ji•
pcfcross multitype pair correlation function gij
pcfdot multitype pair correlation function gi•
pcfmulti general pair correlation function
markconnect marked connection function pij
alltypes estimates of the above for all i, j pairs
Iest multitype I-function

spatstat.core-package 17

Kcross.inhom,Kdot.inhom inhomogeneous counterparts of Kcross, Kdot
Lcross.inhom,Ldot.inhom inhomogeneous counterparts of Lcross, Ldot
pcfcross.inhom,pcfdot.inhom inhomogeneous counterparts of pcfcross, pcfdot
localKcross,localKdot local counterparts of Kcross, Kdot
localLcross,localLdot local counterparts of Lcross, Ldot
localKcross.inhom,localLcross.inhom local counterparts of Kcross.inhom, Lcross.inhom

Summary statistics for a marked point pattern: A marked point pattern is represented by an
object X of class "ppp" with a component X$marks. The entries in the vector X$marks may be
numeric, complex, string or any other atomic type. For numeric marks, there are the following
functions:

markmean smoothed local average of marks
markvar smoothed local variance of marks
markcorr mark correlation function
markcrosscorr mark cross-correlation function
markvario mark variogram
markmarkscatter mark-mark scatterplot
Kmark mark-weighted K function
Emark mark independence diagnostic E(r)
Vmark mark independence diagnostic V (r)
nnmean nearest neighbour mean index
nnvario nearest neighbour mark variance index

For marks of any type, there are the following:

Gmulti multitype nearest neighbour distribution
Kmulti multitype K-function
Jmulti multitype J-function

Alternatively use cut.ppp to convert a marked point pattern to a multitype point pattern.

Programming tools:

marktable tabulate the marks of neighbours in a point pattern

Summary statistics for a three-dimensional point pattern:
These are for 3-dimensional point pattern objects (class pp3).

F3est empty space function F
G3est nearest neighbour function G
K3est K-function
pcf3est pair correlation function

Related facilities:

envelope.pp3 simulation envelopes

18 spatstat.core-package

Summary statistics for random sets:
These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).

Hest spherical contact distribution H
Gfox Foxall G-function
Jfox Foxall J-function

Model fitting (Cox and cluster models)
Cluster process models (with homogeneous or inhomogeneous intensity) and Cox processes can be
fitted by the function kppm. Its result is an object of class "kppm". The fitted model can be printed,
plotted, predicted, simulated and updated.

kppm Fit model
plot.kppm Plot the fitted model
summary.kppm Summarise the fitted model
fitted.kppm Compute fitted intensity
predict.kppm Compute fitted intensity
update.kppm Update the model
improve.kppm Refine the estimate of trend
simulate.kppm Generate simulated realisations
vcov.kppm Variance-covariance matrix of coefficients
coef.kppm Extract trend coefficients
formula.kppm Extract trend formula
parameters Extract all model parameters
clusterfield Compute offspring density
clusterradius Radius of support of offspring density
Kmodel.kppm K function of fitted model
pcfmodel.kppm Pair correlation of fitted model

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

The theoretical models can also be simulated, for any choice of parameter values, using rThomas,
rMatClust, rCauchy, rVarGamma, and rLGCP.

Lower-level fitting functions include:

lgcp.estK fit a log-Gaussian Cox process model
lgcp.estpcf fit a log-Gaussian Cox process model
thomas.estK fit the Thomas process model
thomas.estpcf fit the Thomas process model
matclust.estK fit the Matérn Cluster process model
matclust.estpcf fit the Matérn Cluster process model
cauchy.estK fit a Neyman-Scott Cauchy cluster process
cauchy.estpcf fit a Neyman-Scott Cauchy cluster process
vargamma.estK fit a Neyman-Scott Variance Gamma process
vargamma.estpcf fit a Neyman-Scott Variance Gamma process
mincontrast low-level algorithm for fitting models

by the method of minimum contrast

spatstat.core-package 19

Model fitting (Poisson and Gibbs models)
Poisson point processes are the simplest models for point patterns. A Poisson model assumes that
the points are stochastically independent. It may allow the points to have a non-uniform spatial den-
sity. The special case of a Poisson process with a uniform spatial density is often called Complete
Spatial Randomness.

Poisson point processes are included in the more general class of Gibbs point process models. In a
Gibbs model, there is interaction or dependence between points. Many different types of interaction
can be specified.

For a detailed explanation of how to fit Poisson or Gibbs point process models to point pattern data
using spatstat, see Baddeley and Turner (2005b) or Baddeley (2008).

To fit a Poisson or Gibbs point process model:
Model fitting in spatstat is performed mainly by the function ppm. Its result is an object of class
"ppm".

Here are some examples, where X is a point pattern (class "ppp"):

command model
ppm(X) Complete Spatial Randomness
ppm(X ~ 1) Complete Spatial Randomness
ppm(X ~ x) Poisson process with

intensity loglinear in x coordinate
ppm(X ~ 1, Strauss(0.1)) Stationary Strauss process
ppm(X ~ x, Strauss(0.1)) Strauss process with

conditional intensity loglinear in x

It is also possible to fit models that depend on other covariates.

Manipulating the fitted model:

plot.ppm Plot the fitted model
predict.ppm Compute the spatial trend and conditional intensity

of the fitted point process model
coef.ppm Extract the fitted model coefficients
parameters Extract all model parameters
formula.ppm Extract the trend formula
intensity.ppm Compute fitted intensity
Kmodel.ppm K function of fitted model
pcfmodel.ppm pair correlation of fitted model
fitted.ppm Compute fitted conditional intensity at quadrature points
residuals.ppm Compute point process residuals at quadrature points
update.ppm Update the fit
vcov.ppm Variance-covariance matrix of estimates
rmh.ppm Simulate from fitted model
simulate.ppm Simulate from fitted model
print.ppm Print basic information about a fitted model
summary.ppm Summarise a fitted model
effectfun Compute the fitted effect of one covariate
logLik.ppm log-likelihood or log-pseudolikelihood

20 spatstat.core-package

anova.ppm Analysis of deviance
model.frame.ppm Extract data frame used to fit model
model.images Extract spatial data used to fit model
model.depends Identify variables in the model
as.interact Interpoint interaction component of model
fitin Extract fitted interpoint interaction
is.hybrid Determine whether the model is a hybrid
valid.ppm Check the model is a valid point process
project.ppm Ensure the model is a valid point process

For model selection, you can also use the generic functions step, drop1 and AIC on fitted point
process models. For variable selection, see sdr.

See spatstat.options to control plotting of fitted model.

To specify a point process model:
The first order “trend” of the model is determined by an R language formula. The formula specifies
the form of the logarithm of the trend.

X ~ 1 No trend (stationary)
X ~ x Loglinear trend λ(x, y) = exp(α+ βx)

where x, y are Cartesian coordinates
X ~ polynom(x,y,3) Log-cubic polynomial trend
X ~ harmonic(x,y,2) Log-harmonic polynomial trend
X ~ Z Loglinear function of covariate Z

λ(x, y) = exp(α+ βZ(x, y))

The higher order (“interaction”) components are described by an object of class "interact". Such
objects are created by:

Poisson() the Poisson point process
AreaInter() Area-interaction process
BadGey() multiscale Geyer process
Concom() connected component interaction
DiggleGratton() Diggle-Gratton potential
DiggleGatesStibbard() Diggle-Gates-Stibbard potential
Fiksel() Fiksel pairwise interaction process
Geyer() Geyer’s saturation process
Hardcore() Hard core process
HierHard() Hierarchical multiype hard core process
HierStrauss() Hierarchical multiype Strauss process
HierStraussHard() Hierarchical multiype Strauss-hard core process
Hybrid() Hybrid of several interactions
LennardJones() Lennard-Jones potential
MultiHard() multitype hard core process
MultiStrauss() multitype Strauss process
MultiStraussHard() multitype Strauss/hard core process
OrdThresh() Ord process, threshold potential
Ord() Ord model, user-supplied potential

spatstat.core-package 21

PairPiece() pairwise interaction, piecewise constant
Pairwise() pairwise interaction, user-supplied potential
Penttinen() Penttinen pairwise interaction
SatPiece() Saturated pair model, piecewise constant potential
Saturated() Saturated pair model, user-supplied potential
Softcore() pairwise interaction, soft core potential
Strauss() Strauss process
StraussHard() Strauss/hard core point process
Triplets() Geyer triplets process

Note that it is also possible to combine several such interactions using Hybrid.

Simulation and goodness-of-fit for fitted models:

rmh.ppm simulate realisations of a fitted model
simulate.ppm simulate realisations of a fitted model
envelope compute simulation envelopes for a fitted model

Model fitting (determinantal point process models)
Code for fitting determinantal point process models has recently been added to spatstat.
For information, see the help file for dppm.

Model fitting (spatial logistic regression)
Pixel-based spatial logistic regression is an alternative technique for analysing spatial point patterns
that is widely used in Geographical Information Systems. It is approximately equivalent to fitting a
Poisson point process model.

In pixel-based logistic regression, the spatial domain is divided into small pixels, the presence
or absence of a data point in each pixel is recorded, and logistic regression is used to model the
presence/absence indicators as a function of any covariates.

Facilities for performing spatial logistic regression are provided in spatstat for comparison pur-
poses.

Fitting a spatial logistic regression
Spatial logistic regression is performed by the function slrm. Its result is an object of class "slrm".
There are many methods for this class, including methods for print, fitted, predict, simulate,
anova, coef, logLik, terms, update, formula and vcov.

For example, if X is a point pattern (class "ppp"):

command model
slrm(X ~ 1) Complete Spatial Randomness
slrm(X ~ x) Poisson process with

intensity loglinear in x coordinate
slrm(X ~ Z) Poisson process with

intensity loglinear in covariate Z

Manipulating a fitted spatial logistic regression

anova.slrm Analysis of deviance

22 spatstat.core-package

coef.slrm Extract fitted coefficients
vcov.slrm Variance-covariance matrix of fitted coefficients
fitted.slrm Compute fitted probabilities or intensity
logLik.slrm Evaluate loglikelihood of fitted model
plot.slrm Plot fitted probabilities or intensity
predict.slrm Compute predicted probabilities or intensity with new data
simulate.slrm Simulate model

There are many other undocumented methods for this class, including methods for print, update,
formula and terms. Stepwise model selection is possible using step or stepAIC. For variable
selection, see sdr.

Simulation
There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.
Random point patterns: Functions for random generation are now contained in the spatstat.random
package.

See also varblock for estimating the variance of a summary statistic by block resampling, and
lohboot for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.

Cluster process models are fitted by the function kppm yielding an object of class "kppm". To
generate one or more simulated realisations of this fitted model, use simulate.kppm.

Gibbs point process models are fitted by the function ppm yielding an object of class "ppm". To gen-
erate a simulated realisation of this fitted model, use rmh.ppm. To generate one or more simulated
realisations of the fitted model, use simulate.ppm.

Other random patterns: Functions for random generation are now contained in the spatstat.random
package.

Simulation-based inference

envelope critical envelope for Monte Carlo test of goodness-of-fit
bits.envelope critical envelope for balanced two-stage Monte Carlo test
qqplot.ppm diagnostic plot for interpoint interaction
scan.test spatial scan statistic/test
studpermu.test studentised permutation test
segregation.test test of segregation of types

Hypothesis tests:

quadrat.test χ2 goodness-of-fit test on quadrat counts
clarkevans.test Clark and Evans test
cdf.test Spatial distribution goodness-of-fit test
berman.test Berman’s goodness-of-fit tests
envelope critical envelope for Monte Carlo test of goodness-of-fit
scan.test spatial scan statistic/test
dclf.test Diggle-Cressie-Loosmore-Ford test

spatstat.core-package 23

mad.test Mean Absolute Deviation test
anova.ppm Analysis of Deviance for point process models

More recently-developed tests:

dg.test Dao-Genton test
bits.test Balanced independent two-stage test
dclf.progress Progress plot for DCLF test
mad.progress Progress plot for MAD test

Sensitivity diagnostics:
Classical measures of model sensitivity such as leverage and influence have been adapted to point
process models.

leverage.ppm Leverage for point process model
influence.ppm Influence for point process model
dfbetas.ppm Parameter influence
dffit.ppm Effect change diagnostic

Diagnostics for covariate effect:
Classical diagnostics for covariate effects have been adapted to point process models.

parres Partial residual plot
addvar Added variable plot
rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of covariate effect (bivariate)

Residual diagnostics:
Residuals for a fitted point process model, and diagnostic plots based on the residuals, were intro-
duced in Baddeley et al (2005) and Baddeley, Rubak and Møller (2011).

Type demo(diagnose) for a demonstration of the diagnostics features.

diagnose.ppm diagnostic plots for spatial trend
qqplot.ppm diagnostic Q-Q plot for interpoint interaction
residualspaper examples from Baddeley et al (2005)
Kcom model compensator of K function
Gcom model compensator of G function
Kres score residual of K function
Gres score residual of G function
psst pseudoscore residual of summary function
psstA pseudoscore residual of empty space function
psstG pseudoscore residual of G function
compareFit compare compensators of several fitted models

Resampling and randomisation procedures

24 spatstat.core-package

You can build your own tests based on randomisation and resampling using the following capabili-
ties:

quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Julian Gilbey, Yongtao Guan, Ute
Hahn, Kassel Hingee, Abdollah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas
Rajala, Suman Rakshit, Dominic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang
made substantial contributions of code.

For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Ander-
son, Ang Qi Wei, Ryan Arellano, Jens Åström, Robert Aue, Marcel Austenfeld, Sandro Azaele,
Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bern-
hardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger
Bivand, Jose M. Blanco Moreno, Florent Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Si-
mon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen,
Lucía Cobo Sanchez, Jean-Francois Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Con-
stantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario
D’Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed
El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet
Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban
Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Mar-
tin Bøgsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Max-
imilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack
Hywood, Ross Ihaka, C̆enk Içös, Aruna Jammalamadaka, Robert John-Chandran, Devin John-
son, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn,
Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee,
George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben
Madin, Martin Maechler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Mo-
nia Mahling, Jorge Mateu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi
Xiangcheng, Lore De Middeleer, Robin Milne, Enrique Miranda, Jesper Møller, Annie Mollié, Ines
Moncada, Mehdi Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nico-
letta Nava, Linda Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlägel,
Thierry Onkelinx, Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington,
Mike Porter, Sergiy Protsiv, Adrian Raftery, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Särkkä, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, François
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael

adaptive.density 25

Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vih-
takari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao
Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates,
Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

adaptive.density Adaptive Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, ..., method=c("voronoi","kernel"))

Arguments

X Point pattern (object of class "ppp" or "lpp").

method Character string specifying the estimation method

... Additional arguments passed to densityVoronoi or densityAdaptiveKernel.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If method="voronoi" the data are passed to the function densityVoronoi which estimates the
intensity using the Voronoi-Dirichlet tessellation.

If method="kernel" the data are passed to the function densityAdaptiveKernel which estimates
the intensity using a variable-bandwidth kernel estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

26 addvar

See Also

density.ppp, densityVoronoi, densityAdaptiveKernel, im.object.

Examples

plot(adaptive.density(nztrees, 1), main="Voronoi estimate")

addvar Added Variable Plot for Point Process Model

Description

Computes the coordinates for an Added Variable Plot for a fitted point process model.

Usage

addvar(model, covariate, ...,
subregion=NULL,
bw="nrd0", adjust=1,
from=NULL, to=NULL, n=512,
bw.input = c("points", "quad"),
bw.restrict = FALSE,
covname, crosscheck=FALSE)

Arguments

model Fitted point process model (object of class "ppm").

covariate The covariate to be added to the model. Either a pixel image, a function(x,y),
or a character string giving the name of a covariate that was supplied when the
model was fitted.

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

crosscheck For developers only. Logical value indicating whether to perform cross-checks
on the validity of the calculation.

addvar 27

Details

This command generates the plot coordinates for an Added Variable Plot for a spatial point process
model.

Added Variable Plots (Cox, 1958, sec 4.5; Wang, 1985) are commonly used in linear models and
generalized linear models, to decide whether a model with response y and predictors x would be
improved by including another predictor z.

In a (generalised) linear model with response y and predictors x, the Added Variable Plot for a new
covariate z is a plot of the smoothed Pearson residuals from the original model against the scaled
residuals from a weighted linear regression of z on x. If this plot has nonzero slope, then the new
covariate z is needed. For general advice see Cook and Weisberg(1999); Harrell (2001).

Essentially the same technique can be used for a spatial point process model (Baddeley et al, 2012).

The argument model should be a fitted spatial point process model (object of class "ppm").

The argument covariate identifies the covariate that is to be considered for addition to the model.
It should be either a pixel image (object of class "im") or a function(x,y) giving the values of
the covariate at any spatial location. Alternatively covariate may be a character string, giving the
name of a covariate that was supplied (in the covariates argument to ppm) when the model was
fitted, but was not used in the model.

The result of addvar(model, covariate) is an object belonging to the classes "addvar" and "fv".
Plot this object to generate the added variable plot.

Note that the plot method shows the pointwise significance bands for a test of the null model, i.e.
the null hypothesis that the new covariate has no effect.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

An object of class "addvar" containing the coordinates for the added variable plot. There is a plot
method.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for addvar.

28 allstats

Internal data

The return value has an attribute "spatial" which contains the internal data: the computed values
of the residuals, and of all relevant covariates, at each quadrature point of the model. It is an object
of class "ppp" with a data frame of marks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

Cook, R.D. and Weisberg, S. (1999) Applied regression, including computing and graphics. New
York: Wiley.

Cox, D.R. (1958) Planning of Experiments. New York: Wiley.

Harrell, F. (2001) Regression Modeling Strategies. New York: Springer.

Wang, P. (1985) Adding a variable in generalized linear models. Technometrics 27, 273–276.

See Also

parres, rhohat, rho2hat.

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
model <- ppm(X, ~y)
adv <- addvar(model, "x")
plot(adv)
adv <- addvar(model, "x", subregion=square(0.5))

allstats Calculate four standard summary functions of a point pattern.

Description

Calculates the F , G, J , and K summary functions for an unmarked point pattern. Returns them as
a function array (of class "fasp", see fasp.object).

Usage

allstats(pp, ..., dataname=NULL, verb=FALSE)

allstats 29

Arguments

pp The observed point pattern, for which summary function estimates are required.
An object of class "ppp". It must not be marked.

... Optional arguments passed to the summary functions Fest, Gest, Jest and
Kest.

dataname A character string giving an optional (alternative) name for the point pattern.

verb A logical value meaning “verbose”. If TRUE, progress reports are printed during
calculation.

Details

This computes four standard summary statistics for a point pattern: the empty space function F (r),
nearest neighbour distance distribution function G(r), van Lieshout-Baddeley function J(r) and
Ripley’s function K(r). The real work is done by Fest, Gest, Jest and Kest respectively. Consult
the help files for these functions for further information about the statistical interpretation of F , G,
J and K.

If verb is TRUE, then “progress reports” (just indications of completion) are printed out when the
calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by plot.fasp) will be formed from the
argument dataname. If this is not given, it defaults to the expression for pp given in the call to
allstats.

Value

A list of length 4 containing the F , G, J and K functions respectively.

The list can be plotted directly using plot (which dispatches to plot.solist).

Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest
or Kest. Thus each entry in the list is a function value table (object of class "fv", see fv.object).

The default formulae for plotting these functions are cbind(km,theo) ~ r for F, G, and J, and
cbind(trans,theo) ~ r for K.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.solist, plot.fv, fv.object, Fest, Gest, Jest, Kest

Examples

data(swedishpines)
a <- allstats(swedishpines,dataname="Swedish Pines")
if(interactive()) {
plot(a)
plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))

30 alltypes

}

alltypes Calculate Summary Statistic for All Types in a Multitype Point Pattern

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F ,G,
J , K etc) of the pattern, for all possible combinations of marks, and returns these functions in an
array.

Usage

alltypes(X, fun="K", ...,
dataname=NULL,verb=FALSE,envelope=FALSE,reuse=TRUE)

Arguments

X The observed point pattern, for which summary function estimates are required.
An object of class "ppp" or "lpp".

fun The summary function. Either an R function, or a character string indicating
the summary function required. Options for strings are "F", "G", "J", "K", "L",
"pcf", "Gcross", "Jcross", "Kcross", "Lcross", "Gdot", "Jdot", "Kdot",
"Ldot".

... Arguments passed to the summary function (and to the function envelope if
appropriate)

dataname Character string giving an optional (alternative) name to the point pattern, dif-
ferent from what is given in the call. This name, if supplied, may be used by
plot.fasp() in forming the title of the plot. If not supplied it defaults to the
parsing of the argument supplied as X in the call.

verb Logical value. If verb is true then terse “progress reports” (just the values of
the mark indices) are printed out when the calculations for that combination of
marks are completed.

envelope Logical value. If envelope is true, then simulation envelopes of the summary
function will also be computed. See Details.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE) or on different, independent
sets of simulated patterns (reuse=FALSE).

Details

This routine is a convenient way to analyse the dependence between types in a multitype point
pattern. It computes the estimates of a selected summary function of the pattern, for all possible
combinations of marks. It returns these functions in an array (an object of class "fasp") amenable
to plotting by plot.fasp().

alltypes 31

The argument fun specifies the summary function that will be evaluated for each type of point, or
for each pair of types. It may be either an R function or a character string.

Suppose that the points have possible types 1, 2, . . . ,m and let Xi denote the pattern of points of
type i only.

If fun="F" then this routine calculates, for each possible type i, an estimate of the Empty Space
Function Fi(r) of Xi. See Fest for explanation of the empty space function. The estimate is
computed by applying Fest to Xi with the optional arguments

If fun is "Gcross", "Jcross", "Kcross" or "Lcross", the routine calculates, for each pair of types
(i, j), an estimate of the “i-toj” cross-type function Gij(r), Jij(r), Kij(r) or Lij(r) respectively
describing the dependence between Xi and Xj . See Gcross, Jcross, Kcross or Lcross respec-
tively for explanation of these functions. The estimate is computed by applying the relevant function
(Gcross etc) to X using each possible value of the arguments i,j, together with the optional argu-
ments

If fun is "pcf" the routine calculates the cross-type pair correlation function pcfcross between
each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type i, an estimate
of the “i-to-any” dot-type function Gi•(r), Ji•(r) or Ki•(r) or Li•(r) respectively describing the
dependence betweenXi andX . See Gdot, Jdot, Kdot or Ldot respectively for explanation of these
functions. The estimate is computed by applying the relevant function (Gdot etc) to X using each
possible value of the argument i, together with the optional arguments

The letters "G", "J", "K" and "L" are interpreted as abbreviations for Gcross, Jcross, Kcross and
Lcross respectively, assuming the point pattern is marked. If the point pattern is unmarked, the
appropriate function Fest, Jest, Kest or Lest is invoked instead.

If envelope=TRUE, then as well as computing the value of the summary function for each combina-
tion of types, the algorithm also computes simulation envelopes of the summary function for each
combination of types. The arguments ... are passed to the function envelope to control the num-
ber of simulations, the random process generating the simulations, the construction of envelopes,
and so on.

When envelope=TRUE it is possible that errors could occur because the simulated point patterns do
not satisfy the requirements of the summary function (for example, because the simulated pattern
is empty and fun requires at least one point). If the number of such errors exceeds the maximum
permitted number maxnerr, then the envelope algorithm will give up, and will return the empirical
summary function for the data point pattern, fun(X), in place of the envelope.

Value

A function array (an object of class "fasp", see fasp.object). This can be plotted using plot.fasp.

If the pattern is not marked, the resulting “array” has dimensions 1× 1. Otherwise the following is
true:

If fun="F", the function array has dimensions m × 1 where m is the number of different marks
in the point pattern. The entry at position [i,1] in this array is the result of applying Fest to the
points of type i only.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the function array again has dimensions m × 1.
The entry at position [i,1] in this array is the result of Gdot(X, i), Jdot(X, i) Kdot(X, i) or
Ldot(X, i) respectively.

32 alltypes

If fun is "Gcross", "Jcross", "Kcross" or "Lcross" (or their abbreviations "G", "J", "K" or "L"),
the function array has dimensions m×m. The [i,j] entry of the function array (for i 6= j) is the
result of applying the function Gcross, Jcross, Kcross orLcross to the pair of types (i,j). The
diagonal [i,i] entry of the function array is the result of applying the univariate function Gest,
Jest, Kest or Lest to the points of type i only.

If envelope=FALSE, then each function entry fns[[i]] retains the format of the output of the
relevant estimating routine Fest, Gest, Jest, Kest, Lest, Gcross, Jcross ,Kcross, Lcross, Gdot,
Jdot, Kdot or Ldot The default formulae for plotting these functions are cbind(km,theo) ~ r for
F, G, and J functions, and cbind(trans,theo) ~ r for K and L functions.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the
envelope command.

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gcross, Jcross, Kcross, Lcross, Gdot,
Jdot, Kdot, envelope.

Examples

bramblecanes (3 marks).
bram <- bramblecanes

bF <- alltypes(bram,"F",verb=TRUE)
plot(bF)
if(interactive()) {

plot(alltypes(bram,"G"))
plot(alltypes(bram,"Gdot"))

}

Swedishpines (unmarked).
swed <- swedishpines

plot(alltypes(swed,"K"))

plot(alltypes(amacrine, "pcf"), ylim=c(0,1.3))

A setting where you might REALLY want to use dataname:
xxx <- alltypes(ppp(Melvin$x,Melvin$y,
window=as.owin(c(5,20,15,50)),marks=clyde),
fun="F",verb=TRUE,dataname="Melvin")

envelopes
bKE <- alltypes(bram,"K",envelope=TRUE,nsim=19)

anova.mppm 33

global version:
bFE <- alltypes(bram,"F",envelope=TRUE,nsim=19,global=TRUE)

extract one entry
as.fv(bKE[1,1])

anova.mppm ANOVA for Fitted Point Process Models for Replicated Patterns

Description

Performs analysis of deviance for one or more point process models fitted to replicated point pattern
data.

Usage

S3 method for class 'mppm'
anova(object, ...,

test=NULL, adjust=TRUE,
fine=FALSE, warn=TRUE)

Arguments

object Object of class "mppm" representing a point process model that was fitted to
replicated point patterns.

... Optional. Additional objects of class "mppm".

test Type of hypothesis test to perform. A character string, partially matching one of
"Chisq", "LRT", "Rao", "score", "F" or "Cp", or NULL indicating that no test
should be performed.

adjust Logical value indicating whether to correct the pseudolikelihood ratio when
some of the models are not Poisson processes.

fine Logical value passed to vcov.ppm indicating whether to use a quick estimate
(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
the variance of the fitted coefficients of each model. Relevant only when some
of the models are not Poisson and adjust=TRUE.

warn Logical value indicating whether to issue warnings if problems arise.

Details

This is a method for anova for comparing several fitted point process models of class "mppm",
usually generated by the model-fitting function mppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of
Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood
ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-
squared tests. Their interpretation is very similar to that in anova.glm.

34 anova.mppm

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley, Turner and Rubak (2015) so that the chi-squared test is valid. It
is strongly advisable to perform this adjustment.

The argument test determines which hypothesis test, if any, will be performed to compare the
models. The argument test should be a character string, partially matching one of "Chisq", "F"
or "Cp", or NULL. The first option "Chisq" gives the likelihood ratio test based on the asymptotic
chi-squared distribution of the deviance difference. The meaning of the other options is explained
in anova.glm.

Value

An object of class "anova", or NULL.

Random effects models are currently not supported

For models with random effects (i.e. where the call to mppm included the argument random),

analysis of deviance is currently not supported, due to changes in the nlme package. We will try to
find a solution.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

See Also

mppm

anova.ppm 35

Examples

H <- hyperframe(X=waterstriders)
#' test for loglinear trend in x coordinate
mod0 <- mppm(X~1, data=H, Poisson())
modx <- mppm(X~x, data=H, Poisson())
anova(mod0, modx, test="Chi")
not significant
anova(modx, test="Chi")
not significant

#' test for inhibition
mod0S <- mppm(X~1, data=H, Strauss(2))
anova(mod0, mod0S, test="Chi")
significant!

#' test for trend after accounting for inhibition
modxS <- mppm(X~x, data=H, Strauss(2))
anova(mod0S, modxS, test="Chi")
not significant

anova.ppm ANOVA for Fitted Point Process Models

Description

Performs analysis of deviance for one or more fitted point process models.

Usage

S3 method for class 'ppm'
anova(object, ..., test=NULL,

adjust=TRUE, warn=TRUE, fine=FALSE)

Arguments

object A fitted point process model (object of class "ppm").

... Optional. Additional objects of class "ppm".

test Character string, partially matching one of "Chisq", "LRT", "Rao", "score",
"F" or "Cp", or NULL indicating that no test should be performed.

adjust Logical value indicating whether to correct the pseudolikelihood ratio when
some of the models are not Poisson processes.

warn Logical value indicating whether to issue warnings if problems arise.

fine Logical value, passed to vcov.ppm, indicating whether to use a quick estimate
(fine=FALSE, the default) or a slower, more accurate estimate (fine=TRUE) of
variance terms. Relevant only when some of the models are not Poisson and
adjust=TRUE.

36 anova.ppm

Details

This is a method for anova for fitted point process models (objects of class "ppm", usually generated
by the model-fitting function ppm).

If the fitted models are all Poisson point processes, then by default, this function performs an Anal-
ysis of Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log
likelihood ratio), the difference in degrees of freedom, and (if test="Chi" or test="LRT") the two-
sided p-values for the chi-squared tests. Their interpretation is very similar to that in anova.glm. If
test="Rao" or test="score", the score test (Rao, 1948) is performed instead.

If some of the fitted models are not Poisson point processes, the ‘deviance’ differences in this
table are ’pseudo-deviances’ equal to 2 times the differences in the maximised values of the log
pseudolikelihood (see ppm). It is not valid to compare these values to the chi-squared distribution.
In this case, if adjust=TRUE (the default), the pseudo-deviances will be adjusted using the method
of Pace et al (2011) and Baddeley et al (2015) so that the chi-squared test is valid. It is strongly
advisable to perform this adjustment.

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Anal-
ysis of Deviance the models must be nested, i.e. one model must be a special case of the
other. For example the point process model with formula ~x is a special case of the model
with formula ~x+y, so these models are nested. However the two point process models with
formulae ~x and ~y are not nested.
If you get this error message and you believe that the models should be nested, the problem
may be the inability of R to recognise that the two formulae are nested. Try modifying the
formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were
not all fitted to the same size of dataset”. This implies that the models were fitted using differ-
ent quadrature schemes (see quadscheme) and/or with different edge corrections or different
values of the border edge correction distance rbord.
To ensure that models are comparable, check the following:

• the models must all have been fitted to the same point pattern dataset, in the same window.
• all models must have been fitted by the same fitting method as specified by the argument
method in ppm.

• If some of the models depend on covariates, then they should all have been fitted using
the same list of covariates, and using allcovar=TRUE to ensure that the same quadrature
scheme is used.

• all models must have been fitted using the same edge correction as specified by the ar-
guments correction and rbord. If you did not specify the value of rbord, then it may
have taken a different value for different models. The default value of rbord is equal to
zero for a Poisson model, and otherwise equals the reach (interaction distance) of the in-
teraction term (see reach). To ensure that the models are comparable, set rbord to equal
the maximum reach of the interactions that you are fitting.

anova.ppm 37

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

Rao, C.R. (1948) Large sample tests of statistical hypotheses concerning several parameters with
applications to problems of estimation. Proceedings of the Cambridge Philosophical Society 44,
50–57.

See Also

ppm, vcov.ppm

Examples

mod0 <- ppm(swedishpines ~1)
modx <- ppm(swedishpines ~x)
Likelihood ratio test
anova(mod0, modx, test="Chi")
Score test
anova(mod0, modx, test="Rao")

Single argument
modxy <- ppm(swedishpines ~x + y)
anova(modxy, test="Chi")

Adjusted composite likelihood ratio test
modP <- ppm(swedishpines ~1, rbord=9)
modS <- ppm(swedishpines ~1, Strauss(9))
anova(modP, modS, test="Chi")

38 anova.slrm

anova.slrm Analysis of Deviance for Spatial Logistic Regression Models

Description

Performs Analysis of Deviance for two or more fitted Spatial Logistic Regression models.

Usage

S3 method for class 'slrm'
anova(object, ..., test = NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... additional objects of the same type (optional).

test a character string, (partially) matching one of "Chisq", "F" or "Cp", indicating
the reference distribution that should be used to compute p-values.

Details

This is a method for anova for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

The output shows the deviance differences (i.e. 2 times log likelihood ratio), the difference in
degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-squared tests. Their
interpretation is very similar to that in anova.glm.

Value

An object of class "anova", inheriting from class "data.frame", representing the analysis of de-
viance table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit0 <- slrm(X ~ 1)
fit1 <- slrm(X ~ x+y)
anova(fit0, fit1, test="Chi")

AreaInter 39

AreaInter The Area Interaction Point Process Model

Description

Creates an instance of the Area Interaction point process model (Widom-Rowlinson penetrable
spheres model) which can then be fitted to point pattern data.

Usage

AreaInter(r)

Arguments

r The radius of the discs in the area interaction process

Details

This function defines the interpoint interaction structure of a point process called the Widom-
Rowlinson penetrable sphere model or area-interaction process. It can be used to fit this model
to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the area interaction structure is yielded by the function AreaInter().
See the examples below.

In standard form, the area-interaction process (Widom and Rowlinson, 1970; Baddeley and Van
Lieshout, 1995) with disc radius r, intensity parameter κ and interaction parameter γ is a point
process with probability density

f(x1, . . . , xn) = ακn(x)γ−A(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and A(x) is the area of the region formed by the union of discs of radius r
centred at the points x1, . . . , xn. Here α is a normalising constant.

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is
clustered. Thus, an area interaction process can be used to model either clustered or regular point
patterns. Two points interact if the distance between them is less than 2r.

The standard form of the model, shown above, is a little complicated to interpret in practical ap-
plications. For example, each isolated point of the pattern x contributes a factor κγ−πr

2

to the
probability density.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
scale-free form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)η−C(x)

40 AreaInter

where β is the new intensity parameter, η is the new interaction parameter, andC(x) = B(x)−n(x)
is the interaction potential. Here

B(x) =
A(x)

πr2

is the normalised area (so that the discs have unit area). In this formulation, each isolated point
of the pattern contributes a factor β to the probability density (so the first order trend is β). The
quantity C(x) is a true interaction potential, in the sense that C(x) = 0 if the point pattern x does
not contain any points that lie close together (closer than 2r units apart).

When a new point u is added to an existing point pattern x, the rescaled potential −C(x) increases
by a value between 0 and 1. The increase is zero if u is not close to any point of x. The increase is
1 if the disc of radius r centred at u is completely contained in the union of discs of radius r centred
at the data points xi. Thus, the increase in potential is a measure of how close the new point u is
to the existing pattern x. Addition of the point u contributes a factor βηδ to the probability density,
where δ is the increase in potential.

The old parameters κ, γ of the standard form are related to the new parameters β, η of the canonical
scale-free form, by

β = κγ−πr
2

= κ/η

and
η = γπr

2

provided γ and κ are positive and finite.

In the canonical scale-free form, the parameter η can take any nonnegative value. The value η = 1
again corresponds to a Poisson process, with intensity β. If η < 1 then the process is regular, while
if η > 1 the process is clustered. The value η = 0 corresponds to a hard core process with hard core
radius r (interaction distance 2r).

The nonstationary area interaction process is similar except that the contribution of each individual
point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of AreaInter() is the disc radius r. When r is fixed, the model becomes
an exponential family. The canonical parameters log(β) and log(η) are estimated by ppm(), not
fixed in AreaInter().

Value

An object of class "interact" describing the interpoint interaction structure of the area-interaction
process with disc radius r.

Warnings

The interaction distance of this process is equal to 2 * r. Two discs of radius r overlap if their
centres are closer than 2 * r units apart.

The estimate of the interaction parameter η is unreliable if the interaction radius r is too small or
too large. In these situations the model is approximately Poisson so that η is unidentifiable. As a
rule of thumb, one can inspect the empty space function of the data, computed by Fest. The value
F (r) of the empty space function at the interaction radius r should be between 0.2 and 0.8.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

as.data.frame.envelope 41

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the
Institute of Statistical Mathematics 47 (1995) 601–619.

Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions.
The Journal of Chemical Physics 52 (1970) 1670–1684.

See Also

ppm, pairwise.family, ppm.object

ragsAreaInter and rmh for simulation of area-interaction models.

Examples

prints a sensible description of itself
AreaInter(r=0.1)

Note the reach is twice the radius
reach(AreaInter(r=1))

Fit the stationary area interaction process to Swedish Pines data
data(swedishpines)
ppm(swedishpines ~1, AreaInter(r=7))

Fit the stationary area interaction process to `cells'
ppm(cells ~1, AreaInter(r=0.06))
eta=0 indicates hard core process.

Fit a nonstationary area interaction with log-cubic polynomial trend
ppm(swedishpines ~polynom(x/10,y/10,3), AreaInter(r=7))

as.data.frame.envelope

Coerce Envelope to Data Frame

Description

Converts an envelope object to a data frame.

Usage

S3 method for class 'envelope'
as.data.frame(x, ..., simfuns=FALSE)

42 as.function.fv

Arguments

x Envelope object (class "envelope").

... Ignored.

simfuns Logical value indicating whether the result should include the values of the sim-
ulated functions that were used to build the envelope.

Details

This is a method for the generic function as.data.frame for the class of envelopes (see envelope.

The result is a data frame with columns containing the values of the function argument (usually
named r), the function estimate for the original point pattern data (obs), the upper and lower enve-
lope limits (hi and lo), and possibly additional columns.

If simfuns=TRUE, the result also includes columns of values of the simulated functions that were
used to compute the envelope. This is possible only when the envelope was computed with the
argument savefuns=TRUE in the call to envelope.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

E <- envelope(cells, nsim=5, savefuns=TRUE)
tail(as.data.frame(E))
tail(as.data.frame(E, simfuns=TRUE))

as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv" to an R language function.

Usage

S3 method for class 'fv'
as.function(x, ..., value=".y", extrapolate=FALSE)

as.function.fv 43

Arguments

x Object of class "fv" or "rhohat".

... Ignored.

value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several
different estimates of the same function. Objects of this class are returned by many commands in
spatstat, such as Kest, which returns an estimate of Ripley’sK-function for a point pattern dataset.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.fv. It converts an object x of class "fv" to an R function f.

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE,FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

The command as.function.fv is a method for the generic command as.function.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

44 as.function.leverage.ppm

See Also

as.function.rhohat, fv, fv.object, fvnames, plot.fv, Kest

Examples

K <- Kest(cells)
f <- as.function(K)
f
f(0.1)
g <- as.function(K, value=c("iso", "trans"))
g
g(0.1, "trans")

as.function.leverage.ppm

Convert Leverage Object to Function of Coordinates

Description

Converts an object of class "leverage.ppm" to a function of the x and y coordinates.

Usage

S3 method for class 'leverage.ppm'
as.function(x, ...)

Arguments

x Object of class "leverage.ppm" produced by leverage.ppm.

... Ignored.

Details

An object of class "leverage.ppm" represents the leverage function of a fitted point process model.
This command converts the object to a function(x,y) where the arguments x and y are (vectors of)
spatial coordinates. This function returns the leverage values at the specified locations (calculated
by referring to the nearest location where the leverage has been computed).

Value

A function in the R language, also belonging to the class "funxy".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

as.function.rhohat 45

See Also

as.im.leverage.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lev <- leverage(fit)
f <- as.function(lev)

f(0.2, 0.3) # evaluate at (x,y) coordinates
y <- f(X) # evaluate at a point pattern

as.function.rhohat Convert Function Table to Function

Description

Converts an object of class "rhohat" to an R language function.

Usage

S3 method for class 'rhohat'
as.function(x, ..., value=".y", extrapolate=TRUE)

Arguments

x Object of class "rhohat", produced by the function rhohat.

... Ignored.

value Optional. Character string or character vector selecting one or more of the
columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

An object of class "rhohat" is essentially a data frame of estimated values of the function rho(x)
as described in the help file for rhohat.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.rhohat. It converts an object x of class "rhohat" to an R function f.

The command as.function.rhohat is a method for the generic command as.function for the
class "rhohat".

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

46 as.fv

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE,FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f(r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

rhohat, methods.rhohat, as.function.fv.

Examples

g <- rhohat(cells, "x")
f <- as.function(g)
f
f(0.1)

as.fv Convert Data To Class fv

Description

Converts data into a function table (an object of class "fv").

as.fv 47

Usage

as.fv(x)

S3 method for class 'fv'
as.fv(x)

S3 method for class 'data.frame'
as.fv(x)

S3 method for class 'matrix'
as.fv(x)

S3 method for class 'fasp'
as.fv(x)

S3 method for class 'minconfit'
as.fv(x)

S3 method for class 'dppm'
as.fv(x)

S3 method for class 'kppm'
as.fv(x)

S3 method for class 'bw.optim'
as.fv(x)

Arguments

x Data which will be converted into a function table

Details

This command converts data x, that could be interpreted as the values of a function, into a function
value table (object of the class "fv" as described in fv.object). This object can then be plotted
easily using plot.fv.

The dataset x may be any of the following:

• an object of class "fv";

• a matrix or data frame with at least two columns;

• an object of class "fasp", representing an array of "fv" objects.

• an object of class "minconfit", giving the results of a minimum contrast fit by the command
mincontrast. The

• an object of class "kppm", representing a fitted Cox or cluster point process model, obtained
from the model-fitting command kppm;

• an object of class "dppm", representing a fitted determinantal point process model, obtained
from the model-fitting command dppm;

48 as.interact

• an object of class "bw.optim", representing an optimal choice of smoothing bandwidth by a
cross-validation method, obtained from commands like bw.diggle.

The function as.fv is generic, with methods for each of the classes listed above. The behaviour is
as follows:

• If x is an object of class "fv", it is returned unchanged.

• If x is a matrix or data frame, the first column is interpreted as the function argument, and
subsequent columns are interpreted as values of the function computed by different methods.

• If x is an object of class "fasp" representing an array of "fv" objects, these are combined
into a single "fv" object.

• If x is an object of class "minconfit", or an object of class "kppm" or "dppm", the result is a
function table containing the observed summary function and the best fit summary function.

• If x is an object of class "bw.optim", the result is a function table of the optimisation criterion
as a function of the smoothing bandwidth.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

r <- seq(0, 1, length=101)
x <- data.frame(r=r, y=r^2)
as.fv(x)

as.interact Extract Interaction Structure

Description

Extracts the interpoint interaction structure from a point pattern model.

Usage

as.interact(object)
S3 method for class 'fii'
as.interact(object)
S3 method for class 'interact'
as.interact(object)
S3 method for class 'ppm'
as.interact(object)

as.interact 49

Arguments

object A fitted point process model (object of class "ppm") or an interpoint interaction
structure (object of class "interact").

Details

The function as.interact extracts the interpoint interaction structure from a suitable object.

An object of class "interact" describes an interpoint interaction structure, before it has been fitted
to point pattern data. The irregular parameters of the interaction (such as the interaction range) are
fixed, but the regular parameters (such as interaction strength) are undetermined. Objects of this
class are created by the functions Poisson, Strauss and so on. The main use of such objects is in
a call to ppm.

The function as.interact is generic, with methods for the classes "ppm", "fii" and "interact".
The result is an object of class "interact" which can be printed.

Value

An object of class "interact" representing the interpoint interaction. This object can be printed
and plotted.

Note on parameters

This function does not extract the fitted coefficients of the interaction. To extract the fitted interac-
tion including the fitted coefficients, use fitin.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fitin, ppm.

Examples

data(cells)
model <- ppm(cells, ~1, Strauss(0.07))
f <- as.interact(model)
f

50 as.layered.msr

as.layered.msr Convert Measure To Layered Object

Description

Converts a measure into a layered object.

Usage

S3 method for class 'msr'
as.layered(X)

Arguments

X A measure (object of class "msr").

Details

This function converts the object X into an object of class "layered".

It is a method for the generic as.layered for the class of measures.

If X is a vector-valued measure, then as.layered(X) consists of several layers, each containing a
scalar-valued measure.

Value

An object of class "layered" (see layered).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.layered, msr.

Examples

P <- rpoispp(100)
fit <- ppm(P ~ x+y)
rs <- residuals(fit, type="score")
as.layered(rs)

as.owin.ppm 51

as.owin.ppm Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class
"owin".

Usage

S3 method for class 'ppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'kppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'dppm'
as.owin(W, ..., from=c("points", "covariates"), fatal=TRUE)

S3 method for class 'slrm'
as.owin(W, ..., from=c("points", "covariates"))

S3 method for class 'msr'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'quadrattest'
as.owin(W, ..., fatal=TRUE)

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

from Character string. See Details.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as.owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

52 as.owin.ppm

• an object of class "owin"

• a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

• a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

• a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

• a structure with entries named xl, xu, yl, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (xl, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

• an object of class "ppp" representing a point pattern. In this case, the object’s window structure
will be extracted.

• an object of class "psp" representing a line segment pattern. In this case, the object’s window
structure will be extracted.

• an object of class "tess" representing a tessellation. In this case, the object’s window structure
will be extracted.

• an object of class "quad" representing a quadrature scheme. In this case, the window of the
data component will be extracted.

• an object of class "im" representing a pixel image. In this case, a window of type "mask" will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

• an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates" then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

• A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

• an object of class "layered" representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

as.ppm 53

• an object of class "SpatialPolygon", "SpatialPolygons" or "SpatialPolygonsDataFrame".
To handle these data types, the package maptools must be loaded, because it provides the
methods for as.owin for these classes. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.owin, as.owin.rmhmodel, as.owin.lpp.

owin.object, owin.

Additional methods for as.owin are provided in the maptools package: as.owin.SpatialPolygon,
as.owin.SpatialPolygons, as.owin.SpatialPolygonsDataFrame.

Examples

fit <- ppm(cells ~ 1)
as.owin(fit)

as.ppm Extract Fitted Point Process Model

Description

Extracts the fitted point process model from some kind of fitted model.

Usage

as.ppm(object)

S3 method for class 'ppm'
as.ppm(object)

S3 method for class 'profilepl'
as.ppm(object)

54 as.ppm

S3 method for class 'kppm'
as.ppm(object)

S3 method for class 'dppm'
as.ppm(object)

Arguments

object An object that includes a fitted Poisson or Gibbs point process model. An object
of class "ppm", "profilepl", "kppm" or "dppm" or possibly other classes.

Details

The function as.ppm extracts the fitted point process model (of class "ppm") from a suitable object.

The function as.ppm is generic, with methods for the classes "ppm", "profilepl", "kppm" and
"dppm", and possibly for other classes.

For the class "profilepl" of models fitted by maximum profile pseudolikelihood, the method
as.ppm.profilepl extracts the fitted point process model (with the optimal values of the irregular
parameters).

For the class "kppm" of models fitted by minimum contrast (or Palm or composite likelihood) using
Waagepetersen’s two-step estimation procedure (see kppm), the method as.ppm.kppm extracts the
Poisson point process model that is fitted in the first stage of the procedure.

The behaviour for the class "dppm" is analogous to the "kppm" case above.

Value

An object of class "ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, profilepl.

Examples

fit a model by profile maximum pseudolikelihood
rvals <- data.frame(r=(1:10)/100)
pfit <- profilepl(rvals, Strauss, cells, ~1)
extract the fitted model
fit <- as.ppm(pfit)

auc 55

auc Area Under ROC Curve

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for a fitted point process
model.

Usage

auc(X, ...)

S3 method for class 'ppp'
auc(X, covariate, ..., high = TRUE)

S3 method for class 'ppm'
auc(X, ...)

S3 method for class 'kppm'
auc(X, ...)

S3 method for class 'slrm'
auc(X, ...)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The
ROC itself is computed by roc.

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of
the covariate to separate the spatial domain into areas of high and low density of points. Let xi be
a randomly-chosen data point from X and U a randomly-selected location in the study region. The
AUC is the probability that Z(xi) > Z(U) assuming high=TRUE. That is, AUC is the probability
that a randomly-selected data point has a higher value of the covariate Z than does a randomly-
selected spatial location. The AUC is a number between 0 and 1. A value of 0.5 indicates a
complete lack of discriminatory power.

56 BadGey

For a fitted point process model X, the AUC measures the ability of the fitted model intensity to
separate the spatial domain into areas of high and low density of points. Suppose λ(u) is the
intensity function of the model. The AUC is the probability that λ(xi) > λ(U). That is, AUC is the
probability that a randomly-selected data point has higher predicted intensity than does a randomly-
selected spatial location. The AUC is not a measure of the goodness-of-fit of the model (Lobo et
al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of pres-
ence” in the text above.)

Value

Numeric. For auc.ppp and auc.lpp, the result is a single number giving the AUC value. For
auc.ppm, auc.kppm and auc.lppm, the result is a numeric vector of length 2 giving the AUC value
and the theoretically expected AUC value for this model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

roc

Examples

fit <- ppm(swedishpines ~ x+y)
auc(fit)
auc(swedishpines, "x")

BadGey Hybrid Geyer Point Process Model

Description

Creates an instance of the Baddeley-Geyer point process model, defined as a hybrid of several Geyer
interactions. The model can then be fitted to point pattern data.

BadGey 57

Usage

BadGey(r, sat)

Arguments

r vector of interaction radii

sat vector of saturation parameters, or a single common value of saturation param-
eter

Details

This is Baddeley’s generalisation of the Geyer saturation point process model, described in Geyer,
to a process with multiple interaction distances.

The BadGey point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, inten-
sity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

where tj(xi, X) denotes the number of points in the pattern X which lie within a distance rj from
the point xi.

BadGey is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function BadGey(). See the examples below.

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

The argument sat specifies the vector of saturation parameters that are applied to the point counts
tj(xi, X). It should be a vector of the same length as r, and its entries should be nonnegative
numbers. Thus sat[1] is applied to the count of points within a distance r[1], and sat[2] to the
count of points within a distance r[2], etc. Alternatively sat may be a single number, and this
saturation value will be applied to every count.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from BadGey have a complicated rela-
tionship to the interaction parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

58 bc.ppm

Hybrids

A ‘hybrid’ interaction is one which is built by combining several different interactions (Baddeley et
al, 2013). The BadGey interaction can be described as a hybrid of several Geyer interactions.

The Hybrid command can be used to build hybrids of any interactions. If the Hybrid operator is
applied to several Geyer models, the result is equivalent to a BadGey model. This can be useful for
incremental model selection.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>
in collaboration with Hao Wang and Jeff Picka

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

ppm, pairsat.family, Geyer, PairPiece, SatPiece, Hybrid

Examples

BadGey(c(0.1,0.2), c(1,1))
prints a sensible description of itself
BadGey(c(0.1,0.2), 1)

fit a stationary Baddeley-Geyer model
ppm(cells ~1, BadGey(c(0.07, 0.1, 0.13), 2))

nonstationary process with log-cubic polynomial trend
ppm(cells ~polynom(x,y,3), BadGey(c(0.07, 0.1, 0.13), 2))

bc.ppm Bias Correction for Fitted Model

Description

Applies a first-order bias correction to a fitted model.

Usage

bc(fit, ...)

S3 method for class 'ppm'
bc(fit, ..., nfine = 256)

bc.ppm 59

Arguments

fit A fitted point process model (object of class "ppm") or a model of some other
class.

... Additional arguments are currently ignored.

nfine Grid dimensions for fine grid of locations. An integer, or a pair of integers. See
Details.

Details

This command applies the first order Newton-Raphson bias correction method of Baddeley and
Turner (2014, sec 4.2) to a fitted model. The function bc is generic, with a method for fitted point
process models of class "ppm".

A fine grid of locations, of dimensions nfine * nfine or nfine[2] * nfine[1], is created over
the original window of the data, and the intensity or conditional intensity of the fitted model is
calculated on this grid. The result is used to update the fitted model parameters once by a Newton-
Raphson update.

This is only useful if the quadrature points used to fit the original model fit are coarser than the
grid of points specified by nfine.

Value

A numeric vector, of the same length as coef(fit), giving updated values for the fitted model
coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

See Also

rex

Examples

fit <- ppm(cells ~ x, Strauss(0.07))
coef(fit)
if(!interactive()) {

bc(fit, nfine=64)
} else {

bc(fit)
}

60 berman.test

berman.test Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage

berman.test(...)

S3 method for class 'ppp'
berman.test(X, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'ppm'
berman.test(model, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

Arguments

X A point pattern (object of class "ppp" or "lpp").

model A fitted point process model (object of class "ppm" or "lppm").

covariate The spatial covariate on which the test will be based. An image (object of class
"im") or a function.

which Character string specifying the choice of test.

alternative Character string specifying the alternative hypothesis.

... Additional arguments controlling the pixel resolution (arguments dimyx and eps
passed to as.mask) or other undocumented features.

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z1 and Z2 proposed by Berman (1986). The Z1 test is also known as the Lawson-Waller
test.

The function berman.test is generic, with methods for point patterns ("ppp" or "lpp") and point
process models ("ppm" or "lppm").

• If X is a point pattern dataset (object of class "ppp" or "lpp"), then berman.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

berman.test 61

• If model is a fitted point process model (object of class "ppm" or "lppm") then berman.test(model,
...) performs a test of goodness-of-fit for this fitted model. In this case, model should be a
Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

• If which="Z1", the test statistic Z1 is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean µ and variance σ2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z1 = (S − µ)/σ.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

• If which="Z2", the test statistic Z2 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F . The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Z2.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

62 bind.fv

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363–377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281–300.

See Also

cdf.test, quadrat.test, ppm

Examples

Berman's data
data(copper)
X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")

bind.fv Combine Function Value Tables

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing
"fv" object.

Usage

S3 method for class 'fv'
cbind(...)
bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL, clip=FALSE)

Arguments

... Any number of arguments, which are objects of class "fv".

x An object of class "fv".

y Either a data frame or an object of class "fv".

labl Plot labels (see fv) for columns of y. A character vector.

desc Descriptions (see fv) for columns of y. A character vector.

bind.fv 63

preferred Character string specifying the column which is to be the new recommended
value of the function.

clip Logical value indicating whether each object must have exactly the same do-
main, that is, the same sequence of values of the function argument (clip=FALSE,
the default) or whether objects with different domains are permissible and will
be restricted to a common domain (clip=TRUE).

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat.
The function cbind.fv is a method for the generic R function cbind. It combines any number of
objects of class "fv" into a single object of class "fv". The objects must be compatible, in the
sense that they have identical values of the function argument.

The function bind.fv is a lower level utility which glues additional columns onto an existing object
x of class "fv". It has two modes of use:

• If the additional dataset y is an object of class "fv", then x and y must be compatible as
described above. Then the columns of y that contain function values will be appended to the
object x.

• Alternatively if y is a data frame, then y must have the same number of rows as x. All columns
of y will be appended to x.

The arguments labl and desc provide plot labels and description strings (as described in fv) for
the new columns. If y is an object of class "fv" then labl and desc are optional, and default to the
relevant entries in the object y. If y is a data frame then labl and desc must be provided.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fv, with.fv.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge.fv.

Examples

K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")

remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

64 bits.envelope

cbind(K1, K2)

bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(0, pmax(0, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),

"%s[bmo](r)",
"monotone border-corrected estimate of %s",
"bmono")

bits.envelope Global Envelopes for Balanced Independent Two-Stage Test

Description

Computes the global envelopes corresponding to the balanced independent two-stage Monte Carlo
test of goodness-of-fit.

Usage

bits.envelope(X, ...,
nsim = 19, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in each stage. Number of simu-
lations in each basic test. There will be nsim repetitions of the basic test, each
involving nsim simulated realisations, together with one independent set of nsim
realisations, so there will be a total of nsim * (nsim + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

bits.envelope 65

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the balanced independent two-stage Monte
Carlo test of goodness-of-fit described by Baddeley et al (2017). The envelopes are described in
Baddeley et al (2019).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

This command is similar to dg.envelope which corresponds to the Dao-Genton test of goodness-
of-fit. It was shown in Baddeley et al (2017) that the Dao-Genton test is biased when the significance
level is very small (small p-values are not reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K., Nair, G. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75–87.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2019) Pushing
the envelope: extensions of graphical Monte Carlo tests. In preparation.

See Also

dg.envelope, bits.test, mad.test, envelope

66 bits.test

Examples

ns <- if(interactive()) 19 else 4
E <- bits.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- bits.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- bits.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

bits.test Balanced Independent Two-Stage Monte Carlo Test

Description

Performs a Balanced Independent Two-Stage Monte Carlo test of goodness-of-fit for spatial pattern.

Usage

bits.test(X, ...,
exponent = 2, nsim=19,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of replicates in each stage of the test. A total of nsim * (nsim + 1)
simulated point patterns will be generated, and the p-value will be a multiple of
1/(nsim+1).

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

bits.test 67

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Balanced Independent Two-Stage Monte Carlo test proposed by Baddeley et al (2017),
an improvement of the Dao-Genton (2014) test.

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis, in
press.

68 blur

See Also

Simulation envelopes: bits.envelope.

Other tests: dg.test, dclf.test, mad.test.

Examples

ns <- if(interactive()) 19 else 4
bits.test(cells, nsim=ns)
bits.test(cells, alternative="less", nsim=ns)
bits.test(cells, nsim=ns, interpolate=TRUE)

blur Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

blur(x, sigma = NULL, ...,
kernel="gaussian", normalise=FALSE, bleed = TRUE, varcov=NULL)

S3 method for class 'im'
Smooth(X, sigma = NULL, ...,

kernel="gaussian",
normalise=FALSE, bleed = TRUE, varcov=NULL)

Arguments

x,X The pixel image. An object of class "im".

sigma Standard deviation of isotropic Gaussian smoothing kernel.

... Ignored.

kernel String (partially matched) specifying the smoothing kernel. Current options are
"gaussian", "epanechnikov", "quartic" or "disc".

normalise Logical flag indicating whether the output values should be divided by the cor-
responding blurred image of the window itself. See Details.

bleed Logical flag indicating whether to allow blur to extend outside the original do-
main of the image. See Details.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

blur 69

Details

This command applies a Gaussian blur to the pixel image x.

Smooth.im is a method for the generic Smooth for pixel images. It is currently identical to blur,
apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation sigma, or the anisotropic
Gaussian kernel with variance-covariance matrix varcov. The arguments sigma and varcov are
incompatible. Also sigma may be a vector of length 2 giving the standard deviations of two inde-
pendent Gaussian coordinates, thus equivalent to varcov = diag(sigma^2).

If the pixel values of x include some NA values (meaning that the image domain does not completely
fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution x ∗ G of the (zero-padded) pixel image x with the
specified Gaussian kernel G.

If normalise=FALSE, then this convolution x ∗ G is returned. If normalise=TRUE, then the con-
volution x ∗ G is normalised by dividing it by the convolution w ∗ G of the image domain w with
the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted
average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output
is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is
performed, and the result is a pixel image defined everywhere in the rectangular frame containing
the input image.

Computation is performed using the Fast Fourier Transform.

Value

A pixel image with the same pixel array as the input image x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point
pattern, Smooth.ppp for interpolating marks attached to points.

Examples

Z <- as.im(function(x,y) { 4 * x^2 + 3 * y }, letterR)
par(mfrow=c(1,3))
plot(Z)
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=TRUE))
plot(letterR, add=TRUE)
plot(blur(Z, 0.3, bleed=FALSE))
plot(letterR, add=TRUE)
par(mfrow=c(1,1))

70 bw.abram

bw.abram Abramson’s Adaptive Bandwidths

Description

Computes adaptive smoothing bandwidths according to the inverse-square-root rule of Abramson
(1982).

Usage

bw.abram(X, h0,
...,
at=c("points", "pixels"),
hp = h0, pilot = NULL, trim=5, smoother=density.ppp)

Arguments

X A point pattern (object of class "ppp") for which the variable bandwidths should
be computed.

h0 A scalar value giving the global smoothing bandwidth in the same units as the
coordinates of X. The default is h0=bw.ppl(X).

... Additional arguments passed to as.im to control the pixel resolution, or passed
to density.ppp or smoother to control the type of smoothing, when computing
the pilot estimate.

at Character string (partially matched) specifying whether to compute bandwidth
values at the points of X (at="points", the default) or to compute bandwidths
at every pixel in a fine pixel grid (at="pixels").

hp Optional. A scalar pilot bandwidth, used for estimation of the pilot density if
required. Ignored if pilot is a pixel image (object of class "im"); see below.

pilot Optional. Specification of a pilot density (possibly unnormalised). If pilot=NULL
the pilot density is computed by applying fixed-bandwidth density estimation to
X using bandwidth hp. If pilot is a point pattern, the pilot density is is computed
using a fixed-bandwidth estimate based on pilot and hp. If pilot is a pixel im-
age (object of class "im"), this is taken to be the (possibly unnormalised) pilot
density, and hp is ignored.

trim A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

smoother Smoother for the pilot. A function or character string, specifying the function to
be used to compute the pilot estimate when pilot is NULL or is a point pattern.

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and
Hall and Marron (1988).

bw.abram 71

If at="points" (the default) a smoothing bandwidth is computed for each point in the pattern X.
Alternatively if at="pixels" a smoothing bandwidth is computed for each spatial location in a
pixel grid.

Under the Abramson-Hall-Marron rule, the bandwidth at location u is

h(u) = h0 ∗min[
f̃(u)−1/2

γ
, trim]

where f̃(u) is a pilot estimate of the spatially varying probability density. The variable bandwidths
are rescaled by γ, the geometric mean of the f̃(u)−1/2 terms evaluated at the data; this allows the
global bandwidth h0 to be considered on the same scale as a corresponding fixed bandwidth. The
trimming value trim has the same interpretation as the required ‘clipping’ of the pilot density at
some small nominal value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths
(which can occur at very isolated observations).

The pilot density or intensity is determined as follows:

• If pilot is a pixel image, this is taken as the pilot density or intensity.

• If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity
estimate using density.ppp applied to the data pattern X using the pilot bandwidth hp.

• If pilot is a different point pattern on the same spatial domain as X, then the pilot intensity is
computed as a fixed-bandwidth kernel intensity estimate using density.ppp applied to pilot
using the pilot bandwidth hp.

In each case the pilot density or intensity is renormalised to become a probability density, and then
the Abramson rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another
density estimation procedure using the argument smoother. This should be either a function or the
character string name of a function. It will replace density.ppp as the function used to calculate
the pilot estimate. The pilot estimate will be computed as smoother(X, sigma=hp, ...) if pilot
is NULL, or smoother(pilot, sigma=hp, ...) if pilot is a point pattern. If smoother does not
recognise the argument name sigma for the smoothing bandwidth, then hp is effectively ignored, as
shown in the Examples.

Value

Either a numeric vector of length npoints(X) giving the Abramson bandwidth for each point (when
at = "points", the default), or the entire pixel image of the Abramson bandwidths over the relevant
spatial domain (when at = "pixels").

Author(s)

Tilman M. Davies. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

72 bw.CvL

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Davies, T.M., Marshall, J.C., and Hazelton, M.L. (2018) Tutorial on kernel estimation of continu-
ous spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191-1221.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability den-
sities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

Examples

'ch' just 58 laryngeal cancer cases
ch <- split(chorley)[[1]]

h <- bw.abram(ch,h0=1,hp=0.7)
length(h)
summary(h)
if(interactive()) hist(h)

calculate pilot based on all 1036 observations
h.pool <- bw.abram(ch,h0=1,hp=0.7,pilot=chorley)
length(h.pool)
summary(h.pool)
if(interactive()) hist(h.pool)

get full image used for 'h' above
him <- bw.abram(ch,h0=1,hp=0.7,at="pixels")
plot(him);points(ch,col="grey")

use Voronoi-Dirichlet pilot ('hp' is ignored)
hvo <- bw.abram(ch, h0=1, smoother=densityVoronoi)

bw.CvL Cronie and van Lieshout’s Criterion for Bandwidth Selection for Ker-
nel Density

Description

Uses Cronie and van Lieshout’s criterion based on Cambell’s formula to select a smoothing band-
width for the kernel estimation of point process intensity.

Usage

bw.CvL(X, ..., srange = NULL, ns = 16, sigma = NULL, warn=TRUE)

bw.CvL 73

Arguments

X A point pattern (object of class "ppp").

... Ignored.

srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.

ns Optional integer giving the number of values of bandwidth to search.

sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.

warn Logical. If TRUE, a warning is issued if the optimal value of the cross-validation
criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to minimise the discrepancy between the area of the observation window
and the sum of reciprocal estimated intensity values at the points of the point process

CvL(σ) = (|W | −
∑
i

1/λ̂(xi))
2

where the sum is taken over all the data points xi, and where λ̂(xi) is the kernel-smoothing estimate
of the intensity at xi with smoothing bandwidth σ.

The value of CvL(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the bandwidth selection criterion as a function of sigma.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Ottmar Cronie <ottmar.cronie@umu.se> and Marie-Colette van Lieshout <Marie-Colette.van.Lieshout@cwi.nl>
adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

See Also

density.ppp, bw.diggle, bw.scott, bw.ppl, bw.frac.

74 bw.CvLHeat

Examples

if(interactive()) {
b <- bw.CvL(redwood)
b
plot(b, main="Cronie and van Lieshout bandwidth criterion for redwoods")
plot(density(redwood, b))
plot(density(redwood, bw.CvL))

}

bw.CvLHeat Bandwidth Selection for Diffusion Smoother by Cronie-van Lieshout
Rule

Description

Selects an optimal bandwidth for diffusion smoothing using the Cronie-van Lieshout rule.

Usage

bw.CvLHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to densityHeat.ppp.

srange Numeric vector of length 2 specifying a range of bandwidths to be considered.

ns Integer. Number of candidate bandwidths to be considered.

sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a
function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

leaveoneout Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat.ppp.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction 0 < f <= 1 such that
smoothing with f * sigma would be optimal.

bw.diggle 75

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley.

See Also

bw.pplHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.CvLHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)

bw.diggle Cross Validated Bandwidth Selection for Kernel Density

Description

Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process
intensity.

Usage

bw.diggle(X, ..., correction="good", hmax=NULL, nr=512, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

correction Character string passed to Kest determining the edge correction to be used to
calculate the K function.

hmax Numeric. Maximum value of bandwidth that should be considered.

nr Integer. Number of steps in the distance value r to use in computing numerical
integrals.

76 bw.diggle

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to minimise the mean-square error criterion defined by Diggle (1985).
The algorithm uses the method of Berman and Diggle (1989) to compute the quantity

M(σ) =
MSE(σ)

λ2
− g(0)

as a function of bandwidth σ, where MSE(σ) is the mean squared error at bandwidth σ, while λ is
the mean intensity, and g is the pair correlation function. See Diggle (2003, pages 115-118) for a
summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Definition of bandwidth

The smoothing parameter sigma returned by bw.diggle (and displayed on the horizontal axis of
the plot) corresponds to h/2, where h is the smoothing parameter described in Diggle (2003, pages
116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform
density on the disc of radius h. In density.ppp, the smoothing kernel is the isotropic Gaussian
density with standard deviation sigma. When replacing one kernel by another, the usual practice is
to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This
implies that sigma = h/2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. and Diggle, P. (1989) Estimating weighted integrals of the second-order intensity of a
spatial point process. Journal of the Royal Statistical Society, series B 51, 81–92.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

density.ppp, bw.ppl, bw.scott, bw.CvL, bw.frac.

bw.frac 77

Examples

data(lansing)
attach(split(lansing))
b <- bw.diggle(hickory)
plot(b, ylim=c(-2, 0), main="Cross validation for hickories")
if(interactive()) {
plot(density(hickory, b))
}

bw.frac Bandwidth Selection Based on Window Geometry

Description

Select a smoothing bandwidth for smoothing a point pattern, based only on the geometry of the
spatial window. The bandwidth is a specified quantile of the distance between two independent
random points in the window.

Usage

bw.frac(X, ..., f=1/4)

Arguments

X A window (object of class "owin") or point pattern (object of class "ppp") or
other data which can be converted to a window using as.owin.

... Arguments passed to distcdf.

f Probability value (between 0 and 1) determining the quantile of the distribution.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is computed as a quantile of the distance between two independent random points
in the window. The default is the lower quartile of this distribution.

If F (r) is the cumulative distribution function of the distance between two independent random
points uniformly distributed in the window, then the value returned is the quantile with probability
f . That is, the bandwidth is the value r such that F (r) = f .

The cumulative distribution function F (r) is computed using distcdf. We then we compute the
smallest number r such that F (r) ≥ f .

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac"
which can be plotted to show the cumulative distribution function and the selected quantile.

78 bw.pcf

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

For estimating point process intensity, see density.ppp, bw.diggle, bw.ppl, bw.scott, bw.CvL.

For other smoothing purposes, see bw.stoyan, bw.smoothppp, bw.relrisk.

Examples

h <- bw.frac(letterR)
h
plot(h, main="bw.frac(letterR)")

bw.pcf Cross Validated Bandwidth Selection for Pair Correlation Function

Description

Uses composite likelihood or generalized least squares cross-validation to select a smoothing band-
width for the kernel estimation of pair correlation function.

Usage

bw.pcf(X, rmax=NULL, lambda=NULL, divisor="r",
kernel="epanechnikov", nr=10000, bias.correct=TRUE,
cv.method=c("compLik", "leastSQ"), simple=TRUE, srange=NULL,

..., verbose=FALSE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").

rmax Numeric. Maximum value of the spatial lag distance r for which g(r) should be
evaluated.

lambda Optional. Values of the estimated intensity function. A vector giving the inten-
sity values at the points of the pattern X.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

kernel Choice of smoothing kernel, passed to density; see pcf and pcfinhom.

nr Integer. Number of subintervals for discretization of [0, rmax] to use in comput-
ing numerical integrals.

bias.correct Logical. Whether to use bias corrected version of the kernel estimate. See
Details.

bw.pcf 79

cv.method Choice of cross validation method: either "compLik" or "leastSQ" (partially
matched).

simple Logical. Whether to use simple removal of spatial lag distances. See Details.

srange Optional. Numeric vector of length 2 giving the range of bandwidth values that
should be searched to find the optimum bandwidth.

... Other arguments, passed to pcf or pcfinhom.

verbose Logical value indicating whether to print progress reports during the optimiza-
tion procedure.

warn Logical. If TRUE, issue a warning if the optimum value of the cross-validation
criterion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth bw for the kernel estimator of the pair correlation
function of a point process intensity computed by pcf.ppp (homogeneous case) or pcfinhom (in-
homogeneous case).

With cv.method="leastSQ", the bandwidth h is chosen to minimise an unbiased estimate of the
integrated mean-square error criterion M(h) defined in equation (4) in Guan (2007a). The code
implements the fast algorithm of Jalilian and Waagepetersen (2018).

With cv.method="compLik", the bandwidth h is chosen to maximise a likelihood cross-validation
criterion CV (h) defined in equation (6) of Guan (2007b).

M(b) =
MSE(σ)

λ2
− g(0)

The result is a numerical value giving the selected bandwidth.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Definition of bandwidth

The bandwidth bw returned by bw.pcf is the standard deviation of the smoothing kernel, follow-
ing the standard convention in R. As mentioned in the documentation for density.default and
pcf.ppp, this differs from other definitions of bandwidth that can be found in the literature. The
scale parameter h, which is called the bandwidth in some literature, is defined differently. For
example for the Epanechnikov kernel, h is the half-width of the kernel, and bw=h/sqrt(5).

Author(s)

Rasmus Waagepetersen and Abdollah Jalilian. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

80 bw.ppl

References

Guan, Y. (2007a). A composite likelihood cross-validation approach in selecting bandwidth for the
estimation of the pair correlation function. Scandinavian Journal of Statistics, 34(2), 336–346.

Guan, Y. (2007b). A least-squares cross-validation bandwidth selection approach in pair correlation
function estimations. Statistics & Probability Letters, 77(18), 1722–1729.

Jalilian, A. and Waagepetersen, R. (2018) Fast bandwidth selection for estimation of the pair cor-
relation function. Journal of Statistical Computation and Simulation, 88(10), 2001–2011. https:
//www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

See Also

pcf.ppp, pcfinhom

Examples

b <- bw.pcf(redwood)
plot(pcf(redwood, bw=b))

bw.ppl Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.ppl(X, ..., srange=NULL, ns=16, sigma=NULL, weights=NULL,
shortcut=FALSE, warn=TRUE)

Arguments

X A point pattern (object of class "ppp").
srange Optional numeric vector of length 2 giving the range of values of bandwidth to

be searched.
ns Optional integer giving the number of values of bandwidth to search.
sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values

of ns and srange.
weights Optional. Numeric vector of weights for the points of X. Argument passed to

density.ppp.
... Additional arguments passed to density.ppp.
shortcut Logical value indicating whether to speed up the calculation by omitting the

integral term in the cross-validation criterion.
warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-

rion occurs at one of the ends of the search interval.

https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

bw.ppl 81

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth σ is chosen to maximise the point process likelihood cross-validation criterion

LCV(σ) =
∑
i

log λ̂−i(xi)−
∫
W

λ̂(u) du

where the sum is taken over all the data points xi, where λ̂−i(xi) is the leave-one-out kernel-
smoothing estimate of the intensity at xi with smoothing bandwidth σ, and λ̂(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth σ. See
Loader(1999, Section 5.3).

The value of LCV(σ) is computed directly, using density.ppp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

If shortcut=TRUE, the computation is accelerated by omitting the integral term in the equation
above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

See Also

density.ppp, bw.diggle, bw.scott, bw.CvL, bw.frac.

Examples

if(interactive()) {
b <- bw.ppl(redwood)
plot(b, main="Likelihood cross validation for redwoods")
plot(density(redwood, b))

}

82 bw.pplHeat

bw.pplHeat Bandwidth Selection for Diffusion Smoother by Likelihood Cross-
Validation

Description

Selects an optimal bandwidth for diffusion smoothing by point process likelihood cross-validation.

Usage

bw.pplHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to densityHeat.ppp.

srange Numeric vector of length 2 specifying a range of bandwidths to be considered.

ns Integer. Number of candidate bandwidths to be considered.

sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a
function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

leaveoneout Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

Details

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat.ppp.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction 0 < f <= 1 such that
smoothing with f * sigma would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim" which can be plotted.

Author(s)

Adrian Baddeley and Tilman Davies.

bw.relrisk 83

See Also

bw.CvLHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)
f <- function(x,y) { dnorm(x, 2.3, 0.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)
plot(X)
b <- bw.pplHeat(X, sigma=0.25)
b
plot(b)
if(!online) spatstat.options(op)

bw.relrisk Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage

bw.relrisk(X, method = "likelihood", nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).

method Character string determining the cross-validation method. Current options are
"likelihood", "leastsquares" or "weightedleastsquares".

nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

84 bw.relrisk

Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk
using relrisk.

Consider the indicators yij which equal 1 when data point xi belongs to type j, and equal 0 other-
wise. For a particular value of smoothing bandwidth, let p̂j(u) be the estimated probabilities that a
point at location u will belong to type j. Then the bandwidth is chosen to minimise either the nega-
tive likelihood, the squared error, or the approximately standardised squared error, of the indicators
yij relative to the fitted values p̂j(xi). See Diggle (2003) or Baddeley et al (2015).

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to
the class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation
criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on multiples of Stoyan’s rule of thumb bw.stoyan.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

See Also

relrisk, bw.stoyan

Examples

data(urkiola)

b <- bw.relrisk(urkiola)
b
plot(b)

bw.scott 85

b <- bw.relrisk(urkiola, hmax=20)
plot(b)

bw.scott Scott’s Rule for Bandwidth Selection for Kernel Density

Description

Use Scott’s rule of thumb to determine the smoothing bandwidth for the kernel estimation of point
process intensity.

Usage

bw.scott(X, isotropic=FALSE, d=NULL)

bw.scott.iso(X)

Arguments

X A point pattern (object of class "ppp", "lpp", "pp3" or "ppx").

isotropic Logical value indicating whether to compute a single bandwidth for an isotropic
Gaussian kernel (isotropic=TRUE) or separate bandwidths for each coordinate
axis (isotropic=FALSE, the default).

d Advanced use only. An integer value that should be used in Scott’s formula
instead of the true number of spatial dimensions.

Details

These functions select a bandwidth sigma for the kernel estimator of point process intensity com-
puted by density.ppp or other appropriate functions. They can be applied to a point pattern be-
longing to any class "ppp", "lpp", "pp3" or "ppx".

The bandwidth σ is computed by the rule of thumb of Scott (1992, page 152, equation 6.42). The
bandwidth is proportional to n−1/(d+4) where n is the number of points and d is the number of
spatial dimensions.

This rule is very fast to compute. It typically produces a larger bandwidth than bw.diggle. It is
useful for estimating gradual trend.

If isotropic=FALSE (the default), bw.scott provides a separate bandwidth for each coordinate
axis, and the result of the function is a vector, of length equal to the number of coordinates. If
isotropic=TRUE, a single bandwidth value is computed and the result is a single numeric value.

bw.scott.iso(X) is equivalent to bw.scott(X, isotropic=TRUE).

The default value of d is as follows:

class dimension
"ppp" 2
"lpp" 1
"pp3" 3
"ppx" number of spatial coordinates

86 bw.smoothppp

The use of d=1 for point patterns on a linear network (class "lpp") was proposed by McSwiggan et
al (2016) and Rakshit et al (2019).

Value

A numerical value giving the selected bandwidth, or a numerical vector giving the selected band-
widths for each coordinate.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York:
Wiley.

See Also

density.ppp, bw.diggle, bw.ppl, bw.CvL, bw.frac.

Examples

hickory <- split(lansing)[["hickory"]]
b <- bw.scott(hickory)
b
if(interactive()) {
plot(density(hickory, b))
}
bw.scott.iso(hickory)
bw.scott(osteo$pts[[1]])

bw.smoothppp Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options("n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE, kernel="gaussian")

bw.smoothppp 87

Arguments

X A marked point pattern with numeric marks.

nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc").

Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values
using Smooth.ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark
values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let yi be the mark value at the ith
data point. For a particular choice of smoothing bandwidth, let ŷi be the smoothed value at the ith
data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values∑
i(yi − ŷi)2.

The result of bw.smoothppp is a numerical value giving the selected bandwidth sigma. The result
also belongs to the class "bw.optim" allowing it to be printed and plotted. The plot shows the
cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim"
which can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp

88 bw.stoyan

Examples

data(longleaf)

b <- bw.smoothppp(longleaf)
b
plot(b)

bw.stoyan Stoyan’s Rule of Thumb for Bandwidth Selection

Description

Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the
pair correlation function and other quantities.

Usage

bw.stoyan(X, co=0.15)

Arguments

X A point pattern (object of class "ppp").

co Coefficient appearing in the rule of thumb. See Details.

Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a
choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed
a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width h to 0.15/
√
λ where

λ is the estimated intensity of the point pattern, typically computed as the number of points of X
divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to σ =
0.15/

√
5λ.

The coefficient 0.15 can be tweaked using the argument co.

To ensure the bandwidth is finite, an empty point pattern is treated as if it contained 1 point.

Value

A finite positive numerical value giving the selected bandwidth (the standard deviation of the
smoothing kernel).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

cauchy.estK 89

References

Stoyan, D. and Stoyan, H. (1995) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, bw.relrisk

Examples

data(shapley)
bw.stoyan(shapley)

cauchy.estK Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast.

Usage

cauchy.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

90 cauchy.estK

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical K
function of the Matérn Cluster process and the observed K function. For a more detailed explana-
tion of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure uses the parameter eta2, which is equivalent
to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2012) Cauchy cluster process. Metrika, to appear.

cauchy.estpcf 91

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, cauchy.estpcf, lgcp.estK, thomas.estK, vargamma.estK, mincontrast, Kest, Kmodel.

rCauchy to simulate the model.

Examples

u <- cauchy.estK(redwood)
u
plot(u)

cauchy.estpcf Fit the Neyman-Scott cluster process with Cauchy kernel

Description

Fits the Neyman-Scott Cluster point process with Cauchy kernel to a point pattern dataset by the
Method of Minimum Contrast, using the pair correlation function.

Usage

cauchy.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

92 cauchy.estpcf

Details

This algorithm fits the Neyman-Scott cluster point process model with Cauchy kernel to a point
pattern dataset by the Method of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott cluster point process with Cauchy kernel to X, by finding the
parameters of the Matérn Cluster model which give the closest match between the theoretical pair
correlation function of the Matérn Cluster process and the observed pair correlation function. For a
more detailed explanation of the Method of Minimum Contrast, see mincontrast.

The model is described in Jalilian et al (2013). It is a cluster process formed by taking a pattern
of parent points, generated according to a Poisson process with intensity κ, and around each parent
point, generating a random number of offspring points, such that the number of offspring of each
parent is a Poisson random variable with mean µ, and the locations of the offspring points of one
parent follow a common distribution described in Jalilian et al (2013).

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rCauchy.

For computational reasons, the optimisation procedure internally uses the parameter eta2, which is
equivalent to 4 * scale^2 where scale is the scale parameter for the model as used in rCauchy.

Homogeneous or inhomogeneous Neyman-Scott/Cauchy models can also be fitted using the func-
tion kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

CDF 93

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ghorbani, M. (2012) Cauchy cluster process. Metrika, to appear.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, cauchy.estK, lgcp.estpcf, thomas.estpcf, vargamma.estpcf, mincontrast, pcf, pcfmodel.

rCauchy to simulate the model.

Examples

u <- cauchy.estpcf(redwood)
u
plot(u, legendpos="topright")

CDF Cumulative Distribution Function From Kernel Density Estimate

Description

Given a kernel estimate of a probability density, compute the corresponding cumulative distribution
function.

Usage

CDF(f, ...)

S3 method for class 'density'
CDF(f, ..., warn = TRUE)

Arguments

f Density estimate (object of class "density").

... Ignored.

warn Logical value indicating whether to issue a warning if the density estimate f had
to be renormalised because it was computed in a restricted interval.

94 cdf.test

Details

CDF is generic, with a method for class "density".

This calculates the cumulative distribution function whose probability density has been estimated
and stored in the object f. The object f must belong to the class "density", and would typically
have been obtained from a call to the function density.

Value

A function, which can be applied to any numeric value or vector of values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

density, quantile.density

Examples

b <- density(runif(10))
f <- CDF(b)
f(0.5)
plot(f)

cdf.test Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distribu-
tions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test,
Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is
used.

Usage

cdf.test(...)

S3 method for class 'ppp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE)

S3 method for class 'ppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE)

cdf.test 95

S3 method for class 'slrm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

modelname=NULL, covname=NULL)

Arguments

X A point pattern (object of class "ppp" or "lpp").
model A fitted point process model (object of class "ppm" or "lppm") or fitted spatial

logistic regression (object of class "slrm").
covariate The spatial covariate on which the test will be based. A function, a pixel image

(object of class "im"), a list of pixel images, or one of the characters "x" or "y"
indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
(from the goftest package) to control the test.

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

modelname,covname

Character strings giving alternative names for model and covariate to be used
in labelling plot axes.

nsim Number of simulated realisations from the model to be used for the Monte Carlo
test, when model is not a Poisson process.

verbose Logical value indicating whether to print progress reports when performing a
Monte Carlo test.

Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted
to point pattern data. The observed distribution of the values of a spatial covariate at the data
points, and the predicted distribution of the same values under the model, are compared using the
Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process
models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

• If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a
goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness,
CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to de-
pend on the type of point (sometimes called Complete Spatial Randomness and Independence,
CSRI).

96 cdf.test

• If model is a fitted point process model (object of class "ppm" or "lppm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

• If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im" containing the values of a spatial func-
tion, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an
image, it should have numeric values, and its domain should cover the observation window of the
model. If covariate is a function, it should expect two arguments x and y which are vectors of
coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the
characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test,
goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-
Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data
points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally

cdf.test 97

distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, cvm.test, ad.test, ppm

Examples

op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(nztrees, "x")
cdf.test(nztrees, "x", "cvm")
cdf.test(nztrees, "x", "ad")

test of CSR using a function of x and y
fun <- function(x,y){2* x + y}
cdf.test(nztrees, fun)

test of CSR using an image covariate
funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

fit inhomogeneous Poisson model and test
model <- ppm(nztrees ~x)
cdf.test(model, "x")

98 cdf.test.mppm

if(interactive()) {
synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X ~1)
fit correct nonuniform Poisson process
fit1 <- ppm(X ~x)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

}

multitype point pattern
cdf.test(amacrine, "x")
yimage <- as.im(function(x,y){y}, W=Window(amacrine))
cdf.test(ppm(amacrine ~marks+y), yimage)

options(op)

cdf.test.mppm Spatial Distribution Test for Multiple Point Process Model

Description

Performs a spatial distribution test of a point process model fitted to multiple spatial point patterns.
The test compares the observed and predicted distributions of the values of a spatial covariate, using
either the Kolmogorov-Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit.

Usage

S3 method for class 'mppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

nsim=19, verbose=TRUE, interpolate=FALSE, fast=TRUE, jitter=TRUE)

Arguments

model An object of class "mppm" representing a point process model fitted to multiple
spatial point patterns.

covariate The spatial covariate on which the test will be based. A function, a pixel image,
a list of functions, a list of pixel images, a hyperframe, a character string con-
taining the name of one of the covariates in model, or one of the strings "x" or
"y".

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

cdf.test.mppm 99

... Arguments passed to cdf.test to control the test.

nsim Number of simulated realisations which should be generated, if a Monte Carlo
test is required.

verbose Logical flag indicating whether to print progress reports.

interpolate Logical flag indicating whether to interpolate between pixel values when code-
covariate is a pixel image. See Details.

fast Logical flag. If TRUE, values of the covariate are only sampled at the original
quadrature points used to fit the model. If FALSE, values of the covariate are
sampled at all pixels, which can be slower by three orders of magnitude.

jitter Logical flag. If TRUE, observed values of the covariate are perturbed by adding
small random values, to avoid tied observations.

Details

This function is a method for the generic function cdf.test for the class mppm.

This function performs a goodness-of-fit test of a point process model that has been fitted to multiple
point patterns. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using the Kolmogorov-
Smirnov, Cramér-von Mises or Anderson-Darling test of goodness-of-fit. These are exact tests if the
model is Poisson; otherwise, for a Gibbs model, a Monte Carlo p-value is computed by generating
simulated realisations of the model and applying the selected goodness-of-fit test to each simulation.

The argument model should be a fitted point process model fitted to multiple point patterns (object
of class "mppm").

The argument covariate contains the values of a spatial function. It can be

• a function(x,y)

• a pixel image (object of class "im"

• a list of function(x,y), one for each point pattern

• a list of pixel images, one for each point pattern

• a hyperframe (see hyperframe) of which the first column will be taken as containing the
covariate

• a character string giving the name of one of the covariates in model

• one of the character strings "x" or "y", indicating the spatial coordinates.

If covariate is an image, it should have numeric values, and its domain should cover the obser-
vation window of the model. If covariate is a function, it should expect two arguments x and y
which are vectors of coordinates, and it should return a numeric vector of the same length as x and
y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

100 cdf.test.mppm

The probability integral transformation is then applied: the values of the covariate at the orig-
inal data points are transformed by the predicted cumulative distribution function F into num-
bers between 0 and 1. If the model is correct, these numbers are i.i.d. uniform random num-
bers. A goodness-of-fit test of the uniform distribution is applied to these numbers using ks.test,
cvm.test or ad.test.

The argument interpolate determines how pixel values will be handled when codecovariate is a
pixel image. The value of the covariate at a data point is obtained by looking up the value of the
nearest pixel if interpolate=FALSE, or by linearly interpolating between the values of the four
nearest pixels if interpolate=TRUE. Linear interpolation is slower, but is sometimes necessary to
avoid tied values of the covariate arising when the pixel grid is coarse.

If model is a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-
Darling tests are theoretically exact. This test was apparently first described (in the context of spatial
data, and for Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson point process, then the Kolmogorov-Smirnov, Cramér-von Mises and
Anderson-Darling tests are biased. Instead they are used as the basis of a Monte Carlo test. First
nsim simulated realisations of the model will be generated. Each simulated realisation consists of
a list of simulated point patterns, one for each of the original data patterns. This can take a very
long time. The model is then re-fitted to each simulation, and the refitted model is subjected to the
goodness-of-fit test described above. A Monte Carlo p-value is then computed by comparing the
p-value of the original test with the p-values obtained from the simulations.

Value

An object of class "cdftest" and "htest" containing the results of the test. See cdf.test for
details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

cdf.test, quadrat.test, mppm

circdensity 101

Examples

three i.i.d. realisations of nonuniform Poisson process
lambda <- as.im(function(x,y) { 200 * exp(x) }, square(1))
dat <- hyperframe(X=list(rpoispp(lambda), rpoispp(lambda), rpoispp(lambda)))

fit uniform Poisson process
fit0 <- mppm(X~1, dat)
fit correct nonuniform Poisson process
fit1 <- mppm(X~x, dat)

test wrong model
cdf.test(fit0, "x")
test right model
cdf.test(fit1, "x")

Gibbs model
fitGibbs <- update(fit0, interaction=Strauss(0.05))
ns <- if(interactive()) 19 else 2
cdf.test(fitGibbs, "x", nsim=ns)

circdensity Density Estimation for Circular Data

Description

Computes a kernel smoothed estimate of the probability density for angular data.

Usage

circdensity(x, sigma = "nrd0", ...,
bw = NULL,
weights=NULL, unit = c("degree", "radian"))

Arguments

x Numeric vector, containing angular data.

sigma Smoothing bandwidth, or bandwidth selection rule, passed to density.default.

bw Alternative to sigma for consistency with other functions.

... Additional arguments passed to density.default, such as kernel and weights.

weights Optional numeric vector of weights for the data in x.

unit The unit of angle in which x is expressed.

Details

The angular values x are smoothed using (by default) the wrapped Gaussian kernel with standard
deviation sigma.

102 clarkevans

Value

An object of class "density" (produced by density.default) which can be plotted by plot or
by rose.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.default), rose.

Examples

ang <- runif(1000, max=360)
rose(circdensity(ang, 12))

clarkevans Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index R for a spatial point pattern.

Usage

clarkevans(X, correction=c("none", "Donnelly", "cdf"),
clipregion=NULL)

Arguments

X A spatial point pattern (object of class "ppp").

correction Character vector. The type of edge correction(s) to be applied.

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See Details.

Details

The Clark and Evans (1954) aggregation index R is a crude measure of clustering or ordering of a
point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that
expected for a Poisson point process of the same intensity. A value R > 1 suggests ordering, while
R < 1 suggests clustering.

Without correction for edge effects, the value of R will be positively biased. Edge effects arise
because, for a point of X close to the edge of the window, the true nearest neighbour may actually
lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true
nearest neighbour distances.

clarkevans 103

The argument correction specifies an edge correction or several edge corrections to be applied.
It is a character vector containing one or more of the options "none", "Donnelly", "guard" and
"cdf" (which are recognised by partial matching). These edge corrections are:

"none": No edge correction is applied.

"Donnelly": Edge correction of Donnelly (1978), available for rectangular windows only. The
theoretical expected value of mean nearest neighbour distance under a Poisson process is
adjusted for edge effects by the edge correction of Donnelly (1978). The value of R is the
ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.

"guard": Guard region or buffer area method. The observed mean nearest neighbour distance for
the point pattern X is re-defined by averaging only over those points of X that fall inside the
sub-window clipregion.

"cdf": Cumulative Distribution Function method. The nearest neighbour distance distribution
function G(r) of the stationary point process is estimated by Gest using the Kaplan-Meier
type edge correction. Then the mean of the distribution is calculated from the cdf.

Alternatively correction="all" selects all options.

If the argument clipregion is given, then the selected edge corrections will be assumed to include
correction="guard".

To perform a test based on the Clark-Evans index, see clarkevans.test.

Value

A numeric value, or a numeric vector with named components

naive R without edge correction

Donnelly R using Donnelly edge correction

guard R using guard region

cdf R using cdf method

(as selected by correction). The value of the Donnelly component will be NA if the window of X
is not a rectangle.

Author(s)

John Rudge <rudge@esc.cam.ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In I. Hodder (ed.) Simulation studies in archaeology, Cambridge/New York: Cam-
bridge University Press, pp 91–95.

See Also

clarkevans.test, hopskel, nndist, Gest

104 clarkevans.test

Examples

Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region
clip1 <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(Window(cells), 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)

clarkevans.test Clark and Evans Test

Description

Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage

clarkevans.test(X, ...,
correction="none",
clipregion=NULL,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
nsim=999)

Arguments

X A spatial point pattern (object of class "ppp").

... Ignored.

correction Character string. The type of edge correction to be applied. See clarkevans

clipregion Clipping region for the guard area correction. A window (object of class "owin").
See clarkevans

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

clarkevans.test 105

Details

This command uses the Clark and Evans (1954) aggregation index R as the basis for a crude test of
clustering or ordering of a point pattern.

The Clark-Evans index is computed by the function clarkevans. See the help for clarkevans for
information about the Clark-Evans indexR and about the arguments correction and clipregion.

This command performs a hypothesis test of clustering or ordering of the point pattern X. The
null hypothesis is Complete Spatial Randomness, i.e.\ a uniform Poisson process. The alternative
hypothesis is specified by the argument alternative:

• alternative="less" or alternative="clustered": the alternative hypothesis is that R <
1 corresponding to a clustered point pattern;

• alternative="greater" or alternative="regular": the alternative hypothesis is thatR >
1 corresponding to a regular or ordered point pattern;

• alternative="two.sided": the alternative hypothesis is that R 6= 1 corresponding to a
clustered or regular pattern.

The Clark-Evans index R is computed for the data as described in clarkevans.

If correction="none" and nsim is missing, the p-value for the test is computed by standardis-
ing R as proposed by Clark and Evans (1954) and referring the statistic to the standard Normal
distribution.

Otherwise, the p-value for the test is computed by Monte Carlo simulation of nsim realisations of
Complete Spatial Randomness conditional on the observed number of points.

Value

An object of class "htest" representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations. Ecology 35, 445–453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In Simulation methods in archaeology, Cambridge University Press, pp 91–95.

See Also

clarkevans, hopskel.test

Examples

Redwood data - clustered
clarkevans.test(redwood)
clarkevans.test(redwood, alternative="clustered")
clarkevans.test(redwood, correction="cdf", nsim=39)

106 closepaircounts

closepaircounts Count Close Pairs of Points

Description

Low-level functions to count the number of close pairs of points.

Usage

closepaircounts(X, r)

crosspaircounts(X, Y, r)

Arguments

X,Y Point patterns (objects of class "ppp").

r Maximum distance between pairs of points to be counted as close pairs.

Details

These are the efficient low-level functions used by spatstat to count close pairs of points in a point
pattern or between two point patterns.

closepaircounts(X,r) counts the number of neighbours for each point in the pattern X. That is,
for each point X[i], it counts the number of other points X[j] with j != i such that d(X[i],X[j])
<= r where d denotes Euclidean distance. The result is an integer vector v such that v[i] is the
number of neighbours of X[i].

crosspaircounts(X,Y,r) counts, for each point in the pattern X, the number of neighbours in the
pattern Y. That is, for each point X[i], it counts the number of points Y[j] such that d(X[i],X[j])
<= r. The result is an integer vector v such that v[i] is the number of neighbours of X[i] in the
pattern Y.

Value

An integer vector of length equal to the number of points in X.

Warning about accuracy

The results of these functions may not agree exactly with the correct answer (as calculated by a
human) and may not be consistent between different computers and different installations of R. The
discrepancies arise in marginal cases where the interpoint distance is equal to, or very close to, the
threshold rmax.

Floating-point numbers in a computer are not mathematical Real Numbers: they are approximations
using finite-precision binary arithmetic. The approximation is accurate to a tolerance of about
.Machine$double.eps.

If the true interpoint distance d and the threshold rmax are equal, or if their difference is no more
than .Machine$double.eps, the result may be incorrect.

clusterfield 107

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

closepairs to identify all close pairs of points.

Examples

a <- closepaircounts(cells, 0.1)
sum(a)
Y <- split(amacrine)
b <- crosspaircounts(Yon, Yoff, 0.1)

clusterfield Field of clusters

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

Usage

S3 method for class 'kppm'
clusterfield(model, locations = NULL, ...)

Arguments

model Cluster model. Either a fitted cluster model (object of class "kppm"), a character
string specifying the type of cluster model, or a function defining the cluster
kernel. See Details.

locations A point pattern giving the locations of the kernels. Defaults to the centroid of
the observation window for the "kppm" method and to the center of a unit square
otherwise.

... Additional arguments passed to density.ppp or the cluster kernel. See Details.

Details

The actual calculations are performed by density.ppp and ... arguments are passed thereto for
control over the pixel resolution etc. (These arguments are then passed on to pixellate.ppp and
as.mask.)

For the method clusterfield.function, the given kernel function should accept vectors of x and
y coordinates as its first two arguments. Any additional arguments may be passed through the

The function method also accepts the optional parameter mu (defaulting to 1) specifying the mean
number of points per cluster (as a numeric) or the inhomogeneous reference cluster intensity (as

108 clusterfield

an "im" object or a function(x,y)). The interpretation of mu is as explained in the simulation
functions referenced in the See Also section below.

For the method clusterfield.character, the argument model must be one of the following
character strings: model="Thomas" for the Thomas process, model="MatClust" for the Matérn
cluster process, model="Cauchy" for the Neyman-Scott cluster process with Cauchy kernel, or
model="VarGamma" for the Neyman-Scott cluster process with Variance Gamma kernel. For all
these models the parameter scale is required and passed through ... as well as the parameter nu
when model="VarGamma". This method calls clusterfield.function so the parameter mu may
also be passed through ... and will be interpreted as explained above.

The method clusterfield.kppm extracts the relevant information from the fitted model (including
mu) and calls clusterfield.function.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.ppp and kppm.

Simulation algorithms for cluster models: rCauchy rMatClust rThomas rVarGamma

Examples

method for fitted model
fit <- kppm(redwood~1, "Thomas")
clusterfield(fit, eps = 0.01)

method for functions
kernel <- function(x,y,scal) {

r <- sqrt(x^2 + y^2)
ifelse(r > 0,

dgamma(r, shape=5, scale=scal)/(2 * pi * r),
0)

}
X <- runifpoint(10)
clusterfield(kernel, X, scal=0.05)

clusterfit 109

clusterfit Fit Cluster or Cox Point Process Model via Minimum Contrast

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern
by the Method of Minimum Contrast.

Usage

clusterfit(X, clusters, lambda = NULL, startpar = NULL, ...,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
ctrl=list(q=q, p=p, rmin=rmin, rmax=rmax),
statistic = NULL, statargs = NULL, algorithm="Nelder-Mead",
verbose=FALSE, pspace=NULL)

Arguments

X Data to which the cluster or Cox model will be fitted. Either a point pattern or a
summary statistic. See Details.

clusters Character string determining the cluster or Cox model. Partially matched. Op-
tions are "Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

lambda Optional. An estimate of the intensity of the point process. Either a single
numeric specifying a constant intensity, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

startpar Vector of initial values of the parameters of the point process mode. If X is a
point pattern sensible defaults are used. Otherwise rather arbitrary values are
used.

q,p Optional. Exponents for the contrast criterion. See mincontrast.

rmin, rmax Optional. The interval of r values for the contrast criterion. See mincontrast.

ctrl Optional. Named list containing values of the parameters q,p,rmin,rmax.

... Additional arguments passed to mincontrast.

statistic Optional. Name of the summary statistic to be used for minimum contrast esti-
mation: either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

algorithm Character string determining the mathematical optimisation algorithm to be used
by optim. See the argument method of optim.

verbose Logical value indicating whether to print detailed progress reports for debugging
purposes.

pspace For internal use by package code only.

110 clusterfit

Details

This function fits the clustering parameters of a cluster or Cox point process model by the Method
of Minimum Contrast, that is, by matching the theoretical K-function of the model to the empirical
K-function of the data, as explained in mincontrast.

If statistic="pcf" (or X appears to be an estimated pair correlation function) then instead of using
the K-function, the algorithm will use the pair correlation function.

If X is a point pattern of class "ppp" an estimate of the summary statistic specfied by statistic
(defaults to "K") is first computed before minimum contrast estimation is carried out as described
above. In this case the argument statargs can be used for controlling the summary statistic estima-
tion. The precise algorithm for computing the summary statistic depends on whether the intensity
specification (lambda) is:

homogeneous: If lambda is NUll or a single numeric the pattern is considered homogeneous and
either Kest or pcf is invoked. In this case lambda is not used for anything when estimating
the summary statistic.

inhomogeneous: If lambda is a pixel image (object of class "im"), a fitted point process model (ob-
ject of class "ppm" or "kppm") or a function(x,y) the pattern is considered inhomogeneous.
In this case either Kinhom or pcfinhom is invoked with lambda as an argument.

After the clustering parameters of the model have been estimated by minimum contrast lambda (if
non-null) is used to compute the additional model parameter µ.

The algorithm parameters q,p,rmax,rmin are described in the help for mincontrast. They may
be provided either as individually-named arguments, or as entries in the list ctrl. The individually-
named arguments q,p,rmax,rmin override the entries in the list ctrl.

Value

An object of class "minconfit". There are methods for printing and plotting this object. See
mincontrast.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63 (2007) 252–258.

See Also

kppm

clusterkernel 111

Examples

fit <- clusterfit(redwood, "Thomas")
fit
if(interactive()){

plot(fit)
}
K <- Kest(redwood)
fit2 <- clusterfit(K, "MatClust")

clusterkernel Extract Cluster Offspring Kernel

Description

Given a cluster point process model, this command returns the probability density of the cluster
offspring.

Usage

S3 method for class 'kppm'
clusterkernel(model, ...)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

Details

Given a specification of a cluster point process model, this command returns a function(x,y)
giving the two-dimensional probability density of the cluster offspring points assuming a cluster
parent located at the origin.

Value

A function in the R language with arguments x,y,....

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clusterfield, kppm

112 clusterradius

Examples

fit <- kppm(redwood ~ x, "MatClust")
f <- clusterkernel(fit)
f(0.05, 0.02)

f <- clusterkernel("Thomas", kappa=10, scale=0.5)
f(0.1, 0.2)

clusterradius Compute or Extract Effective Range of Cluster Kernel

Description

Given a cluster point process model, this command returns a value beyond which the the probability
density of the cluster offspring is neglible.

Usage

S3 method for class 'kppm'
clusterradius(model, ..., thresh = NULL, precision = FALSE)

Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

thresh Numerical threshold relative to the cluster kernel value at the origin (parent loca-
tion) determining when the cluster kernel will be considered neglible. A sensible
default is provided.

precision Logical. If precision=TRUE the precision of the calculated range is returned as
an attribute to the range. See details.

Details

Given a cluster model this function by default returns the effective range of the model with the given
parameters as used in spatstat. For the Matérn cluster model (see e.g. rMatClust) this is simply the
finite radius of the offsring density given by the paramter scale irrespective of other options given
to this function. The remaining models in spatstat have infinite theoretical range, and an effective
finite value is given as follows: For the Thomas model (see e.g. rThomas the default is 4*scale
where scale is the scale or standard deviation parameter of the model. If thresh is given the value
is instead found as described for the other models below.

For the Cauchy model (see e.g. rCauchy) and the Variance Gamma (Bessel) model (see e.g.
rVarGamma) the value of thresh defaults to 0.001, and then this is used to compute the range
numerically as follows. If k(x, y) = k0(r) with r =

√
(x2 + y2) denotes the isotropic cluster

clusterset 113

kernel then f(r) = 2πrk0(r) is the density function of the offspring distance from the parent. The
range is determined as the value of r where f(r) falls below thresh times k0(r).

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the
precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally
this should be close to the value 1 which would be obtained for the true theretical infinite range.

Value

A positive numeric.

Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

Examples

fit <- kppm(redwood ~ x, "MatClust")
clusterradius(fit)

clusterradius("Thomas", scale = .1)
clusterradius("Thomas", scale = .1, thresh = 0.001)
clusterradius("VarGamma", scale = .1, nu = 2, precision = TRUE)

clusterset Allard-Fraley Estimator of Cluster Feature

Description

Detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estima-
tor.

Usage

clusterset(X, what=c("marks", "domain"),
..., verbose=TRUE,
fast=FALSE,
exact=!fast)

114 clusterset

Arguments

X A dimensional spatial point pattern (object of class "ppp").

what Character string or character vector specifying the type of result. See Details.

verbose Logical value indicating whether to print progress reports.

fast Logical. If FALSE (the default), the Dirichlet tile areas will be computed exactly
using polygonal geometry, so that the optimal choice of tiles will be computed
exactly. If TRUE, the Dirichlet tile areas will be approximated using pixel count-
ing, so the optimal choice will be approximate.

exact Logical. If TRUE, the Allard-Fraley estimator of the domain will be computed
exactly using polygonal geometry. If FALSE, the Allard-Fraley estimator of the
domain will be approximated by a binary pixel mask. The default is initially set
to FALSE.

... Optional arguments passed to as.mask to control the pixel resolution if exact=FALSE.

Details

Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial
point pattern in the presence of random clutter.

This algorithm computes the unrestricted Allard-Fraley estimator. The Dirichlet (Voronoi) tessel-
lation of the point pattern X is computed. The smallest m Dirichlet cells are selected, where the
number m is determined by a maximum likelihood criterion.

• If fast=FALSE (the default), the areas of the tiles of the Dirichlet tessellation will be computed
exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed
exactly.

• If fast=TRUE, the Dirichlet tile areas will be approximated by counting pixels. This is faster,
and is usually correct (depending on the pixel resolution, which is controlled by the arguments
...).

The type of result depends on the character vector what.

• If what="marks" the result is the point pattern X with a vector of marks labelling each point
with a value yes or no depending on whether the corresponding Dirichlet cell is selected by
the Allard-Fraley estimator. In other words each point of X is labelled as either a cluster point
or a non-cluster point.

• If what="domain", the result is the Allard-Fraley estimator of the cluster feature set, which is
the union of all the selected Dirichlet cells, represented as a window (object of class "owin").

• If what=c("marks", "domain") the result is a list containing both of the results described
above.

Computation of the Allard-Fraley set estimator depends on the argument exact.

• If exact=TRUE (the default), the Allard-Fraley set estimator will be computed exactly using
polygonal geometry. The result is a polygonal window.

• If exact=FALSE, the Allard-Fraley set estimator will be approximated by a binary pixel mask.
This is faster than the exact computation. The result is a binary mask.

coef.mppm 115

Value

If what="marks", a multitype point pattern (object of class "ppp").

If what="domain", a window (object of class "owin").

If what=c("marks", "domain") (the default), a list consisting of a multitype point pattern and a
window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spa-
tial point processes using Voronoi tessellation. Journal of the American Statistical Association 92,
1485–1493.

See Also

nnclean, sharpen

Examples

opa <- par(mfrow=c(1,2))
W <- grow.rectangle(as.rectangle(letterR), 1)
X <- superimpose(runifpoint(300, letterR),

runifpoint(50, W), W=W)
plot(W, main="clusterset(X, 'm')")
plot(clusterset(X, "marks", fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)
plot(letterR, add=TRUE)
plot(W, main="clusterset(X, 'd')")
plot(clusterset(X, "domain", exact=FALSE), add=TRUE)
plot(letterR, add=TRUE)
par(opa)

coef.mppm Coefficients of Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to a list of point patterns, extract the coefficients of the fitted
model. A method for coef.

Usage

S3 method for class 'mppm'
coef(object, ...)

116 coef.mppm

Arguments

object The fitted point process model (an object of class "mppm")

... Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

If the fitted model includes random effects (i.e. if the argument random was specified in the call
to mppm), then the fitted coefficients are different for each point pattern in the original data, so
coef(object) is a data frame with one row for each point pattern, and one column for each param-
eter. Use fixef.mppm to extract the vector of fixed effect coefficients, and ranef.mppm to extract
the random effect coefficients at each level.

Use print.mppm to print a more useful description of the fitted model.

Value

Either a vector containing the fitted coefficients, or a data frame containing the fitted coefficients
for each point pattern.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

fixef.mppm and ranef.mppm for the fixed and random effect coefficients in a model that includes
random effects.

print.mppm, mppm

coef.ppm 117

Examples

H <- hyperframe(X=waterstriders)

fit.Poisson <- mppm(X ~ 1, H)
coef(fit.Poisson)

The single entry "(Intercept)"
is the log of the fitted intensity of the Poisson process

fit.Strauss <- mppm(X~1, H, Strauss(7))
coef(fit.Strauss)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

Tweak data to exaggerate differences
H$X[[1]] <- rthin(H$X[[1]], 0.3)
Model with random effects
fitran <- mppm(X ~ 1, H, random=~1|id)
coef(fitran)

coef.ppm Coefficients of Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, extract the coefficients of the fitted model. A
method for coef.

Usage

S3 method for class 'ppm'
coef(object, ...)

Arguments

object The fitted point process model (an object of class "ppm")
... Ignored.

Details

This function is a method for the generic function coef.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm).

This function extracts the vector of coefficients of the fitted model. This is the estimate of the
parameter vector θ such that the conditional intensity of the model is of the form

λ(u, x) = exp(θS(u, x))

118 coef.slrm

where S(u, x) is a (vector-valued) statistic.

For example, if the model object is the uniform Poisson process, then coef(object) will yield a
single value (named "(Intercept)") which is the logarithm of the fitted intensity of the Poisson
process.

Use print.ppm to print a more useful description of the fitted model.

Value

A vector containing the fitted coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

print.ppm, ppm.object, ppm

Examples

data(cells)

poi <- ppm(cells, ~1, Poisson())
coef(poi)
This is the log of the fitted intensity of the Poisson process

stra <- ppm(cells, ~1, Strauss(r=0.07))
coef(stra)

The two entries "(Intercept)" and "Interaction"
are respectively log(beta) and log(gamma)
in the usual notation for Strauss(beta, gamma, r)

coef.slrm Coefficients of Fitted Spatial Logistic Regression Model

Description

Extracts the coefficients (parameters) from a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
coef(object, ...)

collapse.fv 119

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

Details

This is a method for coef for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

It extracts the fitted canonical parameters, i.e.\ the coefficients in the linear predictor of the spatial
logistic regression.

Value

Numeric vector of coefficients.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
coef(fit)

collapse.fv Collapse Several Function Tables into One

Description

Combines several function tables (objects of class "fv") into a single function table, merging
columns that are identical and relabelling columns that are different.

Usage

S3 method for class 'fv'
collapse(object, ..., same = NULL, different = NULL)

S3 method for class 'anylist'
collapse(object, ..., same = NULL, different = NULL)

120 collapse.fv

Arguments

object An object of class "fv", or a list of such objects.

... Additional objects of class "fv".

same Character string or character vector specifying a column or columns of func-
tion values that are identical in different "fv" objects. These columns will be
included only once in the result.

different Character string or character vector specifying a column or columns of function
values, that are different in different "fv" objects. Each of these columns of data
will be included, with labels that distinguish them from each other.

Details

This is a method for the generic function collapse.

It combines the data in several function tables (objects of class "fv", see fv.object) to make a
single function table. It is essentially a smart wrapper for cbind.fv.

A typical application is to calculate the same summary statistic (such as theK function) for different
point patterns, and then to use collapse.fv to combine the results into a single object that can
easily be plotted. See the Examples.

The arguments object and ... should be function tables (objects of class "fv", see fv.object)
that are compatible in the sense that they have the same values of the function argument. (This can
be ensured by applying harmonise.fv to them.)

The argument same identifies any columns that are present in some or all of the function tables, and
which are known to contain exactly the same values in each table that includes them. This column
or columns will be included only once in the result.

The argument different identifies any columns that are present in some or all of the function
tables, and which may contain different numerical values in different tables. Each of these columns
will be included, with labels to distinguish them.

Columns that are not named in same or different will not be included.

The function argument is always included and does not need to be specified.

The arguments same and different can be NULL, or they can be character vectors containing the
names of columns of object. The argument different can be one of the abbreviations recognised
by fvnames.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, cbind.fv

compareFit 121

Examples

generate simulated data
X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste("Simulation", 1:3)
compute K function estimates
Klist <- anylapply(X, Kest)
collapse
K <- collapse(Klist, same="theo", different="iso")
K

compareFit Residual Diagnostics for Multiple Fitted Models

Description

Compares several fitted point process models using the same residual diagnostic.

Usage

compareFit(object, Fun, r = NULL, breaks = NULL, ...,
trend = ~1, interaction = Poisson(), rbord = NULL,
modelnames = NULL, same = NULL, different = NULL)

Arguments

object Object or objects to be analysed. Either a fitted point process model (object of
class "ppm"), a point pattern (object of class "ppp"), or a list of these objects.

Fun Diagnostic function to be computed for each model. One of the functions Kcom,
Kres, Gcom, Gres, psst, psstA or psstG or a string containing one of these
names.

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Extra arguments passed to Fun.
trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern or list of point patterns. See ppm for details. Each of
these arguments can be a list, specifying different trend, interaction and/or
rbord values to be used to generate different fitted models.

modelnames Character vector. Short descriptive names for the different models.

same,different Character strings or character vectors passed to collapse.fv to determine the
format of the output.

122 compareFit

Details

This is a convenient way to collect diagnostic information for several different point process models
fitted to the same point pattern dataset, or for point process models of the same form fitted to several
different datasets, etc.

The first argument, object, is usually a list of fitted point process models (objects of class "ppm"),
obtained from the model-fitting function ppm.

For convenience, object can also be a list of point patterns (objects of class "ppp"). In that case,
point process models will be fitted to each of the point pattern datasets, by calling ppm using the
arguments trend (for the first order trend), interaction (for the interpoint interaction) and rbord
(for the erosion distance in the border correction for the pseudolikelihood). See ppm for details of
these arguments.

Alternatively object can be a single point pattern (object of class "ppp") and one or more of the
arguments trend, interaction or rbord can be a list. In this case, point process models will be
fitted to the same point pattern dataset, using each of the model specifications listed.

The diagnostic function Fun will be applied to each of the point process models. The results will be
collected into a single function value table. The modelnames are used to label the results from each
fitted model.

Value

Function value table (object of class "fv").

Author(s)

Ege Rubak <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and
Jesper Møller.

See Also

ppm, Kcom, Kres, Gcom, Gres, psst, psstA, psstG, collapse.fv

Examples

nd <- 40

ilist <- list(Poisson(), Geyer(7, 2), Strauss(7))
iname <- c("Poisson", "Geyer", "Strauss")

K <- compareFit(swedishpines, Kcom, interaction=ilist, rbord=9,
correction="translate",
same="trans", different="tcom", modelnames=iname, nd=nd)

K

compatible.fasp 123

compatible.fasp Test Whether Function Arrays Are Compatible

Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage

S3 method for class 'fasp'
compatible(A, B, ...)

Arguments

A,B,... Two or more function arrays (object of class "fasp").

Details

An object of class "fasp" can be regarded as an array of functions. Such objects are returned by
the command alltypes.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding
elements in each cell of the array are compatible as defined by compatible.fv.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.fasp

124 compatible.fv

compatible.fv Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage

S3 method for class 'fv'
compatible(A, B, ..., samenames=TRUE)

Arguments

A,B,... Two or more function value objects (class "fv").

samenames Logical value indicating whether to check for complete agreement between the
column names of the objects (samenames=TRUE, the default) or just to check that
the name of the function argument is the same (samenames=FALSE).

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The functions are compatible if they have been evaluated at the same sequence of values of the
argument r, and if the statistical estimates have the same names.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

eval.fv

compileK 125

compileK Generic Calculation of K Function and Pair Correlation Function

Description

Low-level functions which calculate the estimated K function and estimated pair correlation func-
tion (or any similar functions) from a matrix of pairwise distances and optional weights.

Usage

compileK(D, r, weights = NULL, denom = 1,
check = TRUE, ratio = FALSE, fname = "K")

compilepcf(D, r, weights = NULL, denom = 1,
check = TRUE, endcorrect = TRUE, ratio=FALSE,

..., fname = "g")

Arguments

D A square matrix giving the distances between all pairs of points.

r An equally spaced, finely spaced sequence of distance values.

weights Optional numerical weights for the pairwise distances. A numeric matrix with
the same dimensions as D. If absent, the weights are taken to equal 1.

denom Denominator for the estimator. A single number, or a numeric vector with the
same length as r. See Details.

check Logical value specifying whether to check that D is a valid matrix of pairwise
distances.

ratio Logical value indicating whether to store ratio information. See Details.

... Optional arguments passed to density.default controlling the kernel smooth-
ing.

endcorrect Logical value indicating whether to apply End Correction of the pair correlation
estimate at r=0.

fname Character string giving the name of the function being estimated.

Details

These low-level functions construct estimates of the K function or pair correlation function, or any
similar functions, given only the matrix of pairwise distances and optional weights associated with
these distances.

These functions are useful for code development and for teaching, because they perform a common
task, and do the housekeeping required to make an object of class "fv" that represents the estimated
function. However, they are not very efficient.

126 compileK

compileK calculates the weighted estimate of the K function,

K̂(r) = (1/v(r))
∑
i

∑
j

1{dij ≤ r}wij

and compilepcf calculates the weighted estimate of the pair correlation function,

ĝ(r) = (1/v(r))
∑
i

∑
j

κ(dij − r)wij

where dij is the distance between spatial points i and j, with corresponding weight wij , and v(r) is
a specified denominator. Here κ is a fixed-bandwidth smoothing kernel.

For a point pattern in two dimensions, the usual denominator v(r) is constant for the K function,
and proportional to r for the pair correlation function. See the Examples.

The result is an object of class "fv" representing the estimated function. This object has only one
column of function values. Additional columns (such as a column giving the theoretical value) must
be added by the user, with the aid of bind.fv.

If ratio=TRUE, the result also belongs to class "rat" and has attributes containing the numerator
and denominator of the function estimate. This allows function estimates from several datasets to
be pooled using pool.

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Kest, pcf for definitions of the K function and pair correlation function.

bind.fv to add more columns.

Examples

X <- japanesepines
D <- pairdist(X)
Wt <- edge.Ripley(X, D)
lambda <- intensity(X)
a <- (npoints(X)-1) * lambda
r <- seq(0, 0.25, by=0.01)
K <- compileK(D=D, r=r, weights=Wt, denom=a)
g <- compilepcf(D=D, r=r, weights=Wt, denom= a * 2 * pi * r)

Concom 127

Concom The Connected Component Process Model

Description

Creates an instance of the Connected Component point process model which can then be fitted to
point pattern data.

Usage

Concom(r)

Arguments

r Threshold distance

Details

This function defines the interpoint interaction structure of a point process called the connected
component process. It can be used to fit this model to point pattern data.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the connected component interaction is yielded by the function Concom().
See the examples below.

In standard form, the connected component process (Baddeley and Møller, 1989) with disc radius
r, intensity parameter κ and interaction parameter γ is a point process with probability density

f(x1, . . . , xn) = ακn(x)γ−C(x)

for a point pattern x, where x1, . . . , xn represent the points of the pattern, n(x) is the number of
points in the pattern, and C(x) is defined below. Here α is a normalising constant.

To define the term C(x), suppose that we construct a planar graph by drawing an edge between each
pair of points xi, xj which are less than r units apart. Two points belong to the same connected
component of this graph if they are joined by a path in the graph. Then C(x) is the number of
connected components of the graph.

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a
Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is
clustered. Thus, a connected-component interaction process can be used to model either clustered
or regular point patterns.

In spatstat, the model is parametrised in a different form, which is easier to interpret. In canonical
form, the probability density is rewritten as

f(x1, . . . , xn) = αβn(x)γ−U(x)

where β is the new intensity parameter and U(x) = C(x) − n(x) is the interaction potential. In
this formulation, each isolated point of the pattern contributes a factor β to the probability density

128 Concom

(so the first order trend is β). The quantity U(x) is a true interaction potential, in the sense that
U(x) = 0 if the point pattern x does not contain any points that lie close together.

When a new point u is added to an existing point pattern x, the rescaled potential −U(x) increases
by zero or a positive integer. The increase is zero if u is not close to any point of x. The increase is
a positive integer k if there are k different connected components of x that lie close to u. Addition
of the point u contributes a factor βηδ to the probability density, where δ is the increase in potential.

If desired, the original parameter κ can be recovered from the canonical parameter by κ = βγ.

The nonstationary connected component process is similar except that the contribution of each
individual point xi is a function β(xi) of location, rather than a constant beta.

Note the only argument of Concom() is the threshold distance r. When r is fixed, the model be-
comes an exponential family. The canonical parameters log(β) and log(γ) are estimated by ppm(),
not fixed in Concom().

Value

An object of class "interact" describing the interpoint interaction structure of the connected com-
ponent process with disc radius r.

Edge correction

The interaction distance of this process is infinite. There are no well-established procedures for
edge correction for fitting such models, and accordingly the model-fitting function ppm will give an
error message saying that the user must specify an edge correction. A reasonable solution is to use
the border correction at the same distance r, as shown in the Examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A.J. and Møller, J. (1989) Nearest-neighbour Markov point processes and random sets.
International Statistical Review 57, 89–121.

See Also

ppm, pairwise.family, ppm.object

Examples

prints a sensible description of itself
Concom(r=0.1)

Fit the stationary connected component process to redwood data
ppm(redwood, ~1, Concom(r=0.07), rbord=0.07)

Fit the stationary connected component process to `cells' data
ppm(cells, ~1, Concom(r=0.06), rbord=0.06)

cov.im 129

eta=0 indicates hard core process.

Fit a nonstationary connected component model
with log-cubic polynomial trend
ppm(swedishpines, ~polynom(x/10,y/10,3), Concom(r=7), rbord=7)

cov.im Covariance and Correlation between Images

Description

Compute the covariance or correlation between (the corresponding pixel values in) several images.

Usage

cov.im(..., use = "everything", method = c("pearson", "kendall", "spearman"))

Arguments

... Any number of arguments, each of which is a pixel image (object of class "im").
Alternatively, a single argument which is a list of pixel images.

use Argument passed to cov or cor determining how to handle NA values in the data.

method Argument passed to cov or cor determining the type of correlation that will be
computed.

Details

The arguments ... should be pixel images (objects of class "im"). Their spatial domains must
overlap, but need not have the same pixel dimensions.

These functions compute the covariance or correlation between the corresponding pixel values in
the images given.

The pixel image domains are intersected, and converted to a common pixel resolution. Then the cor-
responding pixel values of each image are extracted. Finally the correlation or covariance between
the pixel values of each pair of images, at corresponding pixels, is computed.

The result is a symmetric matrix with one row and column for each image. The [i,j] entry is the
correlation or covariance between the ith and jth images in the argument list. The row names and
column names of the matrix are copied from the argument names if they were given (i.e. if the
arguments were given as name=value).

Note that cor and cov are not generic, so you have to type cor.im, cov.im.

Value

A symmetric matrix.

130 data.ppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cor, cov

pairs.im

Examples

cor.im(bei.extra)

data.ppm Extract Original Data from a Fitted Point Process Model

Description

Given a fitted point process model, this function extracts the original point pattern dataset to which
the model was fitted.

Usage

data.ppm(object)

Arguments

object fitted point process model (an object of class "ppm").

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm. The object contains complete information about the
original data point pattern to which the model was fitted. This function extracts the original data
pattern.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

ppm.object, ppp.object

dclf.progress 131

Examples

fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- data.ppm(fit)
'X' is identical to 'cells'

dclf.progress Progress Plot of Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or
the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.progress(X, ...)
mad.progress(X, ...)
mctest.progress(X, fun = Lest, ...,

exponent = 1, nrank = 1,
interpolate = FALSE, alpha, rmin=0)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to mctest.progress or to envelope. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify one-sided or two-sided en-
velopes, and verbose=FALSE to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

132 dclf.progress

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial
point pattern are described in dclf.test. These tests depend on the choice of an interval of distance
values (the argument rinterval). A progress plot or envelope representation of the test (Baddeley
et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of
the interval rinterval.

The command dclf.progress performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting values of the test statistic, and the corresponding critical values of
the test, as a function of R.

Similarly mad.progress performs mad.test using all possible intervals and returns the test statistic
and critical value.

More generally, mctest.progress performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The result of each command is an object of class "fv" that can be plotted to obtain the progress
plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region
(grey shading).

The significance level for the Monte Carlo test is nrank/(nsim+1). Note that nsim defaults to 99,
so if the values of nrank and nsim are not given, the default is a test with significance level 0.01.

If X is an envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

dclf.sigtrace 133

See Also

dclf.test and mad.test for the tests.

See plot.fv for information on plotting objects of class "fv".

Examples

plot(dclf.progress(cells, nsim=19))

dclf.sigtrace Significance Trace of Cressie-Loosmore-Ford or Maximum Absolute
Deviation Test

Description

Generates a Significance Trace of the Diggle(1986)/ Cressie (1991)/ Loosmore and Ford (2006) test
or the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.sigtrace(X, ...)
mad.sigtrace(X, ...)
mctest.sigtrace(X, fun=Lest, ...,

exponent=1, interpolate=FALSE, alpha=0.05,
confint=TRUE, rmin=0)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

... Arguments passed to envelope or mctest.progress. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify a one-sided test, and verbose=FALSE
to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.

exponent Positive number. The exponent of the Lp distance. See Details.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

134 dclf.sigtrace

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle (1986)/ Cressie (1991)/Loosmore and Ford (2006) test and the Maximum Absolute
Deviation test for a spatial point pattern are described in dclf.test. These tests depend on the
choice of an interval of distance values (the argument rinterval). A significance trace (Bowman
and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) of the test is a
plot of the p-value obtained from the test against the length of the interval rinterval.

The command dclf.sigtrace performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting p-values as a function of R.

Similarly mad.sigtrace performs mad.test using all possible intervals and returns the p-values.

More generally, mctest.sigtrace performs a test based on the Lp discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The result of each command is an object of class "fv" that can be plotted to obtain the significance
trace. The plot shows the Monte Carlo p-value (solid black line), the critical value 0.05 (dashed
red line), and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson)
p-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a bino-
mial proportion (when interpolate=FALSE) or the delta method and normal approximation (when
interpolate=TRUE).

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

dclf.test 135

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, Boca Raton, FL.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

See Also

dclf.test for the tests; dclf.progress for progress plots.

See plot.fv for information on plotting objects of class "fv".

See also dg.sigtrace.

Examples

plot(dclf.sigtrace(cells, Lest, nsim=19))

dclf.test Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation
Tests

Description

Perform the Diggle (1986) / Cressie (1991) / Loosmore and Ford (2006) test or the Maximum
Absolute Deviation test for a spatial point pattern.

Usage

dclf.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

mad.test(X, ..., alternative=c("two.sided", "less", "greater"),
rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

Arguments

X Data for the test. Either a point pattern (object of class "ppp", "lpp" or other
class), a fitted point process model (object of class "ppm", "kppm" or other
class), a simulation envelope (object of class "envelope") or a previous result
of dclf.test or mad.test.

... Arguments passed to envelope. Useful arguments include fun to determine
the summary function, nsim to specify the number of Monte Carlo simulations,
verbose=FALSE to turn off the messages, savefuns or savepatterns to save
the simulation results, and use.theory described under Details.

136 dclf.test

alternative The alternative hypothesis. A character string. The default is a two-sided alter-
native. See Details.

rinterval Interval of values of the summary function argument r over which the maximum
absolute deviation, or the integral, will be computed for the test. A numeric
vector of length 2.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

scale Optional. A function in the R language which determines the relative scale of
deviations, as a function of distance r. Summary function values for distance r
will be divided by scale(r) before the test statistic is computed.

clamp Logical value indicating how to compute deviations in a one-sided test. Devia-
tions of the observed summary function from the theoretical summary function
are initially evaluated as signed real numbers, with large positive values indicat-
ing consistency with the alternative hypothesis. If clamp=FALSE (the default),
these values are not changed. If clamp=TRUE, any negative values are replaced
by zero.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point
process model, based on Monte Carlo simulation from the model.

dclf.test performs the test advocated by Loosmore and Ford (2006) which is also described
in Diggle (1986), Cressie (1991, page 667, equation (8.5.42)) and Diggle (2003, page 14). See
Baddeley et al (2014) for detailed discussion.

mad.test performs the ‘global’ or ‘Maximum Absolute Deviation’ test described by Ripley (1977,
1981). See Baddeley et al (2014).

The type of test depends on the type of argument X.

• If X is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be
performed. That is, the null hypothesis is that the point pattern is completely random.

• If X is a fitted point process model, then a test of goodness-of-fit for the fitted model will be
performed. The model object contains the data point pattern to which it was originally fitted.
The null hypothesis is that the data point pattern is a realisation of the model.

• If X is an envelope object generated by envelope, then it should have been generated with
savefuns=TRUE or savepatterns=TRUE so that it contains simulation results. These simula-
tions will be treated as realisations from the null hypothesis.

dclf.test 137

• Alternatively X could be a previously-performed test of the same kind (i.e. the result of calling
dclf.test or mad.test). The simulations used to perform the original test will be re-used
to perform the new test (provided these simulations were saved in the original test, by setting
savefuns=TRUE or savepatterns=TRUE).

The argument alternative specifies the alternative hypothesis, that is, the direction of deviation
that will be considered statistically significant. If alternative="two.sided" (the default), both
positive and negative deviations (between the observed summary function and the theoretical func-
tion) are significant. If alternative="less", then only negative deviations (where the observed
summary function is lower than the theoretical function) are considered. If alternative="greater",
then only positive deviations (where the observed summary function is higher than the theoretical
function) are considered.

In all cases, the algorithm will first call envelope to generate or extract the simulated summary
functions. The number of simulations that will be generated or extracted, is determined by the
argument nsim, and defaults to 99. The summary function that will be computed is determined by
the argument fun (or the first unnamed argument in the list ...) and defaults to Kest (except when
X is an envelope object generated with savefuns=TRUE, when these functions will be taken).

The choice of summary function fun affects the power of the test. It is normally recommended
to apply a variance-stabilising transformation (Ripley, 1981). If you are using the K function,
the normal practice is to replace this by the L function (Besag, 1977) computed by Lest. If you
are using the F or G functions, the recommended practice is to apply Fisher’s variance-stabilising
transformation sin−1

√
x using the argument transform. See the Examples.

The argument rinterval specifies the interval of distance values r which will contribute to the test
statistic (either maximising over this range of values for mad.test, or integrating over this range
of values for dclf.test). This affects the power of the test. General advice and experiments in
Baddeley et al (2014) suggest that the maximum r value should be slightly larger than the maximum
possible range of interaction between points. The dclf.test is quite sensitive to this choice, while
the mad.test is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance r) by
specifing rinterval = c(r,r).

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value
is contained in the component p.value.

138 dclf.test

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a
tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen and Suman Rakshit.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2015) Pushing the envelope.
In preparation.

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neuroscience Methods 18, 115–125.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925–1931.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

envelope, dclf.progress

Examples

dclf.test(cells, Lest, nsim=39)
m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(0, 0.1), nsim=19)
m
extract the p-value
m$p.value
variance stabilised G function
dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),

verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")

density.ppp 139

scaled
mad.test(cells, Kest, verbose=FALSE, nsim=19,

rinterval=c(0.05, 0.2),
scale=function(r) { r })

density.ppp Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

S3 method for class 'ppp'
density(x, sigma=NULL, ...,

weights=NULL, edge=TRUE, varcov=NULL,
at="pixels", leaveoneout=TRUE,
adjust=1, diggle=FALSE, se=FALSE,
kernel="gaussian",
scalekernel=is.character(kernel),
positive=FALSE, verbose=TRUE)

Arguments

x Point pattern (object of class "ppp").

sigma The smoothing bandwidth (the amount of smoothing). The standard deviation
of the isotropic smoothing kernel. Either a numerical value, or a function that
computes an appropriate value of sigma.

weights Optional weights to be attached to the points. A numeric vector, numeric matrix,
an expression, or a pixel image.

... Additional arguments passed to pixellate.ppp and as.mask to determine the
pixel resolution, or passed to sigma if it is a function.

edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic smoothing kernel. Incompatible with
sigma.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

140 density.ppp

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

se Logical value indicating whether to compute standard errors as well.

positive Logical value indicating whether to force all density values to be positive num-
bers. Default is FALSE.

verbose Logical value indicating whether to issue warnings about numerical problems
and conditions.

Details

This is a method for the generic function density.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point
process that generated the point pattern x.

The amount of smoothing is controlled by sigma if it is specified.

By default, smoothing is performed using a Gaussian kernel. The resulting density estimate is the
convolution of the isotropic Gaussian kernel, of standard deviation sigma, with point masses at each
of the data points in x.

Anisotropic kernels, and non-Gaussian kernels, are also supported. Each point has unit weight,
unless the argument weights is given.

If edge=TRUE (the default), the intensity estimate is corrected for edge effect bias.

If at="pixels" (the default), the result is a pixel image giving the estimated intensity at each pixel
in a grid. If at="points", the result is a numeric vector giving the estimated intensity at each of
the original data points in x.

Value

By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity
values, expressed in “points per unit area”.

If at="points", the result is a numeric vector of length equal to the number of points in x. Values
are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma" and "varcov" which report the smoothing
bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels")
or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

density.ppp 141

Amount of smoothing

The amount of smoothing is determined by the arguments sigma, varcov and adjust.

• if sigma is a single numerical value, this is taken as the standard deviation of the isotropic
Gaussian kernel.

• alternatively sigma may be a function that computes an appropriate bandwidth from the data
point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-
validation, it is recommended to use the functions bw.diggle, bw.CvL, bw.scott or bw.ppl.

• The smoothing kernel may be made anisotropic by giving the variance-covariance matrix
varcov. The arguments sigma and varcov are incompatible.

• Alternatively sigma may be a vector of length 2 giving the standard deviations of the x and y
coordinates, thus equivalent to varcov = diag(rep(sigma^2, 2)).

• if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a
default value of sigma calculated by a simple rule of thumb that depends only on the size of
the window.

• The argument adjust makes it easy for the user to change the bandwidth specified by any
of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix
varcov will be multiplied by adjust^2. To double the smoothing bandwidth, set adjust=2.

• An infinite bandwidth, sigma=Inf or adjust=Inf, is permitted, and yields an intensity esti-
mate which is constant over the spatial domain.

Edge correction

If edge=TRUE, the intensity estimate is corrected for edge effect bias in one of two ways:

• If diggle=FALSE (the default) the intensity estimate is correted by dividing it by the convolu-
tion of the Gaussian kernel with the window of observation. This is the approach originally
described in Diggle (1985). Thus the intensity value at a point u is

λ̂(u) = e(u)
∑
i

k(xi − u)wi

where k is the Gaussian smoothing kernel, e(u) is an edge correction factor, and wi are the
weights.

• If diggle=TRUE then the code uses the improved edge correction described by Jones (1993)
and Diggle (2010, equation 18.9). This has been shown to have better performance (Jones,
1993) but is slightly slower to compute. The intensity value at a point u is

λ̂(u) =
∑
i

k(xi − u)wie(xi)

where again k is the Gaussian smoothing kernel, e(xi) is an edge correction factor, and wi are
the weights.

In both cases, the edge correction term e(u) is the reciprocal of the kernel mass inside the window:

1

e(u)
=

∫
W

k(v − u) dv

where W is the observation window.

142 density.ppp

Smoothing kernel

By default, smoothing is performed using a Gaussian kernel.

The choice of smoothing kernel is determined by the argument kernel. This should be a character
string giving the name of a recognised two-dimensional kernel (current options are "gaussian",
"epanechnikov", "quartic" or "disc"), or a pixel image (object of class "im") containing values
of the kernel, or a function(x,y) which yields values of the kernel. The default is a Gaussian
kernel.

If scalekernel=TRUE then the kernel values will be rescaled according to the arguments sigma,
varcov and adjust as explained above, effectively treating kernel as the template kernel with
standard deviation equal to 1. This is the default behaviour when kernel is a character string. If
scalekernel=FALSE, the kernel values will not be altered, and the arguments sigma, varcov and
adjust are ignored. This is the default behaviour when kernel is a pixel image or a function.

Desired output

If at="pixels" (the default), intensity values are computed at every location u in a fine grid,
and are returned as a pixel image. The point pattern is first discretised using pixellate.ppp,
then the intensity is computed using the Fast Fourier Transform. Accuracy depends on the pixel
resolution and the discretisation rule. The pixel resolution is controlled by the arguments ... passed
to as.mask (specify the number of pixels by dimyx or the pixel size by eps). The discretisation rule
is controlled by the arguments ... passed to pixellate.ppp (the default rule is that each point
is allocated to the nearest pixel centre; this can be modified using the arguments fractional and
preserve).

If at="points", the intensity values are computed to high accuracy at the points of x only. Compu-
tation is performed by directly evaluating and summing the kernel contributions without discretising
the data. The result is a numeric vector giving the density values. The intensity value at a point xi
is (if diggle=FALSE)

λ̂(xi) = e(xi)
∑
j

k(xj − xi)wj

or (if diggle=TRUE)
λ̂(xi) =

∑
j

k(xj − xi)wje(xj)

If leaveoneout=TRUE (the default), then the sum in the equation is taken over all j not equal to i, so
that the intensity value at a data point is the sum of kernel contributions from all other data points.
If leaveoneout=FALSE then the sum is taken over all j, so that the intensity value at a data point
includes a contribution from the same point.

Weights

If weights is a matrix with more than one column, then the calculation is effectively repeated for
each column of weights. The result is a list of images (if at="pixels") or a matrix of numerical
values (if at="points").

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(x)
to obtain a vector or matrix of weights. The expression may involve the symbols x and y represent-
ing the Cartesian coordinates, the symbol marks representing the mark values if there is only one
column of marks, and the names of the columns of marks if there are several columns.

density.ppp 143

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in x).

The meaning of density.ppp

This function is often misunderstood.

The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point
pattern. To perform spatial interpolation of values that were observed at the points of a point pattern,
use Smooth.ppp.

The result of density.ppp is not a probability density. It is an estimate of the intensity function of
the point process that generated the point pattern data. Intensity is the expected number of random
points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function
of spatial location, and it is this function which is estimated by density.ppp. The integral of the
intensity function over a spatial region gives the expected number of points falling in this region.

Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point
pattern dataset. For more explanation, see Baddeley, Rubak and Turner (2015) or Diggle (2003,
2010).

If you have two (or more) types of points, and you want a probability map or relative risk surface
(the spatially-varying probability of a given type), use relrisk.

Technical issue: Negative Values

Negative and zero values of the density estimate are possible when at="pixels" because of nu-
merical errors in finite-precision arithmetic.

By default, density.ppp does not try to repair such errors. This would take more computation time
and is not always needed. (Also it would not be appropriate if weights include negative values.)

To ensure that the resulting density values are always positive, set positive=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138–147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J. (2010) Nonparametric methods. Chapter 18, pp. 299–316 in A.E. Gelfand, P.J. Diggle,
M. Fuentes and P. Guttorp (eds.) Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.

Jones, M.C. (1993) Simple boundary corrections for kernel density estimation. Statistics and Com-
puting 3, 135–146.

144 density.psp

See Also

To select the bandwidth sigma automatically by cross-validation, use bw.diggle, bw.CvL, bw.scott
or bw.ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use
Smooth.ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen.ppp.

To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.

For information about the data structures, see ppp.object, im.object.

Examples

if(interactive()) {
opa <- par(mfrow=c(1,2))
plot(density(cells, 0.05))
plot(density(cells, 0.05, diggle=TRUE))
par(opa)
v <- diag(c(0.05, 0.07)^2)
plot(density(cells, varcov=v))

}
automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
equivalent:
plot(density(cells, bw.diggle))
evaluate intensity at points
density(cells, 0.05, at="points")

non-Gaussian kernel
plot(density(cells, sigma=0.4, kernel="epanechnikov"))

if(interactive()) {
see effect of changing pixel resolution
opa <- par(mfrow=c(1,2))
plot(density(cells, sigma=0.4))
plot(density(cells, sigma=0.4, eps=0.05))
par(opa)

}

relative risk calculation by hand (see relrisk.ppp)
lung <- split(chorley)$lung
larynx <- split(chorley)$larynx
D <- density(lung, sigma=2)
plot(density(larynx, sigma=2, weights=1/D))

density.psp Kernel Smoothing of Line Segment Pattern

Description

Compute a kernel smoothed intensity function from a line segment pattern.

density.psp 145

Usage

S3 method for class 'psp'
density(x, sigma, ..., weights=NULL, edge=TRUE,

method=c("FFT", "C", "interpreted"),
at=NULL)

Arguments

x Line segment pattern (object of class "psp") to be smoothed.
sigma Standard deviation of isotropic Gaussian smoothing kernel.
... Extra arguments, including arguments passed to as.mask to determine the reso-

lution of the resulting image.
weights Optional. Numerical weights for each line segment. A numeric vector, of length

equal to the number of segments in x.
edge Logical flag indicating whether to apply edge correction.
method Character string (partially matched) specifying the method of computation. Op-

tion "FFT" is the fastest, while "C" is the most accurate.
at Optional. An object specifying the locations where density values should be

computed. Either a window (object of class "owin") or a point pattern (object
of class "ppp" or "lpp").

Details

This is the method for the generic function density for the class "psp" (line segment patterns).
A kernel estimate of the intensity of the line segment pattern is computed. The result is the convo-
lution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments. The
result is computed as follows:

• if method="FFT" (the default), the line segments are discretised using pixellate.psp, then
the Fast Fourier Transform is used to calculate the convolution. This method is the fastest, but
is slightly less accurate. Accuracy can be improved by increasing pixel resolution.

• if method="C" the exact value of the convolution at the centre of each pixel is computed
analytically using C code;

• if method="interpreted", the exact value of the convolution at the centre of each pixel is
computed analytically using R code. This method is the slowest.

If edge=TRUE this result is adjusted for edge effects by dividing it by the convolution of the same
Gaussian kernel with the observation window.
If weights are given, then the contribution from line segment i is multiplied by the value of
weights[i].
If the argument at is given, then it specifies the locations where density values should be computed.

• If at is a window, then the window is converted to a binary mask using the arguments ...,
and density values are computed at the centre of each pixel in this mask. The result is a pixel
image.

• If at is a point pattern, then density values are computed at each point location, and the result
is a numeric vector.

146 density.splitppp

Value

A pixel image (object of class "im") or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

psp.object, im.object, density

Examples

L <- psp(runif(20),runif(20),runif(20),runif(20), window=owin())
D <- density(L, sigma=0.03)
plot(D, main="density(L)")
plot(L, add=TRUE)

density.splitppp Kernel Smoothed Intensity of Split Point Pattern

Description

Compute a kernel smoothed intensity function for each of the components of a split point pattern,
or each of the point patterns in a list.

Usage

S3 method for class 'splitppp'
density(x, ..., weights=NULL, se=FALSE)

S3 method for class 'ppplist'
density(x, ..., weights=NULL, se=FALSE)

Arguments

x Split point pattern (object of class "splitppp" created by split.ppp) to be
smoothed. Alternatively a list of point patterns, of class "ppplist".

... Arguments passed to density.ppp to control the smoothing, pixel resolution,
edge correction etc.

weights Numerical weights for the points. See Details.

se Logical value indicating whether to compute standard errors as well.

density.splitppp 147

Details

This is a method for the generic function density.

The argument x should be a list of point patterns, and should belong to one of the classes "ppplist"
or "splitppp".

Typically x is obtained by applying the function split.ppp to a point pattern y by calling split(y).
This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density.ppp.

The return value is usually a list, each of whose entries is a pixel image (object of class "im"). The
return value also belongs to the class "solist" and can be plotted or printed.

If the argument at="points" is given, the result is a list of numeric vectors giving the intensity
values at the data points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), or an expression.

For convenience, weights can also be a single expression or a single pixel image (object of class
"im").

Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, im.object

Examples

Z <- density(split(amacrine), 0.05)
plot(Z)

148 densityAdaptiveKernel

densityAdaptiveKernel Adaptive Kernel Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern using a variable-bandwidth
smoothing kernel.

Usage

densityAdaptiveKernel(X, ...)

S3 method for class 'ppp'
densityAdaptiveKernel(X, bw, ...,

weights=NULL,
at=c("pixels", "points"),
edge=TRUE, ngroups)

Arguments

X Point pattern (object of class "ppp").
bw Numeric vector of smoothing bandwidths for each point in X, or a pixel image

giving the smoothing bandwidth at each spatial location, or a spatial function of
class "funxy" giving the smoothing bandwidth at each location. The default is
to compute bandwidths using bw.abram.

... Arguments passed to bw.abram to compute the smoothing bandwidths if bw is
missing, or passed to as.mask to control the spatial resolution of the result.

weights Optional vector of numeric weights for the points of X.
at String specifying whether to compute the intensity values at a grid of pixel lo-

cations (at="pixels") or only at the points of x (at="points").
edge Logical value indicating whether to perform edge correction.
ngroups Number of groups into which the bandwidth values should be partitioned and

discretised.

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity from
the point pattern X using the partitioning technique of Davies and Baddeley (2018).

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It
may be a numeric vector of bandwidth values, or a pixel image or function yielding the bandwidth
values.

If the points of X are x1, . . . , xn and the corresponding bandwidths are σ1, . . . , σn then the adaptive
kernel estimate of intensity at a location u is

λ̂(u) =

n∑
i=1

k(u, xi, σi)

densityAdaptiveKernel 149

where k(u, v, σ) is the value at u of the (possibly edge-corrected) smoothing kernel with bandwidth
σ induced by a data point at v.

Exact computation of the estimate above can be time-consuming: it takes n times longer than fixed-
bandwidth smoothing.

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partitioning
the range of bandwidths into ngroups intervals, correspondingly subdividing the points of the pat-
tern X into ngroups sub-patterns according to bandwidth, and applying fixed-bandwidth smoothing
to each sub-pattern.

The default value of ngroups is the integer part of the square root of the number of points in
X, so that the computation time is only about

√
n times slower than fixed-bandwidth smoothing.

Any positive value of ngroups can be specified by the user. Specifying ngroups=Inf enforces
exact computation of the estimate without partitioning. Specifying ngroups=1 is the same as fixed-
bandwidth smoothing with bandwidth sigma=median(bw).

Value

If at="pixels" (the default), the result is a pixel image. If at="points", the result is a numeric
vector with one entry for each data point in X.

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel computes one adaptive estimate of the intensity, determined
by the smoothing bandwidth values bw.

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity,
then using bw.abram to compute the vector of bandwidths according to Abramson’s rule. This
involves specifying a global bandwidth h0.

The default bandwidths may work well in many contexts, but for optimal bandwidth selection, this
calculation should be performed repeatedly with different values of h0 to optimise the value of h0.
This can be computationally demanding; we recommend the function multiscale.density in the
sparr package which supports much faster bandwidth selection, using the FFT method of Davies
and Baddeley (2018).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

References

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability den-
sities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

150 densityfun.ppp

See Also

density.ppp, adaptive.density, densityVoronoi, im.object.

See the function bivariate.density in the sparr package for a more flexible implementation, and
multiscale.density for an implementation that is more efficient for bandwidth selection.

Examples

Z <- densityAdaptiveKernel(redwood, h0=0.1)
plot(Z, main="Adaptive kernel estimate")
points(redwood, col="white")

densityfun.ppp Kernel Estimate of Intensity as a Spatial Function

Description

Compute a kernel estimate of intensity for a point pattern, and return the result as a function of
spatial location.

Usage

densityfun(X, ...)

S3 method for class 'ppp'
densityfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X Point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to density.ppp.

... Additional arguments passed to density.ppp.

weights Optional vector of weights associated with the points of X.

edge,diggle Logical arguments controlling the edge correction. Arguments passed to density.ppp.

Details

The commands densityfun and density both perform kernel estimation of the intensity of a point
pattern. The difference is that density returns a pixel image, containing the estimated intensity
values at a grid of locations, while densityfun returns a function(x,y) which can be used to
compute the intensity estimate at any spatial locations with coordinates x,y. For purposes such as
model-fitting it is more accurate to use densityfun.

densityfun.ppp 151

Value

A function with arguments x,y,drop. The function also belongs to the class "densityfun"
which has methods for print and as.im. It also belongs to the class "funxy" which has methods
for plot, contour and persp.

Using the result of densityfun

If f <- densityfun(X), where X is a two-dimensional point pattern, the resulting object f is a
function in the R language.

By calling this function, the user can evaluate the estimated intensity at any desired spatial locations.

Additionally f belongs to other classes which allow it to be printed and plotted easily.

The function f has arguments x,y,drop.

• The arguments x,y of f specify the query locations. They can be numeric vectors of coordi-
nates. Alternatively x can be a point pattern (or data acceptable to as.ppp) and y is omitted.
The result of f(x,y) is a numeric vector giving the values of the intensity.

• The argument drop of f specifies how to handle query locations which are outside the window
of the original data. If drop=TRUE (the default), such locations are ignored. If drop=FALSE, a
value of NA is returned for each such location.

Note that the smoothing parameters, such as the bandwidth sigma, are assigned when densityfun
is executed. Smoothing parameters are fixed inside the function f and cannot be changed by argu-
ments of f.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.

To interpolate values observed at the points, use Smoothfun.

Examples

f <- densityfun(swedishpines)
f
f(42, 60)
X <- runifpoint(2, Window(swedishpines))
f(X)
plot(f)

152 densityHeat

densityHeat Diffusion Estimate of Point Pattern Intensity

Description

Computes a diffusion estimate of intensity for a point pattern.

Usage

densityHeat(x, sigma, ...)

Arguments

x Point pattern (object of class "ppp" or another class).

sigma Smoothing bandwidth. Usually a single number giving the equivalent standard
deviation of the smoother.

... Additional arguments depending on the method.

Details

The generic function densityHeat computes an estimate of point process intensity using a diffusion
kernel method.

Further details depend on the class of point pattern x. See the help file for the appropriate method.

Value

Depends on the class of x.

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

For two-dimensional point patterns (objects of class "ppp"), the diffusion kernel estimator is densityHeat.ppp.
The usual kernel estimator is density.ppp, and the tessellation-based estimator is adaptive.density.

densityHeat.ppp 153

densityHeat.ppp Diffusion Estimate of Point Pattern Intensity

Description

Computes the diffusion estimate of the intensity of a point pattern.

Usage

S3 method for class 'ppp'
densityHeat(x, sigma, ..., weights=NULL,

connect=8, symmetric=FALSE,
sigmaX=NULL, k=1, show=FALSE, se=FALSE,
at=c("pixels", "points"),
leaveoneout = TRUE,
extrapolate = FALSE, coarsen = TRUE,
verbose=TRUE, internal=NULL)

Arguments

x Point pattern (object of class "ppp").
sigma Smoothing bandwidth. A single number giving the equivalent standard deviation

of the smoother. Alternatively, a pixel image (class "im") or a function(x,y)
giving the spatially-varying bandwidth.

... Arguments passed to pixellate.ppp controlling the pixel resolution.
weights Optional numeric vector of weights associated with each point of x.
connect Grid connectivity: either 4 or 8.
symmetric Logical value indicating whether to force the algorithm to use a symmetric ran-

dom walk.
sigmaX Numeric vector of bandwidths, one associated with each data point in x. See

Details.
k Integer. Calculations will be performed by repeatedly multiplying the current

state by the k-step transition matrix.
show Logical value indicating whether to plot successive iterations.
se Logical value indicating whether to compute standard errors.
at Character string specifying whether to compute values at a grid of pixels (at="pixels",

the default) or at the data points of x (at="points").
leaveoneout Logical value specifying whether to compute a leave-one-out estimate at each

data point, when at="points".
extrapolate Logical value specifying whether to use Richardson extrapolation to improve

the accuracy of the computation.
coarsen Logical value, controlling the calculation performed when extrapolate=TRUE.

See Details.
verbose Logical value specifying whether to print progress reports.
internal Developer use only.

154 densityHeat.ppp

Details

This command computes a diffusion kernel estimate of point process intensity from the observed
point pattern x.

The function densityHeat is generic, with methods for point patterns in two dimensions (class
"ppp") and point patterns on a linear network (class "lpp"). The function densityHeat.ppp de-
scribed here is the method for class "ppp". Given a two-dimensional point pattern x, it computes a
diffusion kernel estimate of the intensity of the point process which generated x.

Diffusion kernel estimates were developed by Botev et al (2010), Barry and McIntyre (2011) and
Baddeley et al (2021).

Barry and McIntyre (2011) proposed an estimator for point process intensity based on a random
walk on the pixel grid inside the observation window. Baddeley et al (2021) showed that the Barry-
McIntyre method is a special case of the diffusion estimator proposed by Botev et al (2010).

The original Barry-McIntyre algorithm assumes a symmetric random walk (i.e. each possible tran-
sition has the same probability p) and requires a square pixel grid (i.e. equal spacing in the x and y
directions). Their original algorithm is used if symmetric=TRUE. Use the ... arguments to ensure
a square grid: for example, the argument eps specifies a square grid with spacing eps units.

The more general algorithm used here (Baddeley et al, 2021) does not require a square grid of
pixels. If the pixel grid is not square, and if symmetric=FALSE (the default), then the random walk
is not symmetric, in the sense that the probabilities of different jumps will be different, in order to
ensure that the smoothing is isotropic.

This implementation also includes two generalizations to the case of adaptive smoothing (Baddeley
et al, 2021).

In the first version of adaptive smoothing, the bandwidth is spatially-varying. The argument sigma
should be a pixel image (class "im") or a function(x,y) specifying the bandwidth at each spatial
location. The smoothing is performed by solving the heat equation with spatially-varying parame-
ters.

In the second version of adaptive smoothing, each data point in x is smoothed using a separate
bandwidth. The argument sigmaX should be a numeric vector specifying the bandwidth for each
point of x. The smoothing is performed using the lagged arrival algorithm. The argument sigma
can be omitted.

If extrapolate=FALSE (the default), calculations are performed using the Euler scheme for the
heat equation. If extrapolate=TRUE, the accuracy of the result will be improved by applying
Richardson extrapolation (Baddeley et al, 2021, Section 4). After computing the intensity estimate
using the Euler scheme on the desired pixel grid, another estimate is computed using the same
method on another pixel grid, and the two estimates are combined by Richardson extrapolation to
obtain a more accurate result. The second grid is coarser than the original grid if coarsen=TRUE (the
default), and finer than the original grid if coarsen=FALSE. Setting extrapolate=TRUE increases
computation time by 35% if coarsen=TRUE and by 400% if coarsen=FALSE.

Value

Pixel image (object of class "im") giving the estimated intensity of the point process.

If se=TRUE, the result has an attribute "se" which is another pixel image giving the estimated
standard error.

If at="points" then the result is a numeric vector with one entry for each point of x.

densityHeat.ppp 155

Author(s)

Adrian Baddeley and Tilman Davies.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2021) Diffusion smoothing for
spatial point patterns. Statistical Science, in press.

Barry, R.P. and McIntyre, J. (2011) Estimating animal densities and home range in regions with
irregular boundaries and holes: a lattice-based alternative to the kernel density estimator. Ecological
Modelling 222, 1666–1672.

Botev, Z.I., Grotowski, J.F. and Kroese, D.P. (2010) Kernel density estimation via diffusion. Annals
of Statistics 38, 2916–2957.

See Also

density.ppp for the usual kernel estimator, and adaptive.density for the tessellation-based es-
timator.

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32)

X <- runifpoint(25, letterR)
Z <- densityHeat(X, 0.2)
if(online) {

plot(Z, main="Diffusion estimator")
plot(X, add=TRUE, pch=16)
integral(Z) # should equal 25

}

Z <- densityHeat(X, 0.2, se=TRUE)
Zse <- attr(Z, "se")
if(online) plot(solist(estimate=Z, SE=Zse), main="")

Zex <- densityHeat(X, 0.2, extrapolate=TRUE)

ZS <- densityHeat(X, 0.2, symmetric=TRUE, eps=0.125)
if(online) {

plot(ZS, main="fixed bandwidth")
plot(X, add=TRUE, pch=16)

}

sig <- function(x,y) { (x-1.5)/10 }
ZZ <- densityHeat(X, sig)
if(online) {

plot(ZZ, main="adaptive (I)")
plot(X, add=TRUE, pch=16)

}

156 densityVoronoi

sigX <- sig(Xx, Xy)
AA <- densityHeat(X, sigmaX=sigX)
if(online) {

plot(AA, main="adaptive (II)")
plot(X, add=TRUE, pch=16)

}
if(!online) spatstat.options(op)

densityVoronoi Intensity Estimate of Point Pattern Using Voronoi-Dirichlet Tessella-
tion

Description

Computes an adaptive estimate of the intensity function of a point pattern using the Dirichlet-
Voronoi tessellation.

Usage

densityVoronoi(X, ...)

S3 method for class 'ppp'
densityVoronoi(X, f = 1, ...,

counting=FALSE,
fixed=FALSE,
nrep = 1, verbose=TRUE)

Arguments

X Point pattern dataset (object of class "ppp").

f Fraction (between 0 and 1 inclusive) of the data points that will be used to build
a tessellation for the intensity estimate.

... Arguments passed to as.im determining the pixel resolution of the result.

counting Logical value specifying the choice of estimation method. See Details.

fixed Logical. If FALSE (the default), the data points are independently randomly
thinned, so the number of data points that are retained is random. If TRUE, the
number of data points retained is fixed. See Details.

nrep Number of independent repetitions of the randomised procedure.

verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point
pattern X is used to construct a Voronoi/Dirichlet tessellation (see dirichlet); the areas of the

densityVoronoi 157

Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal of the tile area.
The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by window area). The result is a pixel image of intensity estimates which are constant.

If f is strictly between 0 and 1, the estimation method is applied to a random subset of X. This
randomised procedure is repeated nrep times, and the results are averaged. The subset is selected
as follows:

• if fixed=FALSE, the dataset X is randomly thinned by deleting or retaining each point inde-
pendently, with probability f of retaining a point.

• if fixed=TRUE, a random sample of fixed size m is taken from the dataset X, where m is the
largest integer less than or equal to f*n and n is the number of points in X.

Then the intensity estimate is calculated as follows:

• if counting = FALSE (the default), the thinned pattern is used to construct a Dirichlet tessella-
tion and form the Voronoi estimate (Barr and Schoenberg, 2010) which is then adjusted by a
factor 1/f or n/m as appropriate. to obtain an estimate of the intensity of X in the tile.

• if counting = TRUE, the randomly selected subset A is used to construct a Dirichlet tessellation,
while the complementary subset B (consisting of points that were not selected in the sample)
is used for counting to calculate a quadrat count estimate of intensity. For each tile of the
Dirichlet tessellation formed by A, we count the number of points of B falling in the tile, and
divide by the area of the same tile, to obtain an estimate of the intensity of the pattern B in the
tile. This estimate is adjusted by 1/(1-f) or n/(n-m) as appropriate to obtain an estimate of
the intensity of X in the tile.

Ogata et al. (2003) and Ogata (2004) estimated intensity using the Dirichlet-Voronoi tessellation
in a modelling context. Baddeley (2007) proposed intensity estimation by subsampling with 0 <
f < 1, and used the technique described above with fixed=TRUE and counting=TRUE. Barr and
Schoenberg (2010) described and analysed the Voronoi estimator (corresponding to f=1). Moradi
et al (2019) developed the subsampling technique with fixed=FALSE and counting=FALSE and
called it the smoothed Voronoi estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi.

References

Baddeley, A. (2007) Validation of statistical models for spatial point patterns. In J.G. Babu and
E.D. Feigelson (eds.) SCMA IV: Statistical Challenges in Modern Astronomy IV, volume 317 of
Astronomical Society of the Pacific Conference Series, San Francisco, California USA, 2007. Pages
22–38.

158 deriv.fv

Barr, C., and Schoenberg, F.P. (2010). On the Voronoi estimator for the intensity of an inhomoge-
neous planar Poisson process. Biometrika 97 (4), 977–984.

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995–1010.

Ogata, Y. (2004) Space-time model for regional seismicity and detection of crustal stress changes.
Journal of Geophysical Research, 109, 2004.

Ogata, Y., Katsura, K. and Tanemura, M. (2003). Modelling heterogeneous space-time occurrences
of earthquakes and its residual analysis. Applied Statistics 52 499–509.

See Also

adaptive.density, density.ppp, dirichlet, im.object.

Examples

plot(densityVoronoi(nztrees, 1, f=1), main="Voronoi estimate")
nr <- if(interactive()) 100 else 5
plot(densityVoronoi(nztrees, f=0.5, nrep=nr), main="smoothed Voronoi estimate")

deriv.fv Calculate Derivative of Function Values

Description

Applies numerical differentiation to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
deriv(expr, which = "*", ...,

method=c("spline", "numeric"),
kinks=NULL,
periodic=FALSE,
Dperiodic=periodic)

Arguments

expr Function values to be differentiated. A function value table (object of class "fv",
see fv.object).

which Character vector identifying which columns of the table should be differentiated.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline to control the differentiation algo-
rithm, if method="spline".

method Differentiation method. A character string, partially matched to either "spline"
or "numeric".

deriv.fv 159

kinks Optional vector of x values where the derivative is allowed to be discontinuous.

periodic Logical value indicating whether the function expr is periodic.

Dperiodic Logical value indicating whether the resulting derivative should be a periodic
function.

Details

This command performs numerical differentiation on the function values in a function value table
(object of class "fv"). The differentiation is performed either by smooth.spline or by a naive
numerical difference algorithm.

The command deriv is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding derivatives.

The optional argument which specifies which of the columns of function values in expr will be
differentiated. The default (indicated by the wildcard which="*") is to differentiate all function
values, i.e.\ all columns except the function argument. Alternatively which="." designates the sub-
set of function values that are displayed in the default plot. Alternatively which can be a character
vector containing the names of columns of expr.

If the argument kinks is given, it should be a numeric vector giving the discontinuity points of the
function: the value or values of the function argument at which the function is not differentiable.
Differentiation will be performed separately on intervals between the discontinuity points.

If periodic=TRUE then the function expr is taken to be periodic, with period equal to the range of
the function argument in expr. The resulting derivative is periodic.

If periodic=FALSE but Dperiodic=TRUE, then the derivative is assumed to be periodic. This would
be appropriate if expr is the cumulative distribution function of an angular variable, for example.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

with.fv, fv.object, smooth.spline

Examples

G <- Gest(cells)
plot(deriv(G, which=".", spar=0.5))
A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)

160 detpointprocfamilyfun

detpointprocfamilyfun Construct a New Determinantal Point Process Model Family Function

Description

Function to ease the implementation of a new determinantal point process model family.

Usage

detpointprocfamilyfun(kernel = NULL,
specden = NULL, basis = "fourierbasis",
convkernel = NULL, Kfun = NULL, valid = NULL, intensity = NULL,
dim = 2, name = "User-defined", isotropic = TRUE, range = NULL,
parbounds = NULL, specdenrange = NULL, startpar = NULL, ...)

Arguments

kernel function specifying the kernel. May be set to NULL. See Details.

specden function specifying the spectral density. May be set to NULL. See Details.

basis character string giving the name of the basis. Defaults to the Fourier basis. See
Details.

convkernel function specifying the k-fold auto-convolution of the kernel. May be set to
NULL. See Details.

Kfun function specifying the K-function. May be set to NULL. See Details.

valid function determining whether a given set of parameter values yields a valid
model. May be set to NULL. See Examples.

intensity character string specifying which parameter is the intensity in the model family.
Should be NULL if the model family has no intensity parameter.

dim character strig specifying which parameter is the dimension of the state space
in this model family (if any). Alternatively a positive integer specifying the
dimension.

name character string giving the name of the model family used for printing.

isotropic logical value indicating whether or not the model is isotropic.

range function determining the interaction range of the model. May be set to NULL.
See Examples.

parbounds function determining the bounds for each model parameter when all other pa-
rameters are fixed. May be set to NULL. See Examples.

specdenrange function specifying the the range of the spectral density if it is finite (only the
case for very few models). May be set to NULL.

startpar function determining starting values for parameters in any estimation algorithm.
May be set to NULL. See Examples.

... Additional arguments for inclusion in the returned model object. These are not
checked in any way.

detpointprocfamilyfun 161

Details

A determinantal point process family is specified either in terms of a kernel (a positive semi-definite
function, i.e. a covariance function) or a spectral density, or preferably both. One of these can be
NULL if it is unknown, but not both. When both are supplied they must have the same arguments. The
first argument gives the values at which the function should be evaluated. In general the function
should accept an n by d matrix or data.frame specifying n(>= 0) points in dimension d. If the
model is isotropic it only needs to accept a non-negative valued numeric of length n. (In fact there
is currently almost no support for non-isotropic models, so it is recommended not to specify such a
model.) The name of this argument could be chosen freely, but x is recommended. The remaining
arguments are the parameters of the model. If one of these is an intensity parameter the name should
be mentioned in the argument intensity. If one of these specifies the dimension of the model it
should be mentioned in the argument dim.

The kernel and spectral density is with respect to a specific set of basis functions, which is typically
the Fourier basis. However this can be changed to any user-supplied basis in the argument basis.
If such an alternative is supplied it must be the name of a function expecting the same arguments as
fourierbasis and returning the results in the same form as fourierbasis.

If supplied, the arguments of convkernel must obey the following: first argument should be like
the first argument of kernel and/or specden (see above). The second argument (preferably called k)
should be the positive integer specifying how many times the auto-convolution is done (i.e. the k
in k-fold auto-convolution). The remaining arguments must agree with the arguments of kernel
and/or specden (see above).

If supplied, the arguments of Kfun should be like the arguments of kernel and specden (see above).

Value

A function in the R language, belonging to the class "detpointprocfamilyfun". The func-
tion has formal arguments ... and returns a determinantal point process family (object of class
"detpointprocfamily").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

Example of how to define the Gauss family
exGauss <- detpointprocfamilyfun(

name="Gaussian",
kernel=function(x, lambda, alpha, d){

lambda*exp(-(x/alpha)^2)
},
specden=function(x, lambda, alpha, d){

lambda * (sqrt(pi)*alpha)^d * exp(-(x*alpha*pi)^2)
},
convkernel=function(x, k, lambda, alpha, d){

logres <- k*log(lambda*pi*alpha^2) - log(pi*k*alpha^2) - x^2/(k*alpha^2)
return(exp(logres))

},

162 dfbetas.ppm

Kfun = function(x, lambda, alpha, d){
pi*x^2 - pi*alpha^2/2*(1-exp(-2*x^2/alpha^2))

},
valid=function(lambda, alpha, d){

lambda>0 && alpha>0 && d>=1 && lambda <= (sqrt(pi)*alpha)^(-d)
},
isotropic=TRUE,
intensity="lambda",
dim="d",
range=function(alpha, bound = .99){

if(missing(alpha))
stop("The parameter alpha is missing.")

if(!(is.numeric(bound)&&bound>0&&bound<1))
stop("Argument bound must be a numeric between 0 and 1.")

return(alpha*sqrt(-log(sqrt(1-bound))))
},
parbounds=function(name, lambda, alpha, d){

switch(name,
lambda = c(0, (sqrt(pi)*alpha)^(-d)),
alpha = c(0, lambda^(-1/d)/sqrt(pi)),
stop("Parameter name misspecified")
)

},
startpar=function(model, X){

rslt <- NULL
if("lambda" %in% model$freepar){

lambda <- intensity(X)
rslt <- c(rslt, "lambda" = lambda)
model <- update(model, lambda=lambda)

}
if("alpha" %in% model$freepar){

alpha <- .8*dppparbounds(model, "alpha")[2]
rslt <- c(rslt, "alpha" = alpha)

}
return(rslt)

}
)

exGauss
m <- exGauss(lambda=100, alpha=.05, d=2)
m

dfbetas.ppm Parameter Influence Measure

Description

Computes the deletion influence measure for each parameter in a fitted point process model.

dfbetas.ppm 163

Usage

S3 method for class 'ppm'
dfbetas(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the image of the density component.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

Given a fitted spatial point process model, this function computes the influence measure for each
parameter, as described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

This is a method for the generic function dfbetas.

The influence measure for each parameter θ is a signed measure in two-dimensional space. It
consists of a discrete mass on each data point (i.e. each point in the point pattern to which the
model was originally fitted) and a continuous density at all locations. The mass at a data point
represents the change in the fitted value of the parameter θ that would occur if this data point were
to be deleted. The density at other non-data locations represents the effect (on the fitted value of
θ) of deleting these locations (and their associated covariate values) from the input to the fitting
procedure.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

Value

An object of class "msr" representing a signed or vector-valued measure. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

164 dffit.ppm

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, influence.ppm, ppmInfluence.

See msr for information on how to use a measure.

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dfbetas(fit))
plot(Smooth(dfbetas(fit)))

dffit.ppm Case Deletion Effect Measure of Fitted Model

Description

Computes the case deletion effect measure DFFIT for a fitted model.

Usage

dffit(object, ...)

S3 method for class 'ppm'
dffit(object, ..., collapse = FALSE, dfb = NULL)

Arguments

object A fitted model, such as a point process model (object of class "ppm").

... Additional arguments passed to dfbetas.ppm.

collapse Logical value specifying whether to collapse the vector-valued measure to a
scalar-valued measure by adding all the components.

dfb Optional. The result of dfbetas(object), if it has already been computed.

dg.envelope 165

Details

The case deletion effect measure DFFIT is a model diagnostic traditionally used for regression mod-
els. In that context, DFFIT[i,j] is the negative change, in the value of the jth term in the linear
predictor, that would occur if the ith data value was deleted. It is closely related to the diagnostic
DFBETA.

For a spatial point process model, dffit computes the analogous spatial case deletion diagnostic,
described in Baddeley, Rubak and Turner (2019).

Value

A measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)

plot(dffit(fit))
plot(dffit(fit, collapse=TRUE))

dg.envelope Global Envelopes for Dao-Genton Test

Description

Computes the global envelopes corresponding to the Dao-Genton test of goodness-of-fit.

166 dg.envelope

Usage

dg.envelope(X, ...,
nsim = 19, nsimsub=nsim-1, nrank = 1,
alternative=c("two.sided", "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm" or "slrm").

... Arguments passed to mad.test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

nsim Number of simulated patterns to be generated in the primary experiment.
nsimsub Number of simulations in each basic test. There will be nsim repetitions of the

basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

alternative Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the Dao-Genton (2014) adjusted Monte
Carlo goodness-of-fit test. The envelopes were developed in Baddeley et al (2015) and described in
Baddeley, Rubak and Turner (2015).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.envelope in this case.

dg.progress 167

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, Boca Raton, FL.

See Also

dg.test, mad.test, envelope

Examples

ns <- if(interactive()) 19 else 4
E <- dg.envelope(swedishpines, Lest, nsim=ns)
E
plot(E)
Eo <- dg.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- dg.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

dg.progress Progress Plot of Dao-Genton Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Dao-Genton test for a spatial point pat-
tern.

Usage

dg.progress(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
nrank = 1, alpha, leaveout=1, interpolate = FALSE, rmin=0,
savefuns = FALSE, savepatterns = FALSE, verbose=TRUE)

168 dg.progress

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope. Useful arguments include alternative to
specify one-sided or two-sided envelopes.

exponent Positive number. The exponent of the Lp distance. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

savefuns Logical value indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical value indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A progress plot
or envelope representation of the test (Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner,
2015) is a plot of the test statistic (and the corresponding critical value) against the length of the
interval rinterval.

The command dg.progress effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting values of the test statistic, and the corresponding critical values
of the test, as a function of R.

dg.progress 169

The result is an object of class "fv" that can be plotted to obtain the progress plot. The display
shows the test statistic (solid black line) and the test acceptance region (grey shading). If X is an
envelope object, then some of the data stored in X may be re-used:

• If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

• If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

• Otherwise, new simulations will be performed, and fun defaults to Lest.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, Boca Raton, FL.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test, dclf.progress

170 dg.sigtrace

Examples

ns <- if(interactive()) 19 else 5
plot(dg.progress(cells, nsim=ns))

dg.sigtrace Significance Trace of Dao-Genton Test

Description

Generates a Significance Trace of the Dao and Genton (2014) test for a spatial point pattern.

Usage

dg.sigtrace(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
alternative = c("two.sided", "less", "greater"),
rmin=0, leaveout=1,
interpolate = FALSE, confint = TRUE, alpha = 0.05,
savefuns=FALSE, savepatterns=FALSE, verbose=FALSE)

Arguments

X Either a point pattern (object of class "ppp", "lpp" or other class), a fitted point
process model (object of class "ppm", "kppm" or other class) or an envelope
object (class "envelope").

fun Function that computes the desired summary statistic for a point pattern.

... Arguments passed to envelope.

exponent Positive number. Exponent used in the test statistic. Use exponent=2 for the
Diggle-Cressie-Loosmore-Ford test, and exponent=Inf for the Maximum Ab-
solute Deviation test. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

dg.sigtrace 171

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical flag indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A significance
trace (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015)
of the test is a plot of the p-value obtained from the test against the length of the interval rinterval.

The command dg.sigtrace effectively performs dg.test on X using all possible intervals of the
form [0, R], and returns the resulting p-values as a function of R.

The result is an object of class "fv" that can be plotted to obtain the significance trace. The plot
shows the Dao-Genton adjusted p-value (solid black line), the critical value 0.05 (dashed red line),
and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) p-value. The
confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion.

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R ≥ rmin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

172 dg.test

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119–126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, Boca Raton, FL.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

See Also

dg.test for the Dao-Genton test, dclf.sigtrace for significance traces of other tests.

Examples

ns <- if(interactive()) 19 else 5
plot(dg.sigtrace(cells, nsim=ns))

dg.test Dao-Genton Adjusted Goodness-Of-Fit Test

Description

Performs the Dao and Genton (2014) adjusted goodness-of-fit test of spatial pattern.

Usage

dg.test(X, ...,
exponent = 2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided", "less", "greater"),
reuse = TRUE, leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

dg.test 173

Arguments

X Either a point pattern dataset (object of class "ppp", "lpp" or "pp3") or a fitted
point process model (object of class "ppm", "kppm", "lppm" or "slrm").

... Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of r values used in the test, and use.theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

reuse Logical value indicating whether to re-use the first stage simulations at the sec-
ond stage, as described by Dao and Genton (2014).

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Dao-Genton (2014) adjusted Monte Carlo goodness-of-fit test, in the equivalent form
described by Baddeley et al (2014).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use.theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,

174 diagnose.ppm

2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.test in this case.

Value

A hypothesis test (object of class "htest" which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497–
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis, in
press.

See Also

bits.test, dclf.test, mad.test

Examples

ns <- if(interactive()) 19 else 4
dg.test(cells, nsim=ns)
dg.test(cells, alternative="less", nsim=ns)
dg.test(cells, nsim=ns, interpolate=TRUE)

diagnose.ppm Diagnostic Plots for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce diagnostic plots based on residuals.

diagnose.ppm 175

Usage

diagnose.ppm(object, ..., type="raw", which="all", sigma=NULL,
rbord=reach(object), cumulative=TRUE,
plot.it=TRUE, rv = NULL,
compute.sd=is.poisson(object), compute.cts=TRUE,
envelope=FALSE, nsim=39, nrank=1,
typename, check=TRUE, repair=TRUE,
oldstyle=FALSE, splineargs=list(spar=0.5))

S3 method for class 'diagppm'
plot(x, ..., which,

plot.neg=c("image", "discrete", "contour", "imagecontour"),
plot.smooth=c("imagecontour", "image", "contour", "persp"),
plot.sd, spacing=0.1, outer=3,
srange=NULL, monochrome=FALSE, main=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

which Character string or vector indicating the choice(s) of plots to be generated. Op-
tions are "all", "marks", "smooth", "x", "y" and "sum". Multiple choices
may be given but must be matched exactly. See Details.

sigma Bandwidth for kernel smoother in "smooth" option.

rbord Width of border to avoid edge effects. The diagnostic calculations will be con-
fined to those points of the data pattern which are at least rbord units away from
the edge of the window. (An infinite value of rbord will be ignored.)

cumulative Logical flag indicating whether the lurking variable plots for the x and y coordi-
nates will be the plots of cumulative sums of marks (cumulative=TRUE) or the
plots of marginal integrals of the smoothed residual field (cumulative=FALSE).

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE, the
computed diagnostic quantities are returned without plotting them.

plot.neg String indicating how the density part of the residual measure should be plotted.

plot.smooth String indicating how the smoothed residual field should be plotted.
compute.sd,plot.sd

Logical values indicating whether error bounds should be computed and added
to the "x" and "y" plots. The default is TRUE for Poisson models and FALSE for
non-Poisson models. See Details.

envelope,nsim,nrank

Arguments passed to lurking in order to plot simulation envelopes for the lurk-
ing variable plots.

176 diagnose.ppm

rv Usually absent. Advanced use only. If this argument is present, the values of the
residuals will not be calculated from the fitted model object but will instead be
taken directly from rv.

spacing The spacing between plot panels (when a four-panel plot is generated) expressed
as a fraction of the width of the window of the point pattern.

outer The distance from the outermost line of text to the nearest plot panel, expressed
as a multiple of the spacing between plot panels.

srange Vector of length 2 that will be taken as giving the range of values of the smoothed
residual field, when generating an image plot of this field. This is useful if you
want to generate diagnostic plots for two different fitted models using the same
colour map.

monochrome Flag indicating whether images should be displayed in greyscale (suitable for
publication) or in colour (suitable for the screen). The default is to display in
colour.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

splineargs Argument passed to lurking to control the smoothing in the lurking variable
plot.

x The value returned from a previous call to diagnose.ppm. An object of class
"diagppm".

typename String to be used as the name of the residuals.

main Main title for the plot.

... Extra arguments, controlling either the resolution of the smoothed image (passed
from diagnose.ppm to density.ppp) or the appearance of the plots (passed
from diagnose.ppm to plot.diagppm and from plot.diagppm to plot.default).

compute.cts Advanced use only.

Details

The function diagnose.ppm generates several diagnostic plots for a fitted point process model. The
plots display the residuals from the fitted model (Baddeley et al, 2005) or alternatively the ‘exponen-
tial energy marks’ (Stoyan and Grabarnik, 1991). These plots can be used to assess goodness-of-fit,
to identify outliers in the data, and to reveal departures from the fitted model. See also the compan-
ion function qqplot.ppm.

The argument object must be a fitted point process model (object of class "ppm") typically pro-
duced by the maximum pseudolikelihood fitting algorithm ppm).

The argument type selects the type of residual or weight that will be computed. Current options
are:

diagnose.ppm 177

"eem": exponential energy marks (Stoyan and Grabarnik, 1991) computed by eem. These are pos-
itive weights attached to the data points (i.e. the points of the point pattern dataset to which
the model was fitted). If the fitted model is correct, then the sum of these weights for all data
points in a spatial region B has expected value equal to the area of B. See eem for further
explanation.

"raw", "inverse" or "pearson": point process residuals (Baddeley et al, 2005) computed by the
function residuals.ppm. These are residuals attached both to the data points and to some
other points in the window of observation (namely, to the dummy points of the quadrature
scheme used to fit the model). If the fitted model is correct, then the sum of the residuals in a
spatial region B has mean zero. The options are

• "raw": the raw residuals;
• "inverse": the ‘inverse-lambda’ residuals, a counterpart of the exponential energy weights;
• "pearson": the Pearson residuals.

See residuals.ppm for further explanation.

The argument which selects the type of plot that is produced. Options are:

"marks": plot the residual measure. For the exponential energy weights (type="eem") this dis-
plays circles centred at the points of the data pattern, with radii proportional to the exponen-
tial energy weights. For the residuals (type="raw", type="inverse" or type="pearson")
this again displays circles centred at the points of the data pattern with radii proportional to
the (positive) residuals, while the plotting of the negative residuals depends on the argument
plot.neg. If plot.neg="image" then the negative part of the residual measure, which is a
density, is plotted as a colour image. If plot.neg="discrete" then the discretised negative
residuals (obtained by approximately integrating the negative density using the quadrature
scheme of the fitted model) are plotted as squares centred at the dummy points with side
lengths proportional to the (negative) residuals. [To control the size of the circles and squares,
use the argument maxsize.]

"smooth": plot a kernel-smoothed version of the residual measure. Each data or dummy point is
taken to have a ‘mass’ equal to its residual or exponential energy weight. (Note that residuals
can be negative). This point mass is then replaced by a bivariate isotropic Gaussian density
with standard deviation sigma. The value of the smoothed residual field at any point in the
window is the sum of these weighted densities. If the fitted model is correct, this smoothed
field should be flat, and its height should be close to 0 (for the residuals) or 1 (for the exponen-
tial energy weights). The field is plotted either as an image, contour plot or perspective view
of a surface, according to the argument plot.smooth. The range of values of the smoothed
field is printed if the option which="sum" is also selected.

"x": produce a ‘lurking variable’ plot for the x coordinate. This is a plot of h(x) against x (solid
lines) and of E(h(x)) against x (dashed lines), where h(x) is defined below, and E(h(x))
denotes the expectation of h(x) assuming the fitted model is true.

• if cumulative=TRUE then h(x) is the cumulative sum of the weights or residuals for all
points which have X coordinate less than or equal to x. For the residuals E(h(x)) = 0,
and for the exponential energy weights E(h(x)) = area of the subset of the window to
the left of the line X = x.

• if cumulative=FALSE then h(x) is the marginal integral of the smoothed residual field
(see the case which="smooth" described above) on the x axis. This is approximately the
derivative of the plot for cumulative=TRUE. The value of h(x) is computed by summing

178 diagnose.ppm

the values of the smoothed residual field over all pixels with the given x coordinate. For
the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = length of
the intersection between the observation window and the line X = x.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-
standard-deviation error limits for h(x) calculated for the inhomogeneous Poisson process.
The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson
models.

"y": produce a similar lurking variable plot for the y coordinate.

"sum": print the sum of the weights or residuals for all points in the window (clipped by a margin
rbord if required) and the area of the same window. If the fitted model is correct the sum
of the exponential energy weights should equal the area of the window, while the sum of the
residuals should equal zero. Also print the range of values of the smoothed field displayed in
the "smooth" case.

"all": All four of the diagnostic plots listed above are plotted together in a two-by-two display.
Top left panel is "marks" plot. Bottom right panel is "smooth" plot. Bottom left panel is "x"
plot. Top right panel is "y" plot, rotated 90 degrees.

The argument rbord ensures there are no edge effects in the computation of the residuals. The
diagnostic calculations will be confined to those points of the data pattern which are at least rbord
units away from the edge of the window. The value of rbord should be greater than or equal to the
range of interaction permitted in the model.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005),
if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance,
an over-estimate of the true variance of the residuals. (However, see the section about Replicated
Data).

The argument rv would normally be used only by experts. It enables the user to substitute arbitrary
values for the residuals or marks, overriding the usual calculations. If rv is present, then instead
of calculating the residuals from the fitted model, the algorithm takes the residuals from the object
rv, and plots them in the manner appropriate to the type of residual or mark selected by type. If
type ="eem" then rv should be similar to the return value of eem, namely, a numeric vector of
length equal to the number of points in the original data point pattern. Otherwise, rv should be
similar to the return value of residuals.ppm, that is, it should be an object of class "msr" (see
msr) representing a signed measure.

The return value of diagnose.ppm is an object of class "diagppm". The plot method for this class
is documented here. There is also a print method. See the Examples.

In plot.diagppm, if a four-panel diagnostic plot is produced (the default), then the extra arguments
xlab, ylab, rlab determine the text labels for the x and y coordinates and the residuals, respec-
tively. The undocumented arguments col.neg and col.smooth control the colour maps used in the
top left and bottom right panels respectively.

See also the companion functions qqplot.ppm, which produces a Q-Q plot of the residuals, and
lurking, which produces lurking variable plots for any spatial covariate.

diagnose.ppm 179

Value

An object of class "diagppm" which contains the coordinates needed to reproduce the selected
plots. This object can be plotted using plot.diagppm and printed using print.diagppm.

Replicated Data

Note that if object is a model that was obtained by first fitting a model to replicated point pattern
data using mppm and then using subfits to extract a model for one of the individual point patterns,
then the variance calculations are only implemented for the innovation variance (oldstyle=TRUE)
and this is the default in such cases.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.ppm, eem, ppm.object, qqplot.ppm, lurking, ppm

Examples

fit <- ppm(cells ~x, Strauss(r=0.15))
diagnose.ppm(fit)

diagnose.ppm(fit, type="pearson")

diagnose.ppm(fit, which="marks")

diagnose.ppm(fit, type="raw", plot.neg="discrete")

diagnose.ppm(fit, type="pearson", which="smooth")

save the diagnostics and plot them later
u <- diagnose.ppm(fit, rbord=0.15, plot.it=FALSE)
if(interactive()) {
plot(u)
plot(u, which="marks")
}

180 DiggleGatesStibbard

DiggleGatesStibbard Diggle-Gates-Stibbard Point Process Model

Description

Creates an instance of the Diggle-Gates-Stibbard point process model which can then be fitted to
point pattern data.

Usage

DiggleGatesStibbard(rho)

Arguments

rho Interaction range

Details

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair
of points separated by a distance d contributes a factor e(d) to the probability density, where

e(d) = sin2

(
πd

2ρ

)
for d < ρ, and e(d) is equal to 1 for d ≥ ρ.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Diggle-Gates-Stibbard pairwise interaction is yielded by the function
DiggleGatesStibbard(). See the examples below.

Note that this model does not have any regular parameters (as explained in the section on Interaction
Parameters in the help file for ppm). The parameter ρ is not estimated by ppm.

Value

An object of class "interact" describing the interpoint interaction structure of the Diggle-Gates-
Stibbard process with interaction range rho.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

DiggleGratton 181

See Also

ppm, pairwise.family, DiggleGratton, rDGS, ppm.object

Examples

DiggleGatesStibbard(0.02)
prints a sensible description of itself

ppm(cells ~1, DiggleGatesStibbard(0.05))
fit the stationary D-G-S process to `cells'

ppm(cells ~ polynom(x,y,3), DiggleGatesStibbard(0.05))
fit a nonstationary D-G-S process
with log-cubic polynomial trend

DiggleGratton Diggle-Gratton model

Description

Creates an instance of the Diggle-Gratton pairwise interaction point process model, which can then
be fitted to point pattern data.

Usage

DiggleGratton(delta=NA, rho)

Arguments

delta lower threshold δ

rho upper threshold ρ

Details

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with
pair potential h(t) of the form

h(t) =

(
t− δ
ρ− δ

)κ
if δ ≤ t ≤ ρ

with h(t) = 0 for t < δ and h(t) = 1 for t > ρ. Here δ, ρ and κ are parameters.

Note that we use the symbol κ where Diggle and Gratton (1984) and Diggle, Gates and Stibbard
(1987) use β, since in spatstat we reserve the symbol β for an intensity parameter.

The parameters must all be nonnegative, and must satisfy δ ≤ ρ.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. The strength
of inhibition increases with κ. For κ = 0 the model is a hard core process with hard core radius δ.
For κ =∞ the model is a hard core process with hard core radius ρ.

182 dim.detpointprocfamily

The irregular parameters δ, ρ must be given in the call to DiggleGratton, while the regular param-
eter κ will be estimated.

If the lower threshold delta is missing or NA, it will be estimated from the data when ppm is called.
The estimated value of delta is the minimum nearest neighbour distance multiplied by n/(n+ 1),
where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Diggle, P.J., Gates, D.J. and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

See Also

ppm, ppm.object, Pairwise

Examples

ppm(cells ~1, DiggleGratton(0.05, 0.1))

dim.detpointprocfamily

Dimension of Determinantal Point Process Model

Description

Extracts the dimension of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
dim(x)

Arguments

x object of class "detpointprocfamily".

dimhat 183

Value

A numeric (or NULL if the dimension of the model is unspecified).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dimhat Estimate Dimension of Central Subspace

Description

Given the kernel matrix that characterises a central subspace, this function estimates the dimension
of the subspace.

Usage

dimhat(M)

Arguments

M Kernel of subspace. A symmetric, non-negative definite, numeric matrix, typi-
cally obtained from sdr.

Details

This function computes the maximum descent estimate of the dimension of the central subspace
with a given kernel matrix M.

The matrix M should be the kernel matrix of a central subspace, which can be obtained from sdr. It
must be a symmetric, non-negative-definite, numeric matrix.

The algorithm finds the eigenvalues λ1 ≥ . . . ≥ λn of M , and then determines the index k for
which λk/λk−1 is greatest.

Value

A single integer giving the estimated dimension.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

184 distcdf

See Also

sdr, subspaceDistance

distcdf Distribution Function of Interpoint Distance

Description

Computes the cumulative distribution function of the distance between two independent random
points in a given window or windows.

Usage

distcdf(W, V=W, ..., dW=1, dV=dW, nr=1024,
regularise=TRUE, savedenom=FALSE, delta=NULL)

Arguments

W A window (object of class "owin") containing the first random point.

V Optional. Another window containing the second random point. Defaults to W.

... Arguments passed to as.mask to determine the pixel resolution for the calcula-
tion.

dV, dW Optional. Probability densities (not necessarily normalised) for the first and
second random points respectively. Data in any format acceptable to as.im, for
example, a function(x,y) or a pixel image or a numeric value. The default
corresponds to a uniform distribution over the window.

nr Integer. The number of values of interpoint distance r for which the CDF will
be computed. Should be a large value. Alternatively if nr=NULL, a good default
value will be chosen, depending on the pixel resolution.

regularise Logical value indicating whether to smooth the results for very small distances,
to avoid discretisation artefacts.

savedenom Logical value indicating whether to save the denominator of the double integral
as an attribute of the result.

delta Optional. A positive number. The maximum permitted spacing between values
of the function argument.

Details

This command computes the Cumulative Distribution Function CDF (r) = Prob(T ≤ r) of the
Euclidean distance T = ‖X1 −X2‖ between two independent random points X1 and X2.

In the simplest case, the command distcdf(W), the random points are assumed to be uniformly
distributed in the same window W.

Alternatively the two random points may be uniformly distributed in two different windows W and
V.

dkernel 185

In the most general case the first point X1 is random in the window W with a probability density
proportional to dW, and the second point X2 is random in a different window V with probability
density proportional to dV. The values of dW and dV must be finite and nonnegative.

The calculation is performed by numerical integration of the set covariance function setcov for
uniformly distributed points, and by computing the covariance function imcov in the general case.
The accuracy of the result depends on the pixel resolution used to represent the windows: this is
controlled by the arguments ... which are passed to as.mask. For example use eps=0.1 to specify
pixels of size 0.1 units.

The arguments W or V may also be point patterns (objects of class "ppp"). The result is the cumu-
lative distribution function of the distance from a randomly selected point in the point pattern, to a
randomly selected point in the other point pattern or window.

If regularise=TRUE (the default), values of the cumulative distribution function for very short
distances are smoothed to avoid discretisation artefacts. Smoothing is applied to all distances shorter
than the width of 10 pixels.

Numerical accuracy of some calculations requires very fine spacing of the values of the function
argument r. If the argument delta is given, then after the cumulative distribution function has been
calculated, it will be interpolated onto a finer grid of r values with spacing less than or equal to
delta.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

setcov, as.mask.

Examples

The unit disc
B <- disc()
plot(distcdf(B))

dkernel Kernel distributions and random generation

Description

Density, distribution function, quantile function and random generation for several distributions
used in kernel estimation for numerical data.

186 dkernel

Usage

dkernel(x, kernel = "gaussian", mean = 0, sd = 1)
pkernel(q, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
qkernel(p, kernel = "gaussian", mean = 0, sd = 1, lower.tail = TRUE)
rkernel(n, kernel = "gaussian", mean = 0, sd = 1)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

n Number of observations.

mean Mean of distribution.

sd Standard deviation of distribution.

lower.tail logical; if TRUE (the default), then probabilities are P (X ≤ x), otherwise,
P (X > x).

Details

These functions give the probability density, cumulative distribution function, quantile function and
random generation for several distributions used in kernel estimation for one-dimensional (numeri-
cal) data.

The available kernels are those used in density.default, namely "gaussian", "rectangular",
"triangular", "epanechnikov", "biweight", "cosine" and "optcosine". For more informa-
tion about these kernels, see density.default.

dkernel gives the probability density, pkernel gives the cumulative distribution function, qkernel
gives the quantile function, and rkernel generates random deviates.

Value

A numeric vector. For dkernel, a vector of the same length as x containing the corresponding
values of the probability density. For pkernel, a vector of the same length as x containing the
corresponding values of the cumulative distribution function. For qkernel, a vector of the same
length as p containing the corresponding quantiles. For rkernel, a vector of length n containing
randomly generated values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Martin Hazelton

See Also

density.default, kernel.factor

domain.ppm 187

Examples

x <- seq(-3,3,length=100)
plot(x, dkernel(x, "epa"), type="l",

main=c("Epanechnikov kernel", "probability density"))
plot(x, pkernel(x, "opt"), type="l",

main=c("OptCosine kernel", "cumulative distribution function"))
p <- seq(0,1, length=256)
plot(p, qkernel(p, "biw"), type="l",

main=c("Biweight kernel", "cumulative distribution function"))
y <- rkernel(100, "tri")
hist(y, main="Random variates from triangular density")
rug(y)

domain.ppm Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

Usage

S3 method for class 'ppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'slrm'
domain(X, ..., from=c("points", "covariates"))

S3 method for class 'msr'
domain(X, ...)

S3 method for class 'quadrattest'
domain(X, ...)

188 dppapproxkernel

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

from Character string. See Details.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

The argument from applies when X is a fitted point process model (object of class "ppm", "kppm"
or "dppm"). If from="data" (the default), domain extracts the window of the original point pattern
data to which the model was fitted. If from="covariates" then domain returns the window in
which the spatial covariates of the model were provided.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.rmhmodel, domain.lpp. Window, Frame.

Examples

domain(ppm(redwood ~ 1))
domain(quadrat.test(redwood, 2, 2))

dppapproxkernel Approximate Determinantal Point Process Kernel

Description

Returns an approximation to the kernel of a determinantal point process, as a function of one argu-
ment x.

dppapproxpcf 189

Usage

dppapproxkernel(model, trunc = 0.99, W = NULL)

Arguments

model Object of class "detpointprocfamily".

trunc Numeric specifying how the model truncation is performed. See Details section
of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dppapproxpcf Approximate Pair Correlation Function of Determinantal Point Pro-
cess Model

Description

Returns an approximation to the theoretical pair correlation function of a determinantal point pro-
cess model, as a function of one argument x.

Usage

dppapproxpcf(model, trunc = 0.99, W = NULL)

Arguments

model Object of class "detpointprocfamily".

trunc Numeric value specifying how the model truncation is performed. See Details
section of simulate.detpointprocfamily.

W Optional window – undocumented at the moment.

Details

This function is usually NOT needed for anything. It only exists for investigative purposes.

190 dppBessel

Value

A function in the R language, with one numeric argument x, that returns the value of the approxi-
mate pair correlation at distances x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

f <- dppapproxpcf(dppMatern(lambda = 100, alpha=.028, nu=1, d=2))
plot(f, xlim = c(0,0.1))

dppBessel Bessel Type Determinantal Point Process Model

Description

Function generating an instance of the Bessel-type determinantal point process model.

Usage

dppBessel(...)

Arguments

... arguments of the form tag=value specifying the model parameters. See Details.

Details

The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter sigma as a non-negative numeric

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Frederic Lavancier and Christophe Biscio. Modified by Ege Rubak <rubak@math.aau.dk> , Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

dppCauchy 191

See Also

dppCauchy, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppBessel(lambda=100, alpha=.05, sigma=0, d=2)

dppCauchy Generalized Cauchy Determinantal Point Process Model

Description

Function generating an instance of the (generalized) Cauchy determinantal point process model.

Usage

dppCauchy(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The (generalized) Cauchy DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible
parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

192 dppeigen

See Also

dppBessel, dppGauss, dppMatern, dppPowerExp

Examples

m <- dppCauchy(lambda=100, alpha=.05, nu=1, d=2)

dppeigen Internal function calculating eig and index

Description

This function is mainly for internal package use and is usually not called by the user.

Usage

dppeigen(model, trunc, Wscale, stationary = FALSE)

Arguments

model object of class "detpointprocfamily"

trunc numeric giving the truncation

Wscale numeric giving the scale of the window relative to a unit box

stationary logical indicating whether the stationarity of the model should be used (only
works in dimension 2).

Value

A list

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dppGauss 193

dppGauss Gaussian Determinantal Point Process Model

Description

Function generating an instance of the Gaussian determinantal point process model.

Usage

dppGauss(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Gaussian DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppMatern, dppPowerExp

Examples

m <- dppGauss(lambda=100, alpha=.05, d=2)

194 dppm

dppkernel Extract Kernel from Determinantal Point Process Model Object

Description

Returns the kernel of a determinantal point process model as a function of one argument x.

Usage

dppkernel(model, ...)

Arguments

model Model of class "detpointprocfamily".

... Arguments passed to dppapproxkernel if the exact kernel is unknown

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

Examples

kernelMatern <- dppkernel(dppMatern(lambda = 100, alpha=.01, nu=1, d=2))
plot(kernelMatern, xlim = c(0,0.1))

dppm Fit Determinantal Point Process Model

Description

Fit a determinantal point process model to a point pattern.

dppm 195

Usage

dppm(formula, family, data=NULL,
...,
startpar = NULL,
method = c("mincon", "clik2", "palm", "adapcl"),
weightfun = NULL,
control = list(),
algorithm,
statistic = "K",
statargs = list(),
rmax = NULL,
epsilon = 0.01,
covfunargs = NULL,
use.gam = FALSE,
nd = NULL, eps = NULL)

Arguments

formula A formula in the R language specifying the data (on the left side) and the form
of the model to be fitted (on the right side). For a stationary model it suffices to
provide a point pattern without a formula. See Details.

family Information specifying the family of point processes to be used in the model.
Typically one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel
or dppPowerExp. Alternatively a character string giving the name of a family
function, or the result of calling one of the family functions. See Details.

data The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

startpar Named vector of starting parameter values for the optimization.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for sec-
ond order composite likelihood, "adapcl" for adaptive second order composite
likelihood, or "palm" for Palm likelihood. Partially matched.

weightfun Optional weighting function w in the composite likelihoods or Palm likelihood.
A function in the R language. See Details.

control List of control parameters passed to the optimization function optim.

algorithm Character string determining the mathematical algorithm to be used to solve
the fitting problem. If method="mincon", "clik2" or "palm" this argument
is passed to the generic optimization function optim (renamed as the argument
method) with default "Nelder-Mead". If method="adapcl") the argument is
passed to the equation solver nleqslv, with default "Bryden".

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

196 dppm

rmax Maximum value of interpoint distance to use in the composite likelihood.
epsilon Tuning parameter for the adaptive composite likelihood.
covfunargs,use.gam,nd,eps

Arguments passed to ppm when fitting the intensity.

Details

This function fits a determinantal point process model to a point pattern dataset as described in
Lavancier et al. (2015).

The model to be fitted is specified by the arguments formula and family.

The argument formula should normally be a formula in the R language. The left hand side of
the formula specifies the point pattern dataset to which the model should be fitted. This should be
a single argument which may be a point pattern (object of class "ppp") or a quadrature scheme
(object of class "quad"). The right hand side of the formula is called the trend and specifies the
form of the logarithm of the intensity of the process. Alternatively the argument formula may be a
point pattern or quadrature scheme, and the trend formula is taken to be ~1.

The argument family specifies the family of point processes to be used in the model. It is typically
one of the family functions dppGauss, dppMatern, dppCauchy, dppBessel or dppPowerExp. Alter-
natively it may be a character string giving the name of a family function, or the result of calling one
of the family functions. A family function belongs to class "detpointprocfamilyfun". The result
of calling a family function is a point process family, which belongs to class "detpointprocfamily".

The algorithm first estimates the intensity function of the point process using ppm. If the trend
formula is ~1 (the default if a point pattern or quadrature scheme is given rather than a "formula")
then the model is homogeneous. The algorithm begins by estimating the intensity as the number of
points divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm
begins by fitting a Poisson process with log intensity of the form specified by the formula trend.
(See ppm for further explanation).

The interaction parameters of the model are then fitted either by minimum contrast estimation, or
by a composite likelihood method (maximum composite likelihood, maximum Palm likelihood, or
by solving the adaptive composite likelihood estimating equation).

Minimum contrast: If method = "mincon" (the default) interaction parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the interaction parameters of the model are estimated by the method of mini-
mum contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the interaction parameters of the model are estimated by the method
of minimum contrast using the inhomogeneous K function. This two-step estimation proce-
dure is heavily inspired by Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.
Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.

dppm 197

Composite likelihood: If method = "clik2" the interaction parameters of the model will be fit-
ted by maximising the second-order composite likelihood (Guan, 2006). The log composite
likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(‖u− v‖)ρ(‖u− v‖; θ) du dv

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
‖xi − xj‖ less than rmax, and the double integral is taken over all pairs of locations u, v in
the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
interaction parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2.

Palm likelihood: If method = "palm" the interaction parameters of the model will be fitted by
maximising the Palm loglikelihood (Tanaka et al, 2008)∑

i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ is the Palm intensity of the model at location
u given there is a point at v.

Adaptive Composite likelihood: If method = "cladap" the clustering parameters of the model
will be fitted by solving the adaptive second order composite likelihood estimating equation
(Lavancier et al, 2021). The estimating function is∑
u,v

w(ε
|g(0; θ)− 1|

g(‖u− v‖; θ)− 1
)
∇θg(‖u− v‖; θ)
g(‖u− v‖; θ)

−
∫
D

∫
D

w(ε
M(u, v; θ)

∇ θ
g(‖u−v‖; θ)ρ(u)ρ(v) du dv

where the sum is taken over all distinct pairs of points. Here g(d; θ) is the pair correlation
function with parameters θ. The partial derivative with respect to θ is g′(d; θ), and ρ(u)
denotes the fitted intensity function of the model.
The tuning parameter ε is independent of the data. It can be specified by the argument epsilon
and has default value 0.01.
The function w in the estimating function is a weighting function of bounded support [−1, 1].
It is specified by the argument weightfun. If this is missing or NULL then the default is
w(d) = 1(‖d‖ ≤ 1) exp(1/(r2 − 1)). The estimating equation is solved using the nonlinear
equation solver nleqslv from the package nleqslv. The package nleqslv must be installed in
order to use this option.

It is also possible to fix any parameters desired before the optimisation by specifying them as
name=value in the call to the family function. See Examples.

Value

An object of class "dppm" representing the fitted model. There are methods for printing, plotting,
predicting and simulating objects of this class.

198 dppm

Optimization algorithm

The following details allow greater control over the fitting procedure.

For the first three fitting methods (method="mincon", "clik2" and "palm"), the optimisation is
performed by the generic optimisation algorithm optim. The behaviour of this algorithm can be
modified using the arguments control and algorithm. Useful control arguments include trace,
maxit and abstol (documented in the help for optim).

For method="adapcl", the estimating equation is solved using the nonlinear equation solver nleqslv
from the package nleqslv. Arguments available for controlling the solver are documented in the help
for nleqslv; they include control, globStrat, startparm for the initial estimates and algorithm
for the method. The package nleqslv must be installed in order to use this option.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>. Adaptive composite likelihood method contributed by
Chiara Fend and modified by Adrian Baddeley.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Lavancier, F., Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference. Journal of the Royal Statistical Society, Series B 77, 853–977.

Lavancier, F., Poinas, A., and Waagepetersen, R. (2021) Adaptive estimating function inference for
nonstationary determinantal point processes. Scandinavian Journal of Statistics, 48 (1), 87–107.

Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-
Scott point processes. Biometrical Journal 50, 43–57.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

methods for dppm objects: plot.dppm, fitted.dppm, predict.dppm, simulate.dppm, methods.dppm,
as.ppm.dppm, Kmodel.dppm, pcfmodel.dppm.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

Deterimantal point process models: dppGauss, dppMatern, dppCauchy, dppBessel, dppPowerExp,

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

See also ppm

Examples

jpines <- residualspaper$Fig1

dppm(jpines ~ 1, dppGauss)

dppMatern 199

dppm(jpines ~ 1, dppGauss, method="c")
dppm(jpines ~ 1, dppGauss, method="p")
dppm(jpines ~ 1, dppGauss, method="a")

if(interactive()) {
Fixing the intensity at lambda=2 rather than the Poisson MLE 2.04:
dppm(jpines ~ 1, dppGauss(lambda=2))

The following is quite slow (using K-function)
dppm(jpines ~ x, dppMatern)

}

much faster using pair correlation function
dppm(jpines ~ x, dppMatern, statistic="pcf", statargs=list(stoyan=0.2))

Fixing the Matern shape parameter at nu=2 rather than estimating it:
dppm(jpines ~ x, dppMatern(nu=2))

dppMatern Whittle-Matern Determinantal Point Process Model

Description

Function generating an instance of the Whittle-Matérn determinantal point process model

Usage

dppMatern(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Whittle-Matérn DPP is defined in (Lavancier, Møller and Rubak, 2015) The possible parame-
ters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

200 dppparbounds

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

dppBessel, dppCauchy, dppGauss, dppPowerExp

Examples

m <- dppMatern(lambda=100, alpha=.02, nu=1, d=2)

dppparbounds Parameter Bound for a Determinantal Point Process Model

Description

Returns the lower and upper bound for a specific parameter of a determinantal point process model
when all other parameters are fixed.

Usage

dppparbounds(model, name, ...)

Arguments

model Model of class "detpointprocfamily".

name name of the parameter for which the bound should be computed.

... Additional arguments passed to the parbounds function of the given model

Value

A data.frame containing lower and upper bounds.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

dppPowerExp 201

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
dppparbounds(model, "lambda")

dppPowerExp Power Exponential Spectral Determinantal Point Process Model

Description

Function generating an instance of the Power Exponential Spectral determinantal point process
model.

Usage

dppPowerExp(...)

Arguments

... arguments of the form tag=value specifying the parameters. See Details.

Details

The Power Exponential Spectral DPP is defined in (Lavancier, Møller and Rubak, 2015) The possi-
ble parameters are:

• the intensity lambda as a positive numeric

• the scale parameter alpha as a positive numeric

• the shape parameter nu as a positive numeric (artificially required to be less than 20 in the
code for numerical stability)

• the dimension d as a positive integer

Value

An object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

202 dppspecden

See Also

dppBessel, dppCauchy, dppGauss, dppMatern

Examples

m <- dppPowerExp(lambda=100, alpha=.01, nu=1, d=2)

dppspecden Extract Spectral Density from Determinantal Point Process Model Ob-
ject

Description

Returns the spectral density of a determinantal point process model as a function of one argument
x.

Usage

dppspecden(model)

Arguments

model Model of class "detpointprocfamily".

Value

A function

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppspecdenrange

Examples

model <- dppMatern(lambda = 100, alpha=.01, nu=1, d=2)
dppspecden(model)

dppspecdenrange 203

dppspecdenrange Range of Spectral Density of a Determinantal Point Process Model

Description

Computes the range of the spectral density of a determinantal point process model.

Usage

dppspecdenrange(model)

Arguments

model Model of class "detpointprocfamily".

Value

Numeric value (possibly Inf).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

dppspecden

Examples

m <- dppBessel(lambda=100, alpha=0.05, sigma=1, d=2)
dppspecdenrange(m)

dummify Convert Data to Numeric Values by Constructing Dummy Variables

Description

Converts data of any kind to numeric values. A factor is expanded to a set of dummy variables.

Usage

dummify(x)

204 dummy.ppm

Arguments

x Vector, factor, matrix or data frame to be converted.

Details

This function converts data (such as a factor) to numeric values in order that the user may calculate,
for example, the mean, variance, covariance and correlation of the data.

If x is a numeric vector or integer vector, it is returned unchanged.

If x is a logical vector, it is converted to a 0-1 matrix with 2 columns. The first column contains a 1
if the logical value is FALSE, and the second column contains a 1 if the logical value is TRUE.

If x is a complex vector, it is converted to a matrix with 2 columns, containing the real and imaginary
parts.

If x is a factor, the result is a matrix of 0-1 dummy variables. The matrix has one column for each
possible level of the factor. The (i,j) entry is equal to 1 when the ith factor value equals the jth
level, and is equal to 0 otherwise.

If x is a matrix or data frame, the appropriate conversion is applied to each column of x.

Note that, unlike model.matrix, this command converts a factor into a full set of dummy variables
(one column for each level of the factor).

Value

A numeric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

chara <- sample(letters[1:3], 8, replace=TRUE)
logi <- (runif(8) < 0.3)
comp <- round(4*runif(8) + 3*runif(8) * 1i, 1)
nume <- 8:1 + 0.1
df <- data.frame(nume, chara, logi, comp)
df
dummify(df)

dummy.ppm Extract Dummy Points Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the ‘dummy points’ of the quadrature
scheme used to fit the model.

dummy.ppm 205

Usage

dummy.ppm(object, drop=FALSE)

Arguments

object fitted point process model (an object of class "ppm").

drop Logical value determining whether to delete dummy points that were not used
to fit the model.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data
point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function dummy.ppm extracts the dummy points of the quadrature scheme. A typical use of this
function would be to count the number of dummy points, to gauge the accuracy of the approximation
to the exact pseudolikelihood.

It may happen that some dummy points are not actually used in fitting the model (typically because
the value of a covariate is NA at these points). The argument drop specifies whether these unused
dummy points shall be deleted (drop=TRUE) or retained (drop=FALSE) in the return value.

See ppm.object for a list of all operations that can be performed on objects of class "ppm".

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object, ppp.object, ppm

Examples

data(cells)
fit <- ppm(cells, ~1, Strauss(r=0.1))
X <- dummy.ppm(fit)
npoints(X)
this is the number of dummy points in the quadrature scheme

206 edge.Ripley

edge.Ripley Ripley’s Isotropic Edge Correction

Description

Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage

edge.Ripley(X, r, W = Window(X), method = c("C", "interpreted"),
maxweight = 100, internal=list())

rmax.Ripley(W)

Arguments

X Point pattern (object of class "ppp").

W Window for which the edge correction is required.

r Vector or matrix of interpoint distances for which the edge correction should be
computed.

method Choice of algorithm. Either "interpreted" or "C". This is needed only for
debugging purposes.

maxweight Maximum permitted value of the edge correction weight.

internal For developer use only.

Details

The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is
used in estimating the K function and in many other contexts.

The function rmax.Ripley computes the maximum value of distance r for which the isotropic edge
correction estimate of K(r) is valid.

For a single point x in a window W , and a distance r > 0, the isotropic edge correction weight is

e(u, r) =
2πr

length(c(u, r) ∩W)

where c(u, r) is the circle of radius r centred at the point u. The denominator is the length of the
overlap between this circle and the window W .

The function edge.Ripley computes this edge correction weight for each point in the point pattern
X and for each corresponding distance value in the vector or matrix r.

If r is a vector, with one entry for each point in X, then the result is a vector containing the edge
correction weights e(X[i], r[i]) for each i.

If r is a matrix, with one row for each point in X, then the result is a matrix whose i,j entry gives the
edge correction weight e(X[i], r[i,j]). For example edge.Ripley(X, pairdist(X)) computes
all the edge corrections required for the K-function.

edge.Trans 207

If any value of the edge correction weight exceeds maxwt, it is set to maxwt.

The function rmax.Ripley computes the smallest distance r such that it is possible to draw a circle
of radius r, centred at a point of W, such that the circle does not intersect the interior of W.

Value

A numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

edge.Trans, rmax.Trans, Kest

Examples

v <- edge.Ripley(cells, pairdist(cells))

rmax.Ripley(Window(cells))

edge.Trans Translation Edge Correction

Description

Computes Ohser and Stoyan’s translation edge correction weights for a point pattern.

Usage

edge.Trans(X, Y = X, W = Window(X),
exact = FALSE, paired = FALSE,
...,
trim = spatstat.options("maxedgewt"),
dx=NULL, dy=NULL,
give.rmax=FALSE, gW=NULL)

rmax.Trans(W, g=setcov(W))

208 edge.Trans

Arguments

X,Y Point patterns (objects of class "ppp").

W Window for which the edge correction is required.

exact Logical. If TRUE, a slow algorithm will be used to compute the exact value. If
FALSE, a fast algorithm will be used to compute the approximate value.

paired Logical value indicating whether X and Y are paired. If TRUE, compute the edge
correction for corresponding points X[i], Y[i] for all i. If FALSE, compute the
edge correction for each possible pair of points X[i], Y[j] for all i and j.

... Ignored.

trim Maximum permitted value of the edge correction weight.

dx,dy Alternative data giving the x and y coordinates of the vector differences between
the points. Incompatible with X and Y. See Details.

give.rmax Logical. If TRUE, also compute the value of rmax.Trans(W) and return it as an
attribute of the result.

g, gW Optional. Set covariance of W, if it has already been computed. Not required if
W is a rectangle.

Details

The function edge.Trans computes Ohser and Stoyan’s translation edge correction weight, which
is used in estimating the K function and in many other contexts.

The function rmax.Trans computes the maximum value of distance r for which the translation
edge correction estimate of K(r) is valid.

For a pair of points x and y in a window W , the translation edge correction weight is

e(u, r) =
area(W)

area(W ∩ (W + y − x))

where W + y − x is the result of shifting the window W by the vector y − x. The denominator is
the area of the overlap between this shifted window and the original window.

The function edge.Trans computes this edge correction weight. If paired=TRUE, then X and Y
should contain the same number of points. The result is a vector containing the edge correction
weights e(X[i], Y[i]) for each i.

If paired=FALSE, then the result is a matrix whose i,j entry gives the edge correction weight
e(X[i], Y[j]).

Computation is exact if the window is a rectangle. Otherwise,

• if exact=TRUE, the edge correction weights are computed exactly using overlap.owin, which
can be quite slow.

• if exact=FALSE (the default), the weights are computed rapidly by evaluating the set covari-
ance function setcov using the Fast Fourier Transform.

If any value of the edge correction weight exceeds trim, it is set to trim.

The arguments dx and dy can be provided as an alternative to X and Y. If paired=TRUE then dx,dy
should be vectors of equal length such that the vector difference of the ith pair is c(dx[i], dy[i]).

eem 209

If paired=FALSE then dx,dy should be matrices of the same dimensions, such that the vector dif-
ference between X[i] and Y[j] is c(dx[i,j], dy[i,j]). The argument W is needed.

The value of rmax.Trans is the shortest distance from the origin (0, 0) to the boundary of the
support of the set covariance function of W. It is computed by pixel approximation using setcov,
unless W is a rectangle, when rmax.Trans(W) is the length of the shortest side of the rectangle.

Value

Numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

See Also

rmax.Trans, edge.Ripley, setcov, Kest

Examples

v <- edge.Trans(cells)
rmax.Trans(Window(cells))

eem Exponential Energy Marks

Description

Given a point process model fitted to a point pattern, compute the Stoyan-Grabarnik diagnostic
“exponential energy marks” for the data points.

Usage

eem(fit, ...)

S3 method for class 'ppm'
eem(fit, check=TRUE, ...)

S3 method for class 'slrm'
eem(fit, check=TRUE, ...)

210 eem

Arguments

fit The fitted point process model. An object of class "ppm".

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

... Ignored.

Details

Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial
point pattern data. Each point xi of the data pattern X is given a ‘mark’ or ‘weight’

mi =
1

λ̂(xi, X)

where λ̂(xi, X) is the conditional intensity of the fitted model. If the fitted model is correct, then
the sum of these marks for all points in a region B has expected value equal to the area of B.

The argument fit must be a fitted point process model (object of class "ppm" or "slrm"). Such
objects are produced by the fitting algorithms ppm) and slrm. This fitted model object contains
complete information about the original data pattern and the model that was fitted to it.

The value returned by eem is the vector of weightsm[i] associated with the points x[i] of the original
data pattern. The original data pattern (in corresponding order) can be extracted from fit using
response.

The function diagnose.ppm produces a set of sensible diagnostic plots based on these weights.

Value

A vector containing the values of the exponential energy mark for each point in the pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, ppm.object, data.ppm, residuals.ppm, ppm

effectfun 211

Examples

data(cells)
fit <- ppm(cells ~x, Strauss(r=0.15))
ee <- eem(fit)
sum(ee)/area(Window(cells)) # should be about 1 if model is correct
Y <- setmarks(cells, ee)
plot(Y, main="Cells data\n Exponential energy marks")

effectfun Compute Fitted Effect of a Spatial Covariate in a Point Process Model

Description

Compute the trend or intensity of a fitted point process model as a function of one of its covariates.

Usage

effectfun(model, covname, ..., se.fit=FALSE, nvalues=256)

Arguments

model A fitted point process model (object of class "ppm", "kppm", "lppm", "dppm",
"rppm" or "profilepl").

covname The name of the covariate. A character string. (Needed only if the model has
more than one covariate.)

... The fixed values of other covariates (in the form name=value) if required.
se.fit Logical. If TRUE, asymptotic standard errors of the estimates will be computed,

together with a 95% confidence interval.
nvalues Integer. The number of values of the covariate (if it is numeric) for which the

effect function should be evaluated. We recommend at least 256.

Details

The object model should be an object of class "ppm", "kppm", "lppm", "dppm", "rppm" or "profilepl"
representing a point process model fitted to point pattern data.

The model’s trend formula should involve a spatial covariate named covname. This could be "x"
or "y" representing one of the Cartesian coordinates. More commonly the covariate is another,
external variable that was supplied when fitting the model.

The command effectfun computes the fitted trend of the point process model as a function of the
covariate named covname. The return value can be plotted immediately, giving a plot of the fitted
trend against the value of the covariate.

If the model also involves covariates other than covname, then these covariates will be held fixed.
Values for these other covariates must be provided as arguments to effectfun in the form name=value.

If se.fit=TRUE, the algorithm also calculates the asymptotic standard error of the fitted trend, and
a (pointwise) asymptotic 95% confidence interval for the true trend.

This command is just a wrapper for the prediction method predict.ppm. For more complicated
computations about the fitted intensity, use predict.ppm.

212 Emark

Value

A data frame containing a column of values of the covariate and a column of values of the fitted
trend. If se.fit=TRUE, there are 3 additional columns containing the standard error and the upper
and lower limits of a confidence interval.

If the covariate named covname is numeric (rather than a factor or logical variable), the return value
is also of class "fv" so that it can be plotted immediately.

Trend and intensity

For a Poisson point process model, the trend is the same as the intensity of the point process. For
a more general Gibbs model, the trend is the first order potential in the model (the first order term
in the Gibbs representation). In Poisson or Gibbs models fitted by ppm, the trend is the only part of
the model that depends on the covariates.

Determinantal point process models with fixed intensity

The function dppm which fits a determinantal point process model allows the user to specify the
intensity lambda. In such cases the effect function is undefined, and effectfun stops with an error
message.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

ppm, predict.ppm, fv.object

Examples

X <- copper$SouthPoints
D <- distfun(copper$SouthLines)
fit <- ppm(X ~ polynom(D, 5))
effectfun(fit)
plot(effectfun(fit, se.fit=TRUE))

fitx <- ppm(X ~ x + polynom(D, 5))
plot(effectfun(fitx, "D", x=20))

Emark Diagnostics for random marking

Description

Estimate the summary functions E(r) and V (r) for a marked point pattern, proposed by Schlather
et al (2004) as diagnostics for dependence between the points and the marks.

Emark 213

Usage

Emark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Vmark(X, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. The pattern should have numeric marks.

r Optional. Numeric vector. The values of the argument r at which the function
E(r) or V (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise IfTRUE, normalise the estimate ofE(r) or V (r) so that it would have value equal
to 1 if the marks are independent of the points.

Details

For a marked point process, Schlather et al (2004) defined the functions E(r) and V (r) to be the
conditional mean and conditional variance of the mark attached to a typical random point, given
that there exists another random point at a distance r away from it.

More formally,
E(r) = E0u[M(0)]

and
V (r) = E0u[(M(0)− E(u))2]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and where M(0) denotes the mark attached to the point
0.

These functions may serve as diagnostics for dependence between the points and the marks. If the
points and marks are independent, then E(r) and V (r) should be constant (not depending on r).
See Schlather et al (2004).

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern with numeric marks.

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

214 Emark

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

Value

If marks(X) is a numeric vector, the result is an object of class "fv" (see fv.object). If marks(X)
is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

r the values of the argument r at which the function E(r) or V (r) has been esti-
mated

theo the theoretical, constant value of E(r) or V (r) when the marks attached to dif-
ferent points are independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function E(r) or V (r) obtained by the edge
corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Schlather, M. and Ribeiro, P. and Diggle, P. (2004) Detecting dependence between marks and loca-
tions of marked point processes. Journal of the Royal Statistical Society, series B 66 (2004) 79-83.

See Also

Mark correlation markcorr, mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

emend 215

Examples

plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))

plot(Emark(finpines))
V <- Vmark(finpines)

emend Force Model to be Valid

Description

Check whether a model is valid, and if not, find the nearest model which is valid.

Usage

emend(object, ...)

Arguments

object A statistical model, belonging to some class.

... Arguments passed to methods.

Details

The function emend is generic, and has methods for several classes of statistical models in the
spatstat package (mostly point process models). Its purpose is to check whether a given model is
valid (for example, that none of the model parameters are NA) and, if not, to find the nearest model
which is valid.

See the methods for more information.

Value

Another model of the same kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

emend.ppm, valid.

216 emend.ppm

emend.ppm Force Point Process Model to be Valid

Description

Ensures that a fitted point process model satisfies the integrability conditions for existence of the
point process.

Usage

project.ppm(object, ..., fatal=FALSE, trace=FALSE)

S3 method for class 'ppm'
emend(object, ..., fatal=FALSE, trace=FALSE)

Arguments

object Fitted point process model (object of class "ppm").

... Ignored.

fatal Logical value indicating whether to generate an error if the model cannot be
projected to a valid model.

trace Logical value indicating whether to print a trace of the decision process.

Details

The functions emend.ppm and project.ppm are identical: emend.ppm is a method for the generic
emend, while project.ppm is an older name for the same function.

The purpose of the function is to ensure that a fitted model is valid.

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default, the
fitted model returned by ppm may not actually exist as a point process.

First, some of the fitted coefficients of the model may be NA or infinite values. This usually occurs
when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable
or confounded.

Second, unlike a regression model, which is well-defined for any finite values of the fitted regression
coefficients, a Gibbs point process model is only well-defined if the fitted interaction parameters
satisfy some constraints. A famous example is the Strauss process (see Strauss) which exists only
when the interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density
is not integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function emend.ppm or project.ppm modifies the model object so that the model is valid.
It identifies the terms in the model object that are associated with illegal parameter values (i.e.

emend.slrm 217

parameter values which are either NA, infinite, or outside their permitted range). It considers all
possible sub-models of object obtained by deleting one or more of these terms. It identifies which
of these submodels are valid, and chooses the valid submodel with the largest pseudolikelihood.
The result of emend.ppm or project.ppm is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in emend.ppm or project.ppm may be
time-consuming, because it takes time to compute all the sub-models. A faster, approximate algo-
rithm can be applied by setting spatstat.options(project.fast=TRUE). This produces a valid
submodel, which may not be the maximum pseudolikelihood submodel.

Use the function valid.ppm to check whether a fitted model object specifies a well-defined point
process.

Use the expression all(is.finite(coef(object))) to determine whether all parameters are
identifiable.

Value

Another point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, valid.ppm, emend, spatstat.options

Examples

fit <- ppm(redwood ~1, Strauss(0.1))
coef(fit)
fit2 <- emend(fit)
coef(fit2)

emend.slrm Force Spatial Logistic Regression Model to be Valid

Description

Ensures that a fitted spatial logistic regression specifies a well-defined model.

Usage

S3 method for class 'slrm'
emend(object, ..., fatal=FALSE, trace=FALSE)

218 emend.slrm

Arguments

object Fitted point process model (object of class "slrm").
... Ignored.
fatal Logical value indicating whether to generate an error if the model cannot be

projected to a valid model.
trace Logical value indicating whether to print a trace of the decision process.

Details

emend.slrm is a method for the generic emend,

The purpose of the function is to ensure that a fitted model is valid.

The model-fitting function slrm fits spatial logistic regression models to point pattern data.

In some circumstances, the fitted model returned by slrm may not specify a well-defined model,
because some of the fitted coefficients of the model may be NA or infinite values. This usually occurs
when the data are insufficient to estimate all the parameters. The model is said to be unidentifiable
or confounded.

The function emend.slrm modifies the model object so that the model is valid. It identifies the
terms in the model object that are associated with illegal parameter values (i.e. parameter values
which are either NA, infinite, or outside their permitted range). It considers all possible sub-models
of object obtained by deleting one or more of these terms. It identifies which of these submod-
els are valid, and chooses the valid submodel with the largest pseudolikelihood. The result of
emend.slrm or project.slrm is the true maximum pseudolikelihood fit to the data.

For large datasets or complex models, the algorithm used in emend.slrm may be time-consuming,
because it takes time to compute all the sub-models. A faster, approximate algorithm can be applied
by setting spatstat.options(project.fast=TRUE). This produces a valid submodel, which may
not be the maximum likelihood submodel.

Use the function valid.slrm to check whether a fitted model object specifies a well-defined model.

Value

Another point process model (object of class "slrm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

slrm, valid.slrm, emend, spatstat.options

Examples

fit <- slrm(redwood ~ x + I(x))
coef(fit)
fit2 <- emend(fit)
coef(fit2)

envelope 219

envelope Simulation Envelopes of Summary Function

Description

Computes simulation envelopes of a summary function.

Usage

envelope(Y, fun, ...)

S3 method for class 'ppp'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'ppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
start=NULL, control=update(default.rmhcontrol(Y), nrep=nrep), nrep=1e5,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'kppm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,

220 envelope

nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'slrm'
envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp") or
a fitted point process model (object of class "ppm", "kppm" or "slrm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern. This option is currently not available for envelope.kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the
same marks as the original data pattern. In a multitype point pattern this means
that the simulated patterns will have the same number of points of each type as
the original data. This option is currently not available for envelope.kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

envelope 221

clipdata Logical flag indicating whether the data point pattern should be clipped to the
same window as the simulated patterns, before the summary function for the data
is computed. This should usually be TRUE to ensure that the data and simulations
are properly comparable.

start,control Optional. These specify the arguments start and control of rmh, giving com-
plete control over the simulation algorithm. Applicable only when Y is a fitted
model of class "ppm".

nrep Number of iterations in the Metropolis-Hastings simulation algorithm. Applica-
ble only when Y is a fitted model of class "ppm".

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.
Default is use.theory=TRUE if Y is a point pattern, or a point process model
equivalent to Complete Spatial Randomness, and use.theory=FALSE other-
wise.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

222 envelope

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Random-
ness (CSR), type plot(envelope(X, Kest,nsim=39)) to see the K function for X plotted together
with the envelopes of the K function for 39 simulations of CSR.

The envelope function is generic, with methods for the classes "ppp", "ppm", "kppm" and "slrm"
described here. There are also methods for the classes "pp3", "lpp" and "lppm" which are de-
scribed separately under envelope.pp3 and envelope.lpp. Envelopes can also be computed from
other envelopes, using envelope.envelope.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

• If Y is a point pattern (an object of class "ppp") and simulate=NULL, then we generate nsim
simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being
a realisation of the uniform Poisson point process) with the same intensity as the pattern
Y. (If Y is a multitype point pattern, then the simulated patterns are also given independent
random marks; the probability distribution of the random marks is determined by the relative
frequencies of marks in Y.)

• If Y is a fitted point process model (an object of class "ppm" or "kppm" or "slrm") and
simulate=NULL, then this routine generates nsim simulated realisations of that model.

• If simulate is supplied, then it determines how the simulated point patterns are generated. It
may be either

envelope 223

– an expression in the R language, typically containing a call to a random generator. This
expression will be evaluated nsim times to yield nsim point patterns. For example if
simulate=expression(runifpoint(100)) then each simulated pattern consists of ex-
actly 100 independent uniform random points.

– a function in the R language, typically containing a call to a random generator. This
function will be applied repeatedly to the original data pattern Y to yield nsim point pat-
terns. For example if simulate=rlabel then each simulated pattern was generated by
evaluating rlabel(Y) and consists of a randomly-relabelled version of Y.

– a list of point patterns. The entries in this list will be taken as the simulated patterns.
– an object of class "envelope". This should have been produced by calling envelope

with the argument savepatterns=TRUE. The simulated point patterns that were saved in
this object will be extracted and used as the simulated patterns for the new envelope com-
putation. This makes it possible to plot envelopes for two different summary functions
based on exactly the same set of simulated point patterns.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of
the functions Kest, Gest, Fest, Jest, pcf, Kcross, Kdot, Gcross, Gdot, Jcross, Jdot, Kmulti,
Gmulti, Jmulti or Kinhom. It may also be a character string containing the name of one of these
functions.

The statistic fun can also be a user-supplied function; if so, then it must have arguments X and r
like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

pointwise: by default, envelopes are calculated pointwise (i.e. for each value of the distance ar-
gument r), by sorting the nsim simulated values, and taking the m-th lowest and m-th highest
values, where m = nrank. For example if nrank=1, the upper and lower envelopes are the
pointwise maximum and minimum of the simulated values.
The pointwise envelopes are not “confidence bands” for the true value of the function! Rather,
they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed
by choosing a fixed value of r, and rejecting the null hypothesis if the observed function value
lies outside the envelope at this value of r. This test has exact significance level alpha = 2 *
nrank/(1 + nsim).

simultaneous: if global=TRUE, then the envelopes are determined as follows. First we calculate
the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by fun; otherwise we perform a separate set of nsim2 simulations, compute the av-
erage of all these simulated values, and take this average as an estimate of the theoretical mean
value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of r values
specified by ginterval). This gives a deviation value di for each of the nsim simulations.
Finally we take the m-th largest of the deviation values, where m=nrank, and call this dcrit.
Then the simultaneous envelopes are of the form lo = expected - dcrit and hi = expected
+ dcrit where expected is either the theoretical mean value theo (if we are testing CSR)
or the estimated theoretical value mmean (if we are testing another model). The simultaneous
critical envelopes have constant width 2 * dcrit.
The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley,
1981). The test rejects the null hypothesis if the graph of the observed function lies outside the
envelope at any value of r. This test has exact significance level alpha = nrank/(1 + nsim).
This test can also be performed using mad.test.

224 envelope

based on sample moments: if VARIANCE=TRUE, the algorithm calculates the (pointwise) sample
mean and sample variance of the simulated functions. Then the envelopes are computed as
mean plus or minus nSD standard deviations. These envelopes do not have an exact signif-
icance interpretation. They are a naive approximation to the critical points of the Neyman-
Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point
pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or esti-
mated) of the summary function for the model being tested. It can be plotted using plot.envelope.

If VARIANCE=TRUE then the return value also includes the sample mean, sample variance and other
quantities.

Arguments can be passed to the function fun through This means that you simply specify
these arguments in the call to envelope, and they will be passed to fun. In particular, the argument
correction determines the edge correction to be used to calculate the summary statistic. See the
section on Edge Corrections, and the Examples.

Arguments can also be passed to the function fun through the list funargs. This mechanism is typ-
ically used if an argument of fun has the same name as an argument of envelope. The list funargs
should contain entries of the form name=value, where each name is the name of an argument of
fun.

There is also an option, rarely used, in which different function arguments are used when computing
the summary function for the data Y and for the simulated patterns. If funYargs is given, it will
be used when the summary function for the data Y is computed, while funargs will be used when
computing the summary function for the simulated patterns. This option is only needed in rare
cases: usually the basic principle requires that the data and simulated patterns must be treated
equally, so that funargs and funYargs should be identical.

If Y is a fitted cluster point process model (object of class "kppm"), and simulate=NULL, then the
model is simulated directly using simulate.kppm.

If Y is a fitted Gibbs point process model (object of class "ppm"), and simulate=NULL, then the
model is simulated by running the Metropolis-Hastings algorithm rmh. Complete control over this
algorithm is provided by the arguments start and control which are passed to rmh.

For simultaneous critical envelopes (global=TRUE) the following options are also useful:

ginterval determines the interval of r values over which the deviation between curves is cal-
culated. It should be a numeric vector of length 2. There is a sensible default (namely, the
recommended plotting interval for fun(X), or the range of r values if r is explicitly specified).

transform specifies a transformation of the summary function fun that will be carried out before
the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE.
The transform must be an expression object using the symbol . to represent the function
value (and possibly other symbols recognised by with.fv). For example, the conventional
way to normalise the K function (Ripley, 1981) is to transform it to the L function L(r) =√
K(r)/π and this is implemented by setting transform=expression(sqrt(./pi)).

It is also possible to extract the summary functions for each of the individual simulated point pat-
terns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns" containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1, sim2, ... representing the nsim summary functions.

envelope 225

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns" which is a list of length nsim containing
all the simulated point patterns.

See plot.envelope and plot.fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.

Value

An object of class "envelope" and "fv", see fv.object, which can be printed and plotted directly.

Essentially a data frame containing columns

r the vector of values of the argument r at which the summary function fun has
been estimated

obs values of the summary function for the data point pattern

lo lower envelope of simulations

hi upper envelope of simulations

and either

theo theoretical value of the summary function under CSR (Complete Spatial Ran-
domness, a uniform Poisson point process) if the simulations were generated
according to CSR

mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns" which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns" which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.

The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.

226 envelope

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as
the K function. Typically the user has a choice between several possible edge corrections. In a
call to envelope, the user can specify the edge correction to be applied in fun, using the argument
correction. See the Examples below.

Summary functions in spatstat Summary functions that are available in spatstat, such as Kest,
Gest and pcf, have a standard argument called correction which specifies the name of one
or more edge corrections.
The list of available edge corrections is different for each summary function, and may also
depend on the kind of window in which the point pattern is recorded. In the case of Kest (the
default and most frequently used value of fun) the best edge correction is Ripley’s isotropic
correction if the window is rectangular or polygonal, and the translation correction if the
window is a binary mask. See the help files for the individual functions for more information.
All the summary functions in spatstat recognise the option correction="best" which gives
the “best” (most accurate) available edge correction for that function.
In a call to envelope, if fun is one of the summary functions provided in spatstat, then the
default is correction="best". This means that by default, the envelope will be computed
using the “best” available edge correction.
The user can override this default by specifying the argument correction. For example the
computation can be accelerated by choosing another edge correction which is less accurate
than the “best” one, but faster to compute.

User-written summary functions If fun is a function written by the user, then envelope has to
guess what to do.
If fun has an argument called correction, or has ... arguments, then envelope assumes
that the function can handle a correction argument. To compute the envelope, fun will be
called with a correction argument. The default is correction="best", unless overridden
in the call to envelope.
Otherwise, if fun does not have an argument called correction and does not have ... ar-
guments, then envelope assumes that the function cannot handle a correction argument. To
compute the envelope, fun is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477–489.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Arnold, 2003.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

envelope 227

See Also

dclf.test, mad.test for envelope-based tests.

fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling en-
velopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat
online <- interactive()
Nsim <- if(online) 19 else 3

Envelope of K function under CSR
plot(envelope(X, nsim=Nsim))

Translation edge correction (this is also FASTER):
if(online) {
plot(envelope(X, correction="translate"))

} else {
E <- envelope(X, nsim=Nsim, correction="translate")
}

Global envelopes
if(online) {

plot(envelope(X, Lest, global=TRUE))
plot(envelope(X, Kest, global=TRUE, scale=function(r) { r }))

} else {
E <- envelope(X, Lest, nsim=Nsim, global=TRUE)
E <- envelope(X, Kest, nsim=Nsim, global=TRUE, scale=function(r) { r })
E
summary(E)
}

Envelope of K function for simulations from Gibbs model
if(online) {

fit <- ppm(cells ~1, Strauss(0.05))
plot(envelope(fit))
plot(envelope(fit, global=TRUE))

} else {
fit <- ppm(cells ~1, Strauss(0.05), nd=20)
E <- envelope(fit, nsim=Nsim, correction="border", nrep=100)
E <- envelope(fit, nsim=Nsim, correction="border", global=TRUE, nrep=100)
}

Envelope of K function for simulations from cluster model
fit <- kppm(redwood ~1, "Thomas")
if(online) {

plot(envelope(fit, Gest))
plot(envelope(fit, Gest, global=TRUE))

} else {
E <- envelope(fit, Gest, correction="rs", nsim=Nsim, global=TRUE, nrep=100)

228 envelope

}

Envelope of G function under CSR
if(online) {

plot(envelope(X, Gest))
} else {
E <- envelope(X, Gest, correction="rs", nsim=Nsim)
}

Envelope of L function under CSR
L(r) = sqrt(K(r)/pi)
if(online) {
E <- envelope(X, Kest)
} else {
E <- envelope(X, Kest, correction="border", nsim=Nsim)
}
plot(E, sqrt(./pi) ~ r)

Simultaneous critical envelope for L function
(alternatively, use Lest)
if(online) {
plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))
} else {
E <- envelope(X, Kest, nsim=Nsim, correction="border",

transform=expression(sqrt(./pi)), global=TRUE)
}

One-sided envelope
if(online) {
plot(envelope(X, Lest, alternative="less"))
} else {
E <- envelope(X, Lest, nsim=Nsim, alternative="less")
}

How to pass arguments needed to compute the summary functions:
We want envelopes for Jcross(X, "A", "B")
where "A" and "B" are types of points in the dataset 'demopat'

if(online) {
plot(envelope(demopat, Jcross, i="A", j="B"))
} else {
plot(envelope(demopat, Jcross, correction="rs", i="A", j="B", nsim=Nsim))
}

Use of `simulate' expression
if(online) {
plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
plot(envelope(cells, Gest, simulate=expression(rMaternI(100,0.02))))
} else {
plot(envelope(cells, Gest, correction="rs", simulate=expression(runifpoint(42)), nsim=Nsim))

plot(envelope(cells, Gest, correction="rs", simulate=expression(rMaternI(100, 0.02)),
nsim=Nsim, global=TRUE))
}

envelope 229

Use of `simulate' function
if(online) {
plot(envelope(amacrine, Kcross, simulate=rlabel))

} else {
plot(envelope(amacrine, Kcross, simulate=rlabel, nsim=Nsim))

}

Envelope under random toroidal shifts
if(online) {
plot(envelope(amacrine, Kcross, i="on", j="off",

simulate=expression(rshift(amacrine, radius=0.25))))
}

Envelope under random shifts with erosion
if(online) {
plot(envelope(amacrine, Kcross, i="on", j="off",

simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))
}

Envelope of INHOMOGENEOUS K-function with fitted trend

The following is valid.
Setting lambda=fit means that the fitted model is re-fitted to
each simulated pattern to obtain the intensity estimates for Kinhom.
(lambda=NULL would also be valid)

fit <- kppm(redwood ~1, clusters="MatClust")
if(online) {

plot(envelope(fit, Kinhom, lambda=fit, nsim=19))
} else {

envelope(fit, Kinhom, lambda=fit, nsim=Nsim)
}

Note that the principle of symmetry, essential to the validity of
simulation envelopes, requires that both the observed and
simulated patterns be subjected to the same method of intensity
estimation. In the following example it would be incorrect to set the
argument 'lambda=red.dens' in the envelope command, because this
would mean that the inhomogeneous K functions of the simulated
patterns would be computed using the intensity function estimated
from the original redwood data, violating the symmetry. There is
still a concern about the fact that the simulations are generated
from a model that was fitted to the data; this is only a problem in
small datasets.

if(online) {
red.dens <- density(redwood, sigma=bw.diggle, positive=TRUE)
plot(envelope(redwood, Kinhom, sigma=bw.diggle,

simulate=expression(rpoispp(red.dens))))
}

Precomputed list of point patterns

230 envelope.envelope

if(online) {
nX <- npoints(X)
PatList <- list()
for(i in 1:Nsim) PatList[[i]] <- runifpoint(nX)
E <- envelope(X, Kest, nsim=19, simulate=PatList)
} else {
PatList <- list()
for(i in 1:Nsim) PatList[[i]] <- runifpoint(10)
}
E <- envelope(X, Kest, nsim=Nsim, simulate=PatList)

re-using the same point patterns
EK <- envelope(X, Kest, savepatterns=TRUE)
EG <- envelope(X, Gest, simulate=EK)

if(online) {
EK <- envelope(X, Kest, nsim=Nsim, savepatterns=TRUE)
EG <- envelope(X, Gest, nsim=Nsim, simulate=EK)

}

envelope.envelope Recompute Envelopes

Description

Given a simulation envelope (object of class "envelope"), compute another envelope from the
same simulation data using different parameters.

Usage

S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,

transform=NULL, global=FALSE, VARIANCE=FALSE)

Arguments

Y A simulation envelope (object of class "envelope").
fun Optional. Summary function to be applied to the simulated point patterns.
...,transform,global,VARIANCE

Parameters controlling the type of envelope that is re-computed. See envelope.

Details

This function can be used to re-compute a simulation envelope from previously simulated data,
using different parameter settings for the envelope: for example, a different significance level, or a
global envelope instead of a pointwise envelope.

The function envelope is generic. This is the method for the class "envelope".

The argument Y should be a simulation envelope (object of class "envelope") produced by any of
the methods for envelope. Additionally, Y must contain either

envelope.envelope 231

• the simulated point patterns that were used to create the original envelope (so Y should have
been created by calling envelope with savepatterns=TRUE);

• the summary functions of the simulated point patterns that were used to create the original
envelope (so Y should have been created by calling envelope with savefuns=TRUE).

If the argument fun is given, it should be a summary function that can be applied to the simulated
point patterns that were used to create Y. The envelope of the summary function fun for these point
patterns will be computed using the parameters specified in

If fun is not given, then:

• If Y contains the summary functions that were used to compute the original envelope, then the
new envelope will be computed from these original summary functions.

• Otherwise, if Y contains the simulated point patterns. then the K function Kest will be ap-
plied to each of these simulated point patterns, and the new envelope will be based on the K
functions.

The new envelope will be computed using the parameters specified in

See envelope for a full list of envelope parameters. Frequently-used parameters include nrank and
nsim (to change the number of simulations used and the significance level of the envelope), global
(to change from pointwise to global envelopes) and VARIANCE (to compute the envelopes from the
sample moments instead of the ranks).

Value

An envelope (object of class "envelope".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope

Examples

E <- envelope(cells, Kest, nsim=19, savefuns=TRUE, savepatterns=TRUE)
E2 <- envelope(E, nrank=2)
Eg <- envelope(E, global=TRUE)
EG <- envelope(E, Gest)
EL <- envelope(E, transform=expression(sqrt(./pi)))

232 envelope.pp3

envelope.pp3 Simulation Envelopes of Summary Function for 3D Point Pattern

Description

Computes simulation envelopes of a summary function for a three-dimensional point pattern.

Usage

S3 method for class 'pp3'
envelope(Y, fun=K3est, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs, simulate=NULL, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y A three-dimensional point pattern (object of class "pp3").

fun Function that computes the desired summary statistic for a 3D point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

verbose Logical flag indicating whether to print progress reports during the simulations.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

envelope.pp3 233

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

234 envelope.pp3

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

The envelope function is generic, with methods for the classes "ppp", "ppm" and "kppm" described
in the help file for envelope. This function envelope.pp3 is the method for three-dimensional
point patterns (objects of class "pp3").

For the most basic use, if you have a 3D point pattern X and you want to test Complete Spatial
Randomness (CSR), type plot(envelope(X, K3est,nsim=39)) to see the three-dimensional K
function for X plotted together with the envelopes of the three-dimensional K function for 39 sim-
ulations of CSR.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

• If simulate=NULL, then we generate nsim simulations of Complete Spatial Randomness (i.e.
nsim simulated point patterns each being a realisation of the uniform Poisson point process)
with the same intensity as the pattern Y.

• If simulate is supplied, then it determines how the simulated point patterns are generated.
See envelope for details.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of the
functions K3est, G3est, F3est or pcf3est. It may also be a character string containing the name
of one of these functions.

For further information, see the documentation for envelope.

Value

A function value table (object of class "fv") which can be plotted directly. See envelope for further
details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

envelopeArray 235

See Also

pp3, rpoispp3, K3est, G3est, F3est, pcf3est.

Examples

X <- rpoispp3(20, box3())
if(interactive()) {
plot(envelope(X, nsim=39))
}

envelopeArray Array of Simulation Envelopes of Summary Function

Description

Compute an array of simulation envelopes using a summary function that returns an array of curves.

Usage

envelopeArray(X, fun, ..., dataname = NULL, verb = FALSE, reuse = TRUE)

Arguments

X Object containing point pattern data. A point pattern (object of class "ppp",
"lpp", "pp3" or "ppx") or a fitted point process model (object of class "ppm",
"kppm" or "lppm").

fun Function that computes the desired summary statistic for a point pattern. The
result of fun should be a function array (object of class "fasp").

... Arguments passed to envelope to control the simulations, or passed to fun
when evaluating the function.

dataname Optional character string name for the data.

verb Logical value indicating whether to print progress reports.

reuse Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE, the default) or on different,
independent sets of simulated patterns (reuse=FALSE).

Details

This command is the counterpart of envelope when the function fun that is evaluated on each
simulated point pattern will return an object of class "fasp" representing an array of summary
functions.

Simulated point patterns are generated according to the rules described for envelope. In brief, if X
is a point pattern, the algorithm generates simulated point patterns of the same kind, according to
complete spatial randomness. If X is a fitted model, the algorithm generates simulated point patterns
according to this model.

236 eval.fasp

For each simulated point pattern Y, the function fun is invoked. The result Z <- fun(Y, ...) should
be an object of class "fasp" representing an array of summary functions. The dimensions of the
array Z should be the same for each simulated pattern Y.

This algorithm finds the simulation envelope of the summary functions in each cell of the array.

Value

An object of class "fasp" representing an array of envelopes.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

envelope, alltypes.

Examples

Nsim <- if(interactive()) 19 else 3
A <- envelopeArray(finpines, markcrosscorr, nsim=Nsim)
plot(A)

eval.fasp Evaluate Expression Involving Function Arrays

Description

Evaluates any expression involving one or more function arrays (fasp objects) and returns another
function array.

Usage

eval.fasp(expr, envir, dotonly=TRUE)

Arguments

expr An expression involving the names of objects of class "fasp".

envir Optional. The environment in which to evaluate the expression, or a named list
containing "fasp" objects to be used in the expression.

dotonly Logical. Passed to eval.fv.

eval.fasp 237

Details

This is a wrapper to make it easier to perform pointwise calculations with the arrays of summary
functions used in spatial statistics.

A function array (object of class "fasp") can be regarded as a matrix whose entries are functions.
Objects of this kind are returned by the command alltypes.

Suppose X is an object of class "fasp". Then eval.fasp(X+3) effectively adds 3 to the value of
every function in the array X, and returns the resulting object.

Suppose X and Y are two objects of class "fasp" which are compatible (for example the arrays must
have the same dimensions). Then eval.fasp(X + Y) will add the corresponding functions in each
cell of the arrays X and Y, and return the resulting array of functions.

Suppose X is an object of class "fasp" and f is an object of class "fv". Then eval.fasp(X + f)
will add the function f to the functions in each cell of the array X, and return the resulting array of
functions.

In general, expr can be any expression involving (a) the names of objects of class "fasp" or "fv",
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.fasp determines which of the variable names in the expression expr refer to objects of
class "fasp". The expression is then evaluated for each cell of the array using eval.fv.

The expression expr must be vectorised. There must be at least one object of class "fasp" in the
expression. All such objects must be compatible.

Value

Another object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp.object, Kest

Examples

K <- alltypes(amacrine, "K")

expressions involving a fasp object
eval.fasp(K + 3)
L <- eval.fasp(sqrt(K/pi))

expression involving two fasp objects
D <- eval.fasp(K - L)

subtracting the unmarked K function from the cross-type K functions
K0 <- Kest(unmark(amacrine))
DK <- eval.fasp(K - K0)

238 eval.fv

Use of 'envir'
S <- eval.fasp(1-G, list(G=alltypes(amacrine, 'G')))

eval.fv Evaluate Expression Involving Functions

Description

Evaluates any expression involving one or more function value (fv) objects, and returns another
object of the same kind.

Usage

eval.fv(expr, envir, dotonly=TRUE, equiv=NULL, relabel=TRUE)

Arguments

expr An expression.

envir Optional. The environment in which to evaluate the expression, or a named list
containing "fv" objects to be used in the expression.

dotonly Logical. See Details.

equiv Mapping between column names of different objects that are deemed to be
equivalent. See Details.

relabel Logical value indicating whether to compute appropriate labels for the resulting
function. This should normally be TRUE (the default). See Details.

Details

This is a wrapper to make it easier to perform pointwise calculations with the summary functions
used in spatial statistics.

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

For example, suppose X is an object of class "fv" containing several different estimates of the
Ripley’s K function K(r), evaluated at a sequence of values of r. Then eval.fv(X+3) effectively
adds 3 to each function estimate in X, and returns the resulting object.

Suppose X and Y are two objects of class "fv" which are compatible (in particular they have the
same vector of r values). Then eval.im(X + Y) will add the corresponding function values in X and
Y, and return the resulting function.

In general, expr can be any expression involving (a) the names of objects of class "fv", (b) scalar
constants, and (c) functions which are vectorised. See the Examples.

First eval.fv determines which of the variable names in the expression expr refer to objects of
class "fv". Each such name is replaced by a vector containing the function values. The expression
is then evaluated. The result should be a vector; it is taken as the new vector of function values.

eval.fv 239

The expression expr must be vectorised. There must be at least one object of class "fv" in the
expression. If the objects are not compatible, they will be made compatible by harmonise.fv.

If dotonly=TRUE (the default), the expression will be evaluated only for those columns of an "fv"
object that contain values of the function itself (rather than values of the derivative of the function,
the hazard rate, etc). If dotonly=FALSE, the expression will be evaluated for all columns.

For example the result of Fest includes several columns containing estimates of the empty space
function F (r), but also includes an estimate of the hazard h(r) of F (r). Transformations that are
valid for F may not be valid for h. Accordingly, h would normally be omitted from the calculation.

The columns of an object x that represent the function itself are identified by its “dot” names,
fvnames(x, "."). They are the columns normally plotted by plot.fv and identified by the symbol
"." in plot formulas in plot.fv.

The argument equiv can be used to specify that two different column names in different function
objects are mathematically equivalent or cognate. It should be a list of name=value pairs, or a
named vector of character strings, indicating the pairing of equivalent names. (Without this argu-
ment, these columns would be discarded.) See the Examples.

The argument relabel should normally be TRUE (the default). It determines whether to compute
appropriate mathematical labels and descriptions for the resulting function object (used when the
object is printed or plotted). If relabel=FALSE then this does not occur, and the mathematical labels
and descriptions in the result are taken from the function object that appears first in the expression.
This reduces computation time slightly (for advanced use only).

Value

Another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

Examples

manipulating the K function
X <- runifrect(42)
Ks <- Kest(X)

eval.fv(Ks + 3)
Ls <- eval.fv(sqrt(Ks/pi))

manipulating two K functions
Y <- runifrect(20)
Kr <- Kest(Y)

Kdif <- eval.fv(Ks - Kr)
Z <- eval.fv(sqrt(Ks/pi) - sqrt(Kr/pi))

240 exactMPLEstrauss

Use of 'envir'
U <- eval.fv(sqrt(K), list(K=Ks))

Use of 'equiv'
Fc <- Fest(cells)
Gc <- Gest(cells)
Hanisch and Chiu-Stoyan estimators are cognate
Dc <- eval.fv(Fc - Gc, equiv=list(cs="han"))

exactMPLEstrauss Exact Maximum Pseudolikelihood Estimate for Stationary Strauss
Process

Description

Computes, to very high accuracy, the Maximum Pseudolikelihood Estimates of the parameters of a
stationary Strauss point process.

Usage

exactMPLEstrauss(X, R, ngrid = 2048, plotit = FALSE, project=TRUE)

Arguments

X Data to which the Strauss process will be fitted. A point pattern dataset (object
of class "ppp").

R Interaction radius of the Strauss process. A non-negative number.

ngrid Grid size for calculation of integrals. An integer, giving the number of grid
points in the x and y directions.

plotit Logical. If TRUE, the log pseudolikelihood is plotted on the current device.

project Logical. If TRUE (the default), the parameter γ is constrained to lie in the interval
[0, 1]. If FALSE, this constraint is not applied.

Details

This function is intended mainly for technical investigation of algorithm performance. Its practical
use is quite limited.

It fits the stationary Strauss point process model to the point pattern dataset X by maximum pseu-
dolikelihood (with the border edge correction) using an algorithm with very high accuracy. This
algorithm is more accurate than the default behaviour of the model-fitting function ppm because the
discretisation is much finer.

Ripley (1988) and Baddeley and Turner (2000) derived the log pseudolikelihood for the stationary
Strauss process, and eliminated the parameter β, obtaining an exact formula for the partial log
pseudolikelihood as a function of the interaction parameter γ only. The algorithm evaluates this
expression to a high degree of accuracy, using numerical integration on a ngrid * ngrid lattice,
uses optim to maximise the log pseudolikelihood with respect to γ, and finally recovers β.

exactMPLEstrauss 241

The result is a vector of length 2, containing the fitted coefficients log β and log γ. These values
correspond to the entries that would be obtained with coef(ppm(X, ~1, Strauss(R))). The fitted
coefficients are typically accurate to within 10−6 as shown in Baddeley and Turner (2013).

Note however that (by default) exactMPLEstrauss constrains the parameter γ to lie in the inter-
val [0, 1] in which the point process is well defined (Kelly and Ripley, 1976) whereas ppm does
not constrain the value of γ (by default). This behaviour is controlled by the argument project
to ppm and exactMPLEstrauss. The default for ppm is project=FALSE, while the default for
exactMPLEstrauss is project=TRUE.

Value

Vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Baddeley, A. and Turner, R. (2013) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 2012. DOI: 10.1080/00949655.2012.755976

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Ripley, B.D. (1988) Statistical inference for spatial processes. Cambridge University Press.

See Also

ppm

Examples

if(interactive()) {
rc <- 0.09
exactMPLEstrauss(cells, rc, plotit=TRUE)
coef(ppm(cells ~1, Strauss(rc)))
coef(ppm(cells ~1, Strauss(rc), nd=128))
rr <- 0.04
exactMPLEstrauss(redwood, rr)
exactMPLEstrauss(redwood, rr, project=FALSE)
coef(ppm(redwood ~1, Strauss(rr)))

} else {
rc <- 0.09
exactMPLEstrauss(cells, rc, ngrid=64, plotit=TRUE)
exactMPLEstrauss(cells, rc, ngrid=64, project=FALSE)

}

242 Extract.fasp

Extract.fasp Extract Subset of Function Array

Description

Extract a subset of a function array (an object of class "fasp").

Usage

S3 method for class 'fasp'
x[I, J, drop=TRUE,...]

Arguments

x A function array. An object of class "fasp".

I any valid expression for a subset of the row indices of the array.

J any valid expression for a subset of the column indices of the array.

drop Logical. When the selected subset consists of only one cell of the array, if
drop=FALSE the result is still returned as a 1×1 array of functions (class "fasp")
while if drop=TRUE it is returned as a function (class "fv").

... Ignored.

Details

A function array can be regarded as a matrix whose entries are functions. See fasp.object for an
explanation of function arrays.

This routine extracts a sub-array according to the usual conventions for matrix indexing.

Value

A function array (of class "fasp"). Exceptionally, if the array has only one cell, and if drop=TRUE,
then the result is a function value table (class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

fasp.object

Extract.fv 243

Examples

Lansing woods data - multitype points with 6 types
a <- alltypes(lansing, 'K')

extract first three marks only
b <- a[1:3,1:3]
if(interactive()) {plot(b)}
subset of array pertaining to hickories
h <- a["hickory",]
if(interactive()) {plot(h)}

Extract.fv Extract or Replace Subset of Function Values

Description

Extract or replace a subset of an object of class "fv".

Usage

S3 method for class 'fv'
x[i, j, ..., drop=FALSE]

S3 replacement method for class 'fv'
x[i, j] <- value

S3 replacement method for class 'fv'
x$name <- value

Arguments

x a function value object, of class "fv" (see fv.object). Essentially a data frame.

i any appropriate subset index. Selects a subset of the rows of the data frame, i.e.
a subset of the domain of the function(s) represented by x.

j any appropriate subset index for the columns of the data frame. Selects some of
the functions present in x.

name the name of a column of the data frame.

... Ignored.

drop Logical. If TRUE, the result is a data frame or vector containing the selected rows
and columns of data. If FALSE (the default), the result is another object of class
"fv".

value Replacement value for the column or columns selected by name or j.

244 Extract.fv

Details

These functions extract a designated subset of an object of class "fv", or replace the designated
subset with other data, or delete the designated subset.

The subset is specified by the row index i and column index j, or by the column name name. Either
i or j may be missing, or both may be missing.

The function [.fv is a method for the generic operator [for the class "fv". It extracts the designated
subset of x, and returns it as another object of class "fv" (if drop=FALSE) or as a data frame or vector
(if drop=TRUE).

The function [<-.fv is a method for the generic operator [<- for the class "fv". If value is NULL,
the designated subset of x will be deleted from x. Otherwise, the designated subset of x will be
replaced by the data contained in value. The return value is the modified object x.

The function $<-.fv is a method for the generic operator $<- for the class "fv". If value is NULL,
the designated column of x will be deleted from x. Otherwise, the designated column of x will be
replaced by the data contained in value. The return value is the modified object x.

Value

The result of [.fv with drop=TRUE is a data frame or vector.

Otherwise, the result is another object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object

Examples

K <- Kest(cells)

discard the estimates of K(r) for r > 0.1
Ksub <- K[K$r <= 0.1,]

extract the border method estimates
bor <- K[, "border", drop=TRUE]
or equivalently
bor <- K$border

remove the border-method estimates
K$border <- NULL
K

Extract.influence.ppm 245

Extract.influence.ppm Extract Subset of Influence Object

Description

Extract a subset of an influence object, or extract the influence values at specified locations.

Usage

S3 method for class 'influence.ppm'
x[i, ...]

Arguments

x A influence object (of class "influence.ppm") computed by influence.ppm.

i Subset index (passed to [.ppp). Either a spatial window (object of class "owin")
or an integer index.

... Ignored.

Details

An object of class "influence.ppm" contains the values of the likelihood influence for a point
process model, computed by influence.ppm. This is effectively a marked point pattern obtained
by marking each of the original data points with its likelihood influence.

This function extracts a designated subset of the influence values, either as another influence object,
or as a vector of numeric values.

The function [.influence.ppm is a method for [for the class "influence.ppm". The argument i
should be an index applicable to a point pattern. It may be either a spatial window (object of class
"owin") or a sequence index. The result will be another influence object (of class influence.ppm).

To extract the influence values as a numeric vector, use marks(as.ppp(x)).

Value

Another object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

influence.ppm.

246 Extract.leverage.ppm

Examples

fit <- ppm(cells, ~x)
infl <- influence(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
infl[b]
infl[1:5]
marks(as.ppp(infl))[1:3]

Extract.leverage.ppm Extract Subset of Leverage Object

Description

Extract a subset of a leverage map, or extract the leverage values at specified locations.

Usage

S3 method for class 'leverage.ppm'
x[i, ..., update=TRUE]

Arguments

x A leverage object (of class "leverage.ppm") computed by leverage.ppm.

i Subset index (passed to [.im). Either a spatial window (object of class "owin")
or a spatial point pattern (object of class "ppp").

... Further arguments passed to [.im, especially the argument drop.

update Logical value indicating whether to update the internally-stored value of the
mean leverage, by averaging over the specified subset.

Details

An object of class "leverage.ppm" contains the values of the leverage function for a point process
model, computed by leverage.ppm.

This function extracts a designated subset of the leverage values, either as another leverage object,
or as a vector of numeric values.

The function [.leverage.ppm is a method for [for the class "leverage.ppm". The argument i
should be either

• a spatial window (object of class "owin") determining a region where the leverage map is
required. The result will typically be another leverage map (object of class leverage.ppm).

• a spatial point pattern (object of class "ppp") specifying locations at which the leverage values
are required. The result will be a numeric vector.

The subset operator for images, [.im, is applied to the leverage map. If this yields a pixel image,
then the result of [.leverage.ppm is another leverage object. Otherwise, a vector containing the
numeric values of leverage is returned.

Extract.msr 247

Value

Another object of class "leverage.ppm", or a vector of numeric values of leverage.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

leverage.ppm.

Examples

fit <- ppm(cells ~x)
lev <- leverage(fit)
b <- owin(c(0.1, 0.3), c(0.2, 0.4))
lev[b]
lev[cells]

Extract.msr Extract Subset of Signed or Vector Measure

Description

Extract a subset of a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
x[i, j, ...]

Arguments

x A signed or vector measure. An object of class "msr" (see msr).

i Object defining the subregion or subset to be extracted. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or any type of
index that applies to a matrix.

j Subset index selecting the vector coordinates to be extracted, if x is a vector-
valued measure.

... Ignored.

Details

This operator extracts a subset of the data which determines the signed measure or vector-valued
measure x. The result is another measure.

248 F3est

Value

An object of class "msr".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

rp[square(0.5)]
rs[, 2:3]

F3est Empty Space Function of a Three-Dimensional Point Pattern

Description

Estimates the empty space function F3(r) from a three-dimensional point pattern.

Usage

F3est(X, ..., rmax = NULL, nrval = 128, vside = NULL,
correction = c("rs", "km", "cs"),
sphere = c("fudge", "ideal", "digital"))

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which F3(r) will be estimated.

nrval Optional. Number of values of r for which F3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

vside Optional. Side length of the voxels in the discrete approximation.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

sphere Optional. Character string specifying how to calculate the theoretical value of
F3(r) for a Poisson process. See Details.

F3est 249

Details

For a stationary point process Φ in three-dimensional space, the empty space function is

F3(r) = P (d(0,Φ) ≤ r)

where d(0,Φ) denotes the distance from a fixed origin 0 to the nearest point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The empty space function of Φ can then be estimated using techniques described in the
References.

The box containing the point pattern is discretised into cubic voxels of side length vside. The
distance function d(u,Φ) is computed for every voxel centre point u using a three-dimensional ver-
sion of the distance transform algorithm (Borgefors, 1986). The empirical cumulative distribution
function of these values, with appropriate edge corrections, is the estimate of F3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)

"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)

"cs": the three-dimensional generalisation of the Chiu-Stoyan or Hanisch estimator (Chiu and
Stoyan, 1998).

Alternatively correction="all" selects all options.

The result includes a column theo giving the theoretical value of F3(r) for a uniform Poisson
process (Complete Spatial Randomness). This value depends on the volume of the sphere of radius
r measured in the discretised distance metric. The argument sphere determines how this will be
calculated.

• If sphere="ideal" the calculation will use the volume of an ideal sphere of radius r namely
(4/3)πr3. This is not recommended because the theoretical values of F3(r) are inaccurate.

• If sphere="fudge" then the volume of the ideal sphere will be multiplied by 0.78, which
gives the approximate volume of the sphere in the discretised distance metric.

• If sphere="digital" then the volume of the sphere in the discretised distance metric is com-
puted exactly using another distance transform. This takes longer to compute, but is exact.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A small value of vside and a large value of nrval are required for reasonable accuracy.

The default value of vside ensures that the total number of voxels is 2^22 or about 4 million. To
change the default number of voxels, see spatstat.options("nvoxel").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rana Moyeed.

250 fasp.object

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. Analysis of a three-dimensional point
pattern with replication. Applied Statistics 42 (1993) 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Borgefors, G. (1986) Distance transformations in digital images. Computer Vision, Graphics and
Image Processing 34, 344–371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

G3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Fest to estimate the empty space function of point patterns in two dimensions.

Examples

X <- rpoispp3(42)
Z <- F3est(X)
if(interactive()) plot(Z)

fasp.object Function Arrays for Spatial Patterns

Description

A class "fasp" to represent a “matrix” of functions, amenable to plotting as a matrix of plot panels.

Details

An object of this class is a convenient way of storing (and later plotting, editing, etc) a set of
functions fi,j(r) of a real argument r, defined for each possible pair (i, j) of indices 1 ≤ i, j ≤ n.
We may think of this as a matrix or array of functions fi,j .

Function arrays are particularly useful in the analysis of a multitype point pattern (a point pattern in
which the points are identified as belonging to separate types). We may want to compute a summary
function for the points of type i only, for each of the possible types i. This produces a 1×m array
of functions. Alternatively we may compute a summary function for each possible pair of types
(i, j). This produces an m×m array of functions.

For multitype point patterns the command alltypes will compute arrays of summary functions for
each possible type or for each possible pair of types. The function alltypes returns an object of
class "fasp".

An object of class "fasp" is a list containing at least the following components:

fasp.object 251

fns A list of data frames, each representing one of the functions.

which A matrix representing the spatial arrangement of the functions. If which[i,j] = k then
the function represented by fns[[k]] should be plotted in the panel at position (i, j). If
which[i,j] = NA then nothing is plotted in that position.

titles A list of character strings, providing suitable plotting titles for the functions.

default.formulae A list of default formulae for plotting each of the functions.

title A character string, giving a default title for the array when it is plotted.

Functions available

There are methods for plot, print and "[" for this class.

The plot method displays the entire array of functions. The method [.fasp selects a sub-array
using the natural indices i,j.

The command eval.fasp can be used to apply a transformation to each function in the array, and
to combine two arrays.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fasp, [.fasp, eval.fasp

Examples

GG <- alltypes(amacrine, 'G')

plot(GG)

select the row corresponding to cells of type "on"
Gon <- GG["on",]
plot(Gon)

extract the G function for i = "on", j = "off"
Gonoff <- GG["on", "off", drop=TRUE]

Fisher variance stabilising transformation
GGfish <- eval.fasp(asin(sqrt(GG)))
plot(GGfish)

252 Fest

Fest Estimate the Empty Space Function or its Hazard Rate

Description

Estimates the empty space function F (r) or its hazard rate h(r) from a point pattern in a window
of arbitrary shape.

Usage

Fest(X, ..., eps, r=NULL, breaks=NULL,
correction=c("rs", "km", "cs"),
domain=NULL)

Fhazard(X, ...)

Arguments

X The observed point pattern, from which an estimate of F (r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

... Extra arguments, passed from Fhazard to Fest. Extra arguments to Fest are
ignored.

eps Optional. A positive number. The resolution of the discrete approximation to
Euclidean distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which F (r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimate F (r). A vector of char-
acter strings selected from "none", "rs", "km", "cs" and "best". Alternatively
correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

Details

Fest computes an estimate of the empty space function F (r), and Fhazard computes an estimate
of its hazard rate h(r).

The empty space function (also called the “spherical contact distribution” or the “point-to-nearest-
event” distribution) of a stationary point process X is the cumulative distribution function F of the
distance from a fixed point in space to the nearest point of X .

An estimate of F derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate of F is a useful statistic summarising the sizes of gaps in the pattern. For

Fest 253

inferential purposes, the estimate of F is usually compared to the true value of F for a completely
random (Poisson) point process, which is

F (r) = 1− e−λπr
2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical F curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the empty space function F from the point pattern X. It assumes that X can
be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in
the plane, observed through a bounded window. The window (which is specified in X) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp.

The algorithm uses two discrete approximations which are controlled by the parameter eps and by
the spacing of values of r respectively. (See below for details.) First-time users are strongly advised
not to specify these arguments.

The estimation of F is hampered by edge effects arising from the unobservability of points of
the random pattern outside the window. An edge correction is needed to reduce bias (Baddeley,
1998; Ripley, 1988). The edge corrections implemented here are the border method or "reduced
sample" estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Chiu-
Stoyan estimator (Chiu and Stoyan, 1998).

Our implementation makes essential use of the distance transform algorithm of image processing
(Borgefors, 1986). A fine grid of pixels is created in the observation window. The Euclidean
distance between two pixels is approximated by the length of the shortest path joining them in
the grid, where a path is a sequence of steps between adjacent pixels, and horizontal, vertical and
diagonal steps have length 1, 1 and

√
2 respectively in pixel units. If the pixel grid is sufficiently

fine then this is an accurate approximation.

The parameter eps is the pixel width of the rectangular raster used to compute the distance transform
(see below). It must not be too large: the absolute error in distance values due to discretisation is
bounded by eps.

If eps is not specified, the function checks whether the window Window(X) contains pixel raster
information. If so, then eps is set equal to the pixel width of the raster; otherwise, eps defaults to
1/100 of the width of the observation window.

The argument r is the vector of values for the distance r at which F (r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the spacing of successive r values must be very fine (ideally not greater than eps/4).

The algorithm also returns an estimate of the hazard rate function, h(r) of F (r). The hazard rate is
defined by

h(r) = − d

dr
log(1− F (r))

The hazard rate of F has been proposed as a useful exploratory statistic (Baddeley and Gill, 1994).
The estimate of h(r) given here is a discrete approximation to the hazard rate of the Kaplan-Meier

254 Fest

estimator of F . Note that F is absolutely continuous (for any stationary point process X), so the
hazard function always exists (Baddeley and Gill, 1997).

If the argument domain is given, the estimate of F (r) will be based only on the empty space dis-
tances measured from locations inside domain (although their nearest data points may lie outside
domain). This is useful in bootstrap techniques. The argument domain should be a window (object
of class "owin") or something acceptable to as.owin. It must be a subset of the window of the
point pattern X.

The naive empirical distribution of distances from each location in the window to the nearest point
of the data pattern, is a biased estimate of F . However this is also returned by the algorithm (if
correction="none"), as it is sometimes useful in other contexts. Care should be taken not to use
the uncorrected empirical F as if it were an unbiased estimator of F .

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

The result of Fest is essentially a data frame containing up to seven columns:

r the values of the argument r at which the function F (r) has been estimated

rs the “reduced sample” or “border correction” estimator of F (r)

km the spatial Kaplan-Meier estimator of F (r)

hazard the hazard rate λ(r) of F (r) by the spatial Kaplan-Meier method

cs the Chiu-Stoyan estimator of F (r)

raw the uncorrected estimate of F (r), i.e. the empirical distribution of the distance
from a random point in the window to the nearest point of the data pattern X

theo the theoretical value of F (r) for a stationary Poisson process of the same esti-
mated intensity.

The result of Fhazard contains only three columns

r the values of the argument r at which the hazard rate h(r) has been estimated

hazard the spatial Kaplan-Meier estimate of the hazard rate h(r)

theo the theoretical value of h(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The reduced sample (border method) estimator of F is pointwise approximately unbiased, but need
not be a valid distribution function; it may not be a nondecreasing function of r. Its range is always
within [0, 1].

The spatial Kaplan-Meier estimator of F is always nondecreasing but its maximum value may be
less than 1.

The estimate of hazard rate h(r) returned by the algorithm is an approximately unbiased estimate
for the integral of h() over the corresponding histogram cell. It may exhibit oscillations due to
discretisation effects. We recommend modest smoothing, such as kernel smoothing with kernel
width equal to the width of a histogram cell, using Smooth.fv.

Fest 255

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344-371.

Chiu, S.N. and Stoyan, D. (1998) Estimators of distance distributions for spatial patterns. Statistica
Neerlandica 52, 239–246.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Gest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

Fc <- Fest(cells, 0.01)

Tip: don't use F for the left hand side!
That's an abbreviation for FALSE

plot(Fc)

P-P style plot
plot(Fc, cbind(km, theo) ~ theo)

The empirical F is above the Poisson F
indicating an inhibited pattern

if(interactive()) {

256 Fiksel

plot(Fc, . ~ theo)
plot(Fc, asin(sqrt(.)) ~ asin(sqrt(theo)))
}

Fiksel The Fiksel Interaction

Description

Creates an instance of Fiksel’s double exponential pairwise interaction point process model, which
can then be fitted to point pattern data.

Usage

Fiksel(r, hc=NA, kappa)

Arguments

r The interaction radius of the Fiksel model

hc The hard core distance

kappa The rate parameter

Details

Fiksel (1984) introduced a pairwise interaction point process with the following interaction function
c. For two points u and v separated by a distance d = ||u− v||, the interaction c(u, v) is equal to 0
if d < h, equal to 1 if d > r, and equal to

exp(a exp(−κd))

if h ≤ d ≤ r, where h, r, κ, a are parameters.

A graph of this interaction function is shown in the Examples. The interpretation of the parameters
is as follows.

• h is the hard core distance: distinct points are not permitted to come closer than a distance h
apart.

• r is the interaction range: points further than this distance do not interact.

• κ is the rate or slope parameter, controlling the decay of the interaction as distance increases.

• a is the interaction strength parameter, controlling the strength and type of interaction. If a
is zero, the process is Poisson. If a is positive, the process is clustered. If a is negative, the
process is inhibited (regular).

Fiksel 257

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Fiksel pairwise interaction is yielded by the function Fiksel(). See
the examples below.

The parameters h, r and κ must be fixed and given in the call to Fiksel, while the canonical
parameter a is estimated by ppm().

To estimate h, r andκ it is possible to use profilepl. The maximum likelihood estimator ofh is
the minimum interpoint distance.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

See also Stoyan, Kendall and Mecke (1987) page 161.

Value

An object of class "interact" describing the interpoint interaction structure of the Fiksel process
with interaction radius r, hard core distance hc and rate parameter kappa.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian
point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Stoyan, D, Kendall, W.S. and Mecke, J. (1987) Stochastic geometry and its applications. Wiley.

See Also

ppm, pairwise.family, ppm.object, StraussHard

Examples

Fiksel(r=1,hc=0.02, kappa=2)
prints a sensible description of itself

data(spruces)
X <- unmark(spruces)

fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
plot(fitin(fit))

258 Finhom

Finhom Inhomogeneous Empty Space Function

Description

Estimates the inhomogeneous empty space function of a non-stationary point pattern.

Usage

Finhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
F function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Finhom 259

Details

This command computes estimates of the inhomogeneous F -function (van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the empty space
function F for homogeneous point patterns computed by Fest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous F function is computed using the border correction, equation (6) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

260 fitin.ppm

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Jinhom, Fest

Examples

plot(Finhom(swedishpines, sigma=10))

plot(Finhom(swedishpines, sigma=bw.diggle, adjust=2))

fitin.ppm Extract the Interaction from a Fitted Point Process Model

Description

Given a point process model that has been fitted to point pattern data, this function extracts the
interpoint interaction part of the model as a separate object.

Usage

fitin(object)

S3 method for class 'ppm'
fitin(object)

S3 method for class 'profilepl'
fitin(object)

Arguments

object A fitted point process model (object of class "ppm" or "profilepl").

Details

An object of class "ppm" describes a fitted point process model. It contains information about the
original data to which the model was fitted, the spatial trend that was fitted, the interpoint interaction
that was fitted, and other data. See ppm.object) for details of this class.

The function fitin extracts from this model the information about the fitted interpoint interaction
only. The information is organised as an object of class "fii" (fitted interpoint interaction). This
object can be printed or plotted.

fitin.ppm 261

Users may find this a convenient way to plot the fitted interpoint interaction term, as shown in the
Examples.

For a pairwise interaction, the plot of the fitted interaction shows the pair interaction function (the
contribution to the probability density from a pair of points as a function of the distance between
them). For a higher-order interaction, the plot shows the strongest interaction (the value most dif-
ferent from 1) that could ever arise at the given distance.

The fitted interaction coefficients can also be extracted from this object using coef.

Value

An object of class "fii" representing the fitted interpoint interaction. This object can be printed
and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Methods for handling fitted interactions: methods.fii, reach.fii, as.interact.fii.

Background: ppm, ppm.object.

Examples

unmarked
model <- ppm(swedishpines ~1, PairPiece(seq(3,19,by=4)))
f <- fitin(model)
f
plot(f)

extract fitted interaction coefficients
coef(f)

multitype
fit the stationary multitype Strauss process to `amacrine'
r <- 0.02 * matrix(c(1,2,2,1), nrow=2,ncol=2)
model <- ppm(amacrine ~1, MultiStrauss(r))
f <- fitin(model)
f
plot(f)

262 fitted.mppm

fitted.mppm Fitted Conditional Intensity for Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns, compute the fitted conditional intensity
of the model at the points of each data pattern, or at the points of the quadrature schemes used to fit
the model.

Usage

S3 method for class 'mppm'
fitted(object, ..., type = "lambda", dataonly = FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

type Type of fitted values: either "trend" for the spatial trend, or "lambda" or "cif"
for the conditional intensity.

dataonly If TRUE, fitted values are computed only for the points of the data point patterns.
If FALSE, fitted values are computed for the points of the quadrature schemes
used to fit the model.

Details

This function evaluates the conditional intensity λ̂(u, x) or spatial trend ˆb(u) of the fitted point
process model for certain locations u, for each of the original point patterns x to which the model
was fitted.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature schemes used to fit the model in mppm. They include the data points (the points of the
original point pattern datasets) and other “dummy” points in the window of observation.

Use predict.mppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A list of vectors (one for each row of the original hyperframe, i.e. one vector for each of the original
point patterns) containing the values of the fitted conditional intensity or (if type="trend") the
fitted spatial trend.

Entries in these vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by quad.mppm(object).

fitted.ppm 263

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, predict.mppm

Examples

model <- mppm(Bugs ~ x, data=hyperframe(Bugs=waterstriders),
interaction=Strauss(7))

cifs <- fitted(model)

fitted.ppm Fitted Conditional Intensity for Point Process Model

Description

Given a point process model fitted to a point pattern, compute the fitted conditional intensity or
fitted trend of the model at the points of the pattern, or at the points of the quadrature scheme used
to fit the model.

Usage

S3 method for class 'ppm'
fitted(object, ..., type="lambda",

dataonly=FALSE, new.coef=NULL, leaveoneout=FALSE,
drop=FALSE, check=TRUE, repair=TRUE,
ignore.hardcore=FALSE, dropcoef=FALSE)

Arguments

object The fitted point process model (an object of class "ppm")

... Ignored.

type String (partially matched) indicating whether the fitted value is the conditional
intensity ("lambda" or "cif") or the first order trend ("trend") or the logarithm
of conditional intensity ("link").

264 fitted.ppm

dataonly Logical. If TRUE, then values will only be computed at the points of the data
point pattern. If FALSE, then values will be computed at all the points of the
quadrature scheme used to fit the model, including the points of the data point
pattern.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).
leaveoneout Logical. If TRUE the fitted value at each data point will be computed using a

leave-one-out method. See Details.
drop Logical value determining whether to delete quadrature points that were not

used to fit the model.
check Logical value indicating whether to check the internal format of object. If

there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

dropcoef Internal use only.

Details

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the model-fitting algorithm ppm).

This function evaluates the conditional intensity λ̂(u, x) or spatial trend b̂(u) of the fitted point
process model for certain locations u, where x is the original point pattern dataset to which the
model was fitted.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature scheme used to fit the model in ppm. They include the data points (the points of the
original point pattern dataset x) and other “dummy” points in the window of observation.

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-
out’ rule: the fitted value at X[i] is effectively computed by deleting this point from the data and
re-fitting the model to the reduced pattern X[-i], then predicting the value at X[i]. (Instead of
literally performing this calculation, we apply a Taylor approximation using the influence function
computed in dfbetas.ppm.

The argument drop is explained in quad.ppm.

Use predict.ppm to compute the fitted conditional intensity at other locations or with other values
of the explanatory variables.

Value

A vector containing the values of the fitted conditional intensity, fitted spatial trend, or logarithm of
the fitted conditional intensity.

Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

fitted.slrm 265

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005). Residual analysis for spatial point
processes (with discussion). Journal of the Royal Statistical Society, Series B 67, 617–666.

See Also

ppm.object, ppm, predict.ppm

Examples

str <- ppm(cells ~x, Strauss(r=0.1))
lambda <- fitted(str)

extract quadrature points in corresponding order
quadpoints <- union.quad(quad.ppm(str))

plot conditional intensity values
as circles centred on the quadrature points
quadmarked <- setmarks(quadpoints, lambda)
plot(quadmarked)

if(!interactive()) str <- ppm(cells ~ x)

lambdaX <- fitted(str, leaveoneout=TRUE)

fitted.slrm Fitted Probabilities for Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel.

Usage

S3 method for class 'slrm'
fitted(object, ...)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

266 fixef.mppm

Details

This is a method for the generic function fitted for spatial logistic regression models (objects of
class "slrm", usually obtained from the function slrm).

The algorithm computes the fitted probabilities of the presence of a random point in each pixel.

Value

A pixel image (object of class "im") containing the fitted probability for each pixel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, fitted

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(fitted(fit))

fixef.mppm Extract Fixed Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for fixef.

Usage

S3 method for class 'mppm'
fixef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

FmultiInhom 267

Details

This is a method for the generic function fixef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the fixed effects of the model.

Value

A numeric vector of coefficients.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

coef.mppm

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)
m1 <- mppm(Y ~ id, data=H, Strauss(7))
fixef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
fixef(m2)

FmultiInhom Inhomogeneous Marked F-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype F function, effec-
tively the cumulative distribution function of the distance from a fixed point to the nearest point in
subset J , adjusted for spatially varying intensity.

268 FmultiInhom

Usage

FmultiInhom(X, J,
lambda = NULL, lambdaJ = NULL, lambdamin = NULL,
...,
r = NULL)

Arguments

X A spatial point pattern (object of class "ppp".

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaJ.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Ignored.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

Details

See Cronie and Van Lieshout (2015).

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype F function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

See Also

Finhom

formula.fv 269

Examples

X <- amacrine
J <- (marks(X) == "off")
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
plot(FmultiInhom(X, J, lambda=lam, lambdamin=lmin))

formula.fv Extract or Change the Plot Formula for a Function Value Table

Description

Extract or change the default plotting formula for an object of class "fv" (function value table).

Usage

S3 method for class 'fv'
formula(x, ...)

formula(x, ...) <- value

S3 replacement method for class 'fv'
formula(x, ...) <- value

Arguments

x An object of class "fv", containing the values of several estimates of a function.
... Arguments passed to other methods.
value New value of the formula. Either a formula or a character string.

Details

A function value table (object of class "fv", see fv.object) is a convenient way of storing and
plotting several different estimates of the same function.

The default behaviour of plot(x) for a function value table x is determined by a formula associated
with x called its plot formula. See plot.fv for explanation about these formulae.

The function formula.fv is a method for the generic command formula. It extracts the plot for-
mula associated with the object.

The function formula<- is generic. It changes the formula associated with an object.

The function formula<-.fv is the method for formula<- for the class "fv". It changes the plot
formula associated with the object.

Value

The result of formula.fv is a character string containing the plot formula. The result of formula<-.fv
is a new object of class "fv".

270 formula.ppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv, plot.fv, formula.

Examples

K <- Kest(cells)
formula(K)
formula(K) <- (iso ~ r)

formula.ppm Model Formulae for Gibbs Point Process Models

Description

Extract the trend formula, or the terms in the trend formula, in a fitted Gibbs point process model.

Usage

S3 method for class 'ppm'
formula(x, ...)
S3 method for class 'ppm'
terms(x, ...)

Arguments

x An object of class "ppm", representing a fitted point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands formula and terms for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method formula.ppm extracts the trend formula from the fitted model x (the formula originally
specified as the argument trend to ppm). The method terms.ppm extracts the individual terms in
the trend formula.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

fryplot 271

See Also

ppm, as.owin, coef.ppm, extractAIC.ppm, fitted.ppm, logLik.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, update.ppm, vcov.ppm.

Examples

data(cells)
fit <- ppm(cells, ~x)
formula(fit)
terms(fit)

fryplot Fry Plot of Point Pattern

Description

Displays the Fry plot (Patterson plot) of a spatial point pattern.

Usage

fryplot(X, ..., width=NULL, from=NULL, to=NULL, axes=FALSE)
frypoints(X, from=NULL, to=NULL, dmax=Inf)

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

width Optional parameter indicating the width of a box for a zoomed-in view of the
Fry plot near the origin.

from,to Optional. Subset indices specifying which points of X will be considered when
forming the vectors (drawn from each point of from, to each point of to.)

axes Logical value indicating whether to draw axes, crossing at the origin.

dmax Maximum distance between points. Pairs at greater distances do not contribute
to the result. The default means there is no maximum distance.

Details

The function fryplot generates a Fry plot (or Patterson plot); frypoints returns the points of the
Fry plot as a point pattern dataset.

Fry (1979) and Hanna and Fry (1979) introduced a manual graphical method for investigating fea-
tures of a spatial point pattern of mineral deposits. A transparent sheet, marked with an origin or
centre point, is placed over the point pattern. The transparent sheet is shifted so that the origin
lies over one of the data points, and the positions of all the other data points are copied onto the
transparent sheet. This procedure is repeated for each data point in turn. The resulting plot (the Fry
plot) is a pattern of n(n− 1) points, where n is the original number of data points. This procedure

272 fryplot

was previously proposed by Patterson (1934, 1935) for studying inter-atomic distances in crystals,
and is also known as a Patterson plot.

The function fryplot generates the Fry/Patterson plot. Standard graphical parameters such as
main, pch, lwd, col, bg, cex can be used to control the appearance of the plot. To zoom in (to view
only a subset of the Fry plot at higher magnification), use the argument width to specify the width
of a rectangular field of view centred at the origin, or the standard graphical arguments xlim and
ylim to specify another rectangular field of view. (The actual field of view may be slightly larger,
depending on the graphics device.)

The function frypoints returns the points of the Fry plot as a point pattern object. There may be a
large number of points in this pattern, so this function should be used only if further analysis of the
Fry plot is required.

Fry plots are particularly useful for recognising anisotropy in regular point patterns. A void around
the origin in the Fry plot suggests regularity (inhibition between points) and the shape of the void
gives a clue to anisotropy in the pattern. Fry plots are also useful for detecting periodicity or
rounding of the spatial coordinates.

In mathematical terms, the Fry plot of a point pattern X is simply a plot of the vectors X[i] - X[j]
connecting all pairs of distinct points in X.

The Fry plot is related to the K function (see Kest) and the reduced second moment measure (see
Kmeasure). For example, the number of points in the Fry plot lying within a circle of given radius is
an unnormalised and uncorrected version of the K function. The Fry plot has a similar appearance
to the plot of the reduced second moment measure Kmeasure when the smoothing parameter sigma
is very small.

The Fry plot does not adjust for the effect of the size and shape of the sampling window. The density
of points in the Fry plot tapers off near the edges of the plot. This is an edge effect, a consequence
of the bounded sampling window. In geological applications this is usually not important, because
interest is focused on the behaviour near the origin where edge effects can be ignored. To correct
for the edge effect, use Kmeasure or Kest or its relatives.

Value

fryplot returns NULL. frypoints returns a point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Fry, N. (1979) Random point distributions and strain measurement in rocks. Tectonophysics 60,
89–105.

Hanna, S.S. and Fry, N. (1979) A comparison of methods of strain determination in rocks from
southwest Dyfed (Pembrokeshire) and adjacent areas. Journal of Structural Geology 1, 155–162.

Patterson, A.L. (1934) A Fourier series method for the determination of the component of inter-
atomic distances in crystals. Physics Reviews 46, 372–376.

Patterson, A.L. (1935) A direct method for the determination of the components of inter-atomic
distances in crystals. Zeitschrift fuer Krystallographie 90, 517–554.

fv 273

See Also

Kmeasure, Kest

Examples

unmarked data
fryplot(cells)
Y <- frypoints(cells)

numerical marks
fryplot(longleaf, width=4, axes=TRUE)

multitype points
fryplot(amacrine, width=0.2,

from=(marks(amacrine) == "on"),
chars=c(3,16), cols=2:3,
main="Fry plot centred at an On-cell")

points(0,0)

fv Create a Function Value Table

Description

Advanced Use Only. This low-level function creates an object of class "fv" from raw numerical
data.

Usage

fv(x, argu = "r", ylab = NULL, valu, fmla = NULL, alim = NULL,
labl = names(x), desc = NULL, unitname = NULL, fname = NULL, yexp = ylab)

Arguments

x A data frame with at least 2 columns containing the values of the function argu-
ment and the corresponding values of (one or more versions of) the function.

argu String. The name of the column of x that contains the values of the function
argument.

ylab Either NULL, or an R language expression representing the mathematical name
of the function. See Details.

valu String. The name of the column of x that should be taken as containing the
function values, in cases where a single column is required.

fmla Either NULL, or a formula specifying the default plotting behaviour. See Details.

alim Optional. The default range of values of the function argument for which the
function will be plotted. Numeric vector of length 2.

labl Optional. Plot labels for the columns of x. A vector of strings, with one entry
for each column of x.

274 fv

desc Optional. Descriptions of the columns of x. A vector of strings, with one entry
for each column of x.

unitname Optional. Name of the unit (usually a unit of length) in which the function argu-
ment is expressed. Either a single character string, or a vector of two character
strings giving the singular and plural forms, respectively.

fname Optional. The name of the function itself. A character string.

yexp Optional. Alternative form of ylab more suitable for annotating an axis of the
plot. See Details.

Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat. Other users please see fv.object.

The low-level function fv is used to create an object of class "fv" from raw numerical data.

The data frame x contains the numerical data. It should have one column (typically but not nec-
essarily named "r") giving the values of the function argument for which the function has been
evaluated; and at least one other column, containing the corresponding values of the function.

Typically there is more than one column of function values. These columns typically give the values
of different versions or estimates of the same function, for example, different estimates of the K
function obtained using different edge corrections. However they may also contain the values of
related functions such as the derivative or hazard rate.

argu specifies the name of the column of x that contains the values of the function argument (typi-
cally argu="r" but this is not compulsory).

valu specifies the name of another column that contains the ‘recommended’ estimate of the func-
tion. It will be used to provide function values in those situations where a single column of data is
required. For example, envelope computes its simulation envelopes using the recommended value
of the summary function.

fmla specifies the default plotting behaviour. It should be a formula, or a string that can be converted
to a formula. Variables in the formula are names of columns of x. See plot.fv for the interpretation
of this formula.

alim specifies the recommended range of the function argument. This is used in situations where
statistical theory or statistical practice indicates that the computed estimates of the function are not
trustworthy outside a certain range of values of the function argument. By default, plot.fv will
restrict the plot to this range.

fname is a string giving the name of the function itself. For example, the K function would have
fname="K".

ylab is a mathematical expression for the function value, used when labelling an axis of the plot,
or when printing a description of the function. It should be an R language object. For example the
K function’s mathematical name K(r) is rendered by ylab=quote(K(r)).

If yexp is present, then ylab will be used only for printing, and yexp will be used for annotating axes
in a plot. (Otherwise yexp defaults to ylab). For example the cross-typeK functionK1,2(r) is ren-
dered by something like ylab=quote(Kcross[1,2](r)) and yexp=quote(Kcross[list(1,2)](r))
to get the most satisfactory behaviour.

fv 275

(A useful tip: use substitute instead of quote to insert values of variables into an expression,
e.g. substitute(Kcross[i,j](r), list(i=42,j=97)) yields the same as quote(Kcross[42,
97](r)).)

labl is a character vector specifying plot labels for each column of x. These labels will appear on
the plot axes (in non-default plots), legends and printed output. Entries in labl may contain the
string "%s" which will be replaced by fname. For example the border-corrected estimate of the K
function has label "%s[bord](r)" which becomes "K[bord](r)".

desc is a character vector containing intelligible explanations of each column of x. Entries in desc
may contain the string "%s" which will be replaced by ylab. For example the border correction
estimate of the K function has description "border correction estimate of %s".

Value

An object of class "fv", see fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Use range.fv to compute the range of y values for a function, and with.fv for more complicated
calculations.

The functions fvnames, fvnames<- allow the user to use standard abbreviations to refer to columns
of an "fv" object.

Undocumented functions for modifying an "fv" object include tweak.fv.entry and rebadge.fv.

Examples

df <- data.frame(r=seq(0,5,by=0.1))
df <- transform(df, a=pi*r^2, b=3*r^2)
X <- fv(df, "r", quote(A(r)),

"a", cbind(a, b) ~ r,
alim=c(0,4),
labl=c("r", "%s[true](r)", "%s[approx](r)"),
desc=c("radius of circle",

"true area %s",
"rough area %s"),

fname="A")
X

276 fv.object

fv.object Function Value Table

Description

A class "fv" to support the convenient plotting of several estimates of the same function.

Details

An object of this class is a convenient way of storing and plotting several different estimates of the
same function.

It is a data frame with extra attributes indicating the recommended way of plotting the function, and
other information.

There are methods for print and plot for this class.

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Objects of class "fv" are returned by Fest, Gest,Jest, and Kest along with many other functions.

See plot.fv for plotting an "fv" object.

See as.function.fv to convert an "fv" object to an R function.

Use cbind.fv to combine several "fv" objects. Use bind.fv to glue additional columns onto an
existing "fv" object.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge.fv.

Examples

K <- Kest(cells)
class(K)

K # prints a sensible summary

plot(K)

fvnames 277

fvnames Abbreviations for Groups of Columns in Function Value Table

Description

Groups of columns in a function value table (object of class "fv") identified by standard abbrevia-
tions.

Usage

fvnames(X, a = ".")

fvnames(X, a = ".") <- value

Arguments

X Function value table (object of class "fv"). See fv.object.

a One of the standard abbreviations listed below.

value Character vector containing names of columns of X.

Details

An object of class "fv" represents a table of values of a function, usually a summary function
for spatial data such as the K-function, for which several different statistical estimators may be
available. The different estimates are stored as columns of the table.

Auxiliary information carried in the object X specifies some columns or groups of columns of this
table that should be used for particular purposes. For convenience these groups can be referred to
by standard abbreviations which are recognised by various functions in the spatstat package, such
as plot.fv.

These abbreviations are:

".x" the function argument
".y" the recommended value of the function
"." all function values to be plotted by default

(in order of plotting)
".s" the upper and lower limits of shading

(for envelopes and confidence intervals)
".a" all function values (in column order)

The command fvnames(X, a) expands the abbreviation a and returns a character vector containing
the names of the columns.

The assignment fvnames(X, a) <- value changes the definition of the abbreviation a to the char-
acter string value (which should be the name of another column of X). The column names of X are
not changed.

278 G3est

Note that fvnames(x, ".") lists the columns of values that will be plotted by default, in the order
that they would be plotted, not in order of the column position. The order in which curves are
plotted affects the colours and line styles associated with the curves.

Value

For fvnames, a character vector.

For fvnames<-, the updated object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, plot.fv

Examples

K <- Kest(cells)
fvnames(K, ".y")
fvnames(K, ".y") <- "trans"

G3est Nearest Neighbour Distance Distribution Function of a Three-
Dimensional Point Pattern

Description

Estimates the nearest-neighbour distance distribution function G3(r) from a three-dimensional
point pattern.

Usage

G3est(X, ..., rmax = NULL, nrval = 128, correction = c("rs", "km", "Hanisch"))

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which G3(r) will be estimated.

nrval Optional. Number of values of r for which G3(r) will be estimated. A large
value of nrval is required to avoid discretisation effects.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

G3est 279

Details

For a stationary point process Φ in three-dimensional space, the nearest-neighbour function is

G3(r) = P (d∗(x,Φ) ≤ r | x ∈ Φ)

the cumulative distribution function of the distance d∗(x,Φ) from a typical point x in Φ to its nearest
neighbour, i.e. to the nearest other point of Φ.

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The nearest neighbour function of Φ can then be estimated using techniques described
in the References. For each data point, the distance to the nearest neighbour is computed. The
empirical cumulative distribution function of these values, with appropriate edge corrections, is the
estimate of G3(r).

The available edge corrections are:

"rs": the reduced sample (aka minus sampling, border correction) estimator (Baddeley et al, 1993)
"km": the three-dimensional version of the Kaplan-Meier estimator (Baddeley and Gill, 1997)
"Hanisch": the three-dimensional generalisation of the Hanisch estimator (Hanisch, 1984).

Alternatively correction="all" selects all options.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Warnings

A large value of nrval is required in order to avoid discretisation effects (due to the use of his-
tograms in the calculation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Baddeley, A.J. and Gill, R.D. (1997) Kaplan-Meier estimators of interpoint distance distributions
for spatial point processes. Annals of Statistics 25, 263–292.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, K3est, pcf3est for other summary functions of a three-dimensional point pattern.

Gest to estimate the empty space function of point patterns in two dimensions.

280 Gcom

Examples

X <- rpoispp3(42)
Z <- G3est(X)
if(interactive()) plot(Z)

Gcom Model Compensator of Nearest Neighbour Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compen-
sator of the nearest neighbour distance distribution function G based on the fitted model (as well
as the usual nonparametric estimates of G based on the data alone). Comparison between the non-
parametric and model-compensated G functions serves as a diagnostic for the model.

Usage

Gcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "Hanisch"),
conditional = !is.poisson(object),
restrict=FALSE,
model=NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction),
ppmcorrection="border",
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function G(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for internal use only.

correction Edge correction(s) to be employed in calculating the compensator. Options are
"border", "Hanisch" and "best". Alternatively correction="all" selects
all options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

Gcom 281

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

... Extra arguments passed to ppm.

ppmcorrection The correction argument to ppm.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes different estimates of the nearest neighbour distance distribution
functionG of the dataset, which should be approximately equal if the model is a good fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the G function. It then also computes the model-
compensated G function. The different functions are returned as columns in a data frame (of class
"fv"). The interpretation of the columns is as follows (ignoring edge corrections):

bord: the nonparametric border-correction estimate of G(r),

Ĝ(r) =

∑
i I{di ≤ r}I{bi > r}∑

i I{bi > r}

where di is the distance from the i-th data point to its nearest neighbour, and bi is the distance
from the i-th data point to the boundary of the window W .

bcom: the model compensator of the border-correction estimate

C Ĝ(r) =

∫
λ(u, x)I{b(u) > r}I{d(u, x) ≤ r}

1 +
∑
i I{bi > r}

where λ(u, x) denotes the conditional intensity of the model at the location u, and d(u, x)
denotes the distance from u to the nearest point in x, while b(u) denotes the distance from u
to the boundary of the windowW .

han: the nonparametric Hanisch estimate of G(r)

Ĝ(r) =
D(r)

D(∞)

282 Gcom

where

D(r) =
∑
i

I{xi ∈W	di}I{di ≤ r}
area(W	di)

in which W	r denotes the erosion of the window W by a distance r.

hcom: the corresponding model-compensated function

CG(r) =

∫
W

λ(u, x)I(u ∈W	d(u))I(d(u) ≤ r)
D̂(∞)area(W	d(u)) + 1

where d(u) = d(u, x) is the (‘empty space’) distance from location u to the nearest point of
x.

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix E of Baddeley, Rubak and Møller (2011). See also spatstat.options('eroded.intensity').
Thus, by default, the reweighting estimator is computed for non-Poisson models.

The border-corrected and Hanisch-corrected estimates of G(r) are approximately unbiased esti-
mates of the G-function, assuming the point process is stationary. The model-compensated func-
tions are unbiased estimates of the mean value of the corresponding nonparametric estimate, as-
suming the model is true. Thus, if the model is a good fit, the mean value of the difference between
the nonparametric and model-compensated estimates is approximately zero.

To compute the difference between the nonparametric and model-compensated functions, use Gres.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gest, Gres.

Alternative functions: Kcom, psstA, psstG, psst.

Model fitting: ppm.

Gcross 283

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gcom(fit0)
G0
plot(G0)

uniform Poisson is clearly not correct

Hanisch estimates only
plot(Gcom(fit0), cbind(han, hcom) ~ r)

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gcom(fit1), cbind(han, hcom) ~ r)

Try adjusting interaction distance

fit2 <- update(fit1, Strauss(0.10))
plot(Gcom(fit2), cbind(han, hcom) ~ r)

G3 <- Gcom(cells, interaction=Strauss(0.12))
plot(G3, cbind(han, hcom) ~ r)

Gcross Multitype Nearest Neighbour Distance Function (i-to-j)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest point of type j.

Usage

Gcross(X, i, j, r=NULL, breaks=NULL, ..., correction=c("rs", "km", "han"))

Arguments

X The observed point pattern, from which an estimate of the cross type distance
distribution function Gij(r) will be computed. It must be a multitype point
pattern (a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

284 Gcross

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.
... Ignored.
correction Optional. Character string specifying the edge correction(s) to be used. Options

are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Gcross and its companions Gdot and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “cross-type” (type i to type j) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gij(r) of the distance from a typical random
point of the process with type i the nearest point of type j.

An estimate of Gij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, then Gij(r)
would equal Fj(r), the empty space function of the type j points. For a multitype Poisson point
process where the type i points have intensity λi, we have

Gij(r) = 1− e−λjπr
2

Deviations between the empirical and theoretical Gij curves may suggest dependence between the
points of types i and j.

This algorithm estimates the distribution function Gij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which Gij(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

Gcross 285

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gij(r). This estimate
should be used with caution as Gij(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gij . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gij as if it were an unbiased estimator of Gij .

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gij(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gij(r)

han the Hanisch-style estimator of Gij(r)

km the spatial Kaplan-Meier estimator of Gij(r)

hazard the hazard rate λ(r) of Gij(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gij(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of Gij(r) for a marked Poisson process with the same esti-
mated intensity (see below).

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

The function Gij does not necessarily have a density.

The reduced sample estimator of Gij is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gij is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

286 Gdot

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gdot, Gest, Gmulti

Examples

amacrine cells data
G01 <- Gcross(amacrine)

equivalent to:
G01 <- Gcross(amacrine, "off", "on")

plot(G01)

empty space function of `on' points
if(interactive()) {

F1 <- Fest(split(amacrine)$on, r = G01$r)
lines(F1$r, F1$km, lty=3)

}

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gcross(pp, "0", "1") # note: "0" not 0

Gdot Multitype Nearest Neighbour Distance Function (i-to-any)

Description

For a multitype point pattern, estimate the distribution of the distance from a point of type i to the
nearest other point of any type.

Usage

Gdot(X, i, r=NULL, breaks=NULL, ..., correction=c("km", "rs", "han"))

Gdot 287

Arguments

X The observed point pattern, from which an estimate of the distance distribution
functionGi•(r) will be computed. It must be a multitype point pattern (a marked
point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

r Optional. Numeric vector. The values of the argument r at which the distribution
function Gi•(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Gdot and its companions Gcross and Gmulti are generalisations of the function Gest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “dot-type” (type i to any type) nearest neighbour distance distribution function of a multitype
point process is the cumulative distribution function Gi•(r) of the distance from a typical random
point of the process with type i the nearest other point of the process, regardless of type.

An estimate ofGi•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the type i points were independent of all other points, then Gi•(r) would equal Gii(r),
the nearest neighbour distance distribution function of the type i points alone. For a multitype
Poisson point process with total intensity λ, we have

Gi•(r) = 1− e−λπr
2

Deviations between the empirical and theoretical Gi• curves may suggest dependence of the type i
points on the other points.

This algorithm estimates the distribution function Gi•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

288 Gdot

The argument r is the vector of values for the distance r at which Gi•(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of Gi•(r). This estimate
should be used with caution as Gi•(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of Gi•. However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
Gi• as if it were an unbiased estimator of Gi•.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function Gi•(r) has been estimated

rs the “reduced sample” or “border correction” estimator of Gi•(r)

han the Hanisch-style estimator of Gi•(r)

km the spatial Kaplan-Meier estimator of Gi•(r)

hazard the hazard rate λ(r) of Gi•(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of Gi•(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest other point of any type.

theo the theoretical value of Gi•(r) for a marked Poisson process with the same esti-
mated intensity (see below).

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

The function Gi• does not necessarily have a density.

The reduced sample estimator of Gi• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of Gi• is always nondecreasing but its maximum value may be
less than 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Gest 289

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gcross, Gest, Gmulti

Examples

amacrine cells data
G0. <- Gdot(amacrine, "off")
plot(G0.)

synthetic example
pp <- runifpoispp(30)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
G <- Gdot(pp, "0")
G <- Gdot(pp, 0) # equivalent

Gest Nearest Neighbour Distance Function G

Description

Estimates the nearest neighbour distance distribution function G(r) from a point pattern in a win-
dow of arbitrary shape.

Usage

Gest(X, r=NULL, breaks=NULL, ...,
correction=c("rs", "km", "han"),
domain=NULL)

290 Gest

Arguments

X The observed point pattern, from which an estimate of G(r) will be computed.
An object of class ppp, or data in any format acceptable to as.ppp().

r Optional. Numeric vector. The values of the argument r at which G(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. The edge correction(s) to be used to estimate G(r). A vector of
character strings selected from "none", "rs", "km", "Hanisch" and "best".
Alternatively correction="all" selects all options.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

Details

The nearest neighbour distance distribution function (also called the “event-to-event” or “inter-
event” distribution) of a point process X is the cumulative distribution function G of the distance
from a typical random point of X to the nearest other point of X .

An estimate ofG derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1988). In exploratory
analyses, the estimate ofG is a useful statistic summarising one aspect of the “clustering” of points.
For inferential purposes, the estimate of G is usually compared to the true value of G for a com-
pletely random (Poisson) point process, which is

G(r) = 1− e−λπr
2

where λ is the intensity (expected number of points per unit area). Deviations between the empirical
and theoretical G curves may suggest spatial clustering or spatial regularity.

This algorithm estimates the nearest neighbour distance distribution function G from the point pat-
tern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) ran-
dom spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The estimation of G is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The edge corrections implemented here are the border method or “reduced sample”
estimator, the spatial Kaplan-Meier estimator (Baddeley and Gill, 1997) and the Hanisch estimator
(Hanisch, 1984).

The argument r is the vector of values for the distance r at which G(r) should be evaluated. It
is also used to determine the breakpoints (in the sense of hist) for the computation of histograms
of distances. The estimators are computed from histogram counts. This introduces a discretisation
error which is controlled by the fineness of the breakpoints.

Gest 291

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of G(r). The hazard rate
is defined as the derivative

λ(r) = − d

dr
log(1−G(r))

This estimate should be used with caution as G is not necessarily differentiable.

If the argument domain is given, the estimate of G(r) will be based only on the nearest neighbour
distances measured from points falling inside domain (although their nearest neighbours may lie
outside domain). This is useful in bootstrap techniques. The argument domain should be a window
(object of class "owin") or something acceptable to as.owin. It must be a subset of the window of
the point pattern X.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate ofG. However it is sometimes useful. It can be returned by
the algorithm, by selecting correction="none". Care should be taken not to use the uncorrected
empirical G as if it were an unbiased estimator of G.

To simply compute the nearest neighbour distance for each point in the pattern, use nndist. To
determine which point is the nearest neighbour of a given point, use nnwhich.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing some or all of the following columns:

r the values of the argument r at which the function G(r) has been estimated

rs the “reduced sample” or “border correction” estimator of G(r)

km the spatial Kaplan-Meier estimator of G(r)

hazard the hazard rate λ(r) of G(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of G(r), i.e. the empirical distribution of the distances
from each point in the pattern X to the nearest other point of the pattern

han the Hanisch correction estimator of G(r)

theo the theoretical value of G(r) for a stationary Poisson process of the same esti-
mated intensity.

Warnings

The function G does not necessarily have a density. Any valid c.d.f. may appear as the nearest
neighbour distance distribution function of a stationary point process.

The reduced sample estimator of G is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of G is always nondecreasing but its maximum value may be
less than 1.

292 Gest

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263-292.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Hanisch, K.-H. (1984) Some remarks on estimators of the distribution function of nearest-neighbour
distance in stationary spatial point patterns. Mathematische Operationsforschung und Statistik,
series Statistics 15, 409–412.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

nndist, nnwhich, Fest, Jest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

data(cells)
G <- Gest(cells)
plot(G)

P-P style plot
plot(G, cbind(km,theo) ~ theo)

the empirical G is below the Poisson G,
indicating an inhibited pattern

if(interactive()) {
plot(G, . ~ r)
plot(G, . ~ theo)
plot(G, asin(sqrt(.)) ~ asin(sqrt(theo)))

}

Geyer 293

Geyer Geyer’s Saturation Point Process Model

Description

Creates an instance of Geyer’s saturation point process model which can then be fitted to point
pattern data.

Usage

Geyer(r,sat)

Arguments

r Interaction radius. A positive real number.

sat Saturation threshold. A non-negative real number.

Details

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process (see Strauss)
in which the total contribution to the potential from each point (from its pairwise interaction with
all other points) is trimmed to a maximum value s. The interaction structure of this model is imple-
mented in the function Geyer().

The saturation point process with interaction radius r, saturation threshold s, and parameters β and
γ, is the point process in which each point xi in the pattern X contributes a factor

βγmin(s,t(xi,X))

to the probability density of the point pattern, where t(xi, X) denotes the number of ‘close neigh-
bours’ of xi in the patternX . A close neighbour of xi is a point xj with j 6= i such that the distance
between xi and xj is less than or equal to r.

If the saturation threshold s is set to infinity, this model reduces to the Strauss process (see Strauss)
with interaction parameter γ2. If s = 0, the model reduces to the Poisson point process. If s is a
finite positive number, then the interaction parameter γ may take any positive value (unlike the case
of the Strauss process), with values γ < 1 describing an ‘ordered’ or ‘inhibitive’ pattern, and values
γ > 1 describing a ‘clustered’ or ‘attractive’ pattern.

The nonstationary saturation process is similar except that the value β is replaced by a function
β(xi) of location.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the saturation process interaction is yielded by Geyer(r, sat) where
the arguments r and sat specify the Strauss interaction radius r and the saturation threshold s,
respectively. See the examples below.

Note the only arguments are the interaction radius r and the saturation threshold sat. When r and
sat are fixed, the model becomes an exponential family. The canonical parameters log(β) and
log(γ) are estimated by ppm(), not fixed in Geyer().

294 Gfox

Value

An object of class "interact" describing the interpoint interaction structure of Geyer’s saturation
point process with interaction radius r and saturation threshold sat.

Zero saturation

The value sat=0 is permitted by Geyer, but this is not very useful. For technical reasons, when ppm
fits a Geyer model with sat=0, the default behaviour is to return an “invalid” fitted model in which
the estimate of γ is NA. In order to get a Poisson process model returned when sat=0, you would
need to set emend=TRUE in the call to ppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, pairwise.family, ppm.object, Strauss.

To make an interaction object like Geyer but having multiple interaction radii, see BadGey or
Hybrid.

Examples

ppm(cells, ~1, Geyer(r=0.07, sat=2))
fit the stationary saturation process to `cells'

Gfox Foxall’s Distance Functions

Description

Given a point pattern X and a spatial object Y, compute estimates of Foxall’s G and J functions.

Usage

Gfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...)
Jfox(X, Y, r=NULL, breaks=NULL, correction=c("km", "rs", "han"), W, ...,

warn.trim=TRUE)

Gfox 295

Arguments

X A point pattern (object of class "ppp") from which distances will be measured.

Y An object of class "ppp", "psp" or "owin" to which distances will be measured.
Alternatively a pixel image (class "im") with logical values.

r Optional. Numeric vector. The values of the argument r at which Gfox(r) or
Jfox(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction Optional. The edge correction(s) to be used to estimateGfox(r) or Jfox(r). A
vector of character strings selected from "none", "rs", "km", "cs" and "best".
Alternatively correction="all" selects all options.

W Optional. A window (object of class "owin") to be taken as the window of
observation. The distribution function will be estimated from data inside W. The
default is W=Frame(Y) when Y is a window, and W=Window(Y) otherwise.

... Extra arguments affecting the discretisation of distances. These arguments are
ignored by Gfox, but Jfox passes them to Hest to determine the discretisation
of the spatial domain.

warn.trim Logical value indicating whether a warning should be issued by Jfox when the
window of X had to be trimmed in order to be a subset of the frame of Y.

Details

Given a point pattern X and another spatial object Y, these functions compute two nonparametric
measures of association between X and Y, introduced by Foxall (Foxall and Baddeley, 2002).

Let the random variable R be the distance from a typical point of X to the object Y. Foxall’s G-
function is the cumulative distribution function of R:

G(r) = P (R ≤ r)

Let the random variable S be the distance from a fixed point in space to the object Y. The cumulative
distribution function of S is the (unconditional) spherical contact distribution function

H(r) = P (S ≤ r)

which is computed by Hest.

Foxall’s J-function is the ratio

J(r) =
1−G(r)

1−H(r)

For further interpretation, see Foxall and Baddeley (2002).

Accuracy of Jfox depends on the pixel resolution, which is controlled by the arguments eps, dimyx
and xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

296 Ginhom

Value

A function value table (object of class "fv") which can be printed, plotted, or converted to a data
frame of values.

Author(s)

Rob Foxall and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Foxall, R. and Baddeley, A. (2002) Nonparametric measures of association between a spatial point
process and a random set, with geological applications. Applied Statistics 51, 165–182.

See Also

Gest, Hest, Jest, Fest

Examples

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
G <- Gfox(X,Y)
J <- Jfox(X,Y, correction="km")

Ginhom Inhomogeneous Nearest Neighbour Function

Description

Estimates the inhomogeneous nearest neighbour function G of a non-stationary point pattern.

Usage

Ginhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio = FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
G function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

Ginhom 297

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm") or a function(x,y) which can be evaluated to give the intensity
value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous G-function (van Lieshout, 2010) of
a point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the nearest-
neighbour distance distribution function G for homogeneous point patterns computed by Gest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous G function is computed using the border correction, equation (7) in Van
Lieshout (2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

298 Ginhom

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Finhom, Jinhom, Gest

Examples

plot(Ginhom(swedishpines, sigma=10))

plot(Ginhom(swedishpines, sigma=bw.diggle, adjust=2))

Gmulti 299

Gmulti Marked Nearest Neighbour Distance Function

Description

For a marked point pattern, estimate the distribution of the distance from a typical point in subset I
to the nearest point of subset J .

Usage

Gmulti(X, I, J, r=NULL, breaks=NULL, ...,
disjoint=NULL, correction=c("rs", "km", "han"))

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function GIJ(r) will be computed. It must be a marked point pat-
tern. See under Details.

I Subset of points of X from which distances are measured.

J Subset of points in X to which distances are measured.

r Optional. Numeric vector. The values of the argument r at which the distribution
function GIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "hanisch" and "best". Alternatively correction="all"
selects all options.

Details

The function Gmulti generalises Gest (for unmarked point patterns) and Gdot and Gcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. This function com-
putes an estimate of the cumulative distribution functionGIJ(r) of the distance from a typical point
of XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

300 Gmulti

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

This algorithm estimates the distribution function GIJ(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Gest.

The argument r is the vector of values for the distance r at which GIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

The algorithm also returns an estimate of the hazard rate function, λ(r), of GIJ(r). This estimate
should be used with caution as GIJ(r) is not necessarily differentiable.

The naive empirical distribution of distances from each point of the pattern X to the nearest other
point of the pattern, is a biased estimate of GIJ . However this is also returned by the algorithm, as
it is sometimes useful in other contexts. Care should be taken not to use the uncorrected empirical
GIJ as if it were an unbiased estimator of GIJ .

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function GIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of GIJ(r)

han the Hanisch-style estimator of GIJ(r)

km the spatial Kaplan-Meier estimator of GIJ(r)

hazard the hazard rate λ(r) of GIJ(r) by the spatial Kaplan-Meier method

raw the uncorrected estimate of GIJ(r), i.e. the empirical distribution of the dis-
tances from each point of type i to the nearest point of type j

theo the theoretical value of GIJ(r) for a marked Poisson process with the same
estimated intensity

Warnings

The function GIJ does not necessarily have a density.

The reduced sample estimator of GIJ is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r. Its range is always within [0, 1].

The spatial Kaplan-Meier estimator of GIJ is always nondecreasing but its maximum value may be
less than 1.

GmultiInhom 301

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Gcross, Gdot, Gest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Gm <- Gmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Gm)

GmultiInhom Inhomogeneous Marked G-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype G function, ef-
fectively the cumulative distribution function of the distance from a point in subset I to the nearest
point in subset J , adjusted for spatially varying intensity.

302 GmultiInhom

Usage

GmultiInhom(X, I, J,
lambda = NULL, lambdaI = NULL, lambdaJ = NULL,
lambdamin = NULL, ...,
r = NULL,
ReferenceMeasureMarkSetI = NULL,
ratio = FALSE)

Arguments

X A spatial point pattern (object of class "ppp".

I A subset index specifying the subset of points from which distances are mea-
sured. Any kind of subset index acceptable to [.ppp.

J A subset index specifying the subset of points to which distances are measured.
Any kind of subset index acceptable to [.ppp.

lambda Intensity estimates for each point of X. A numeric vector of length equal to
npoints(X). Incompatible with lambdaI,lambdaJ.

lambdaI Intensity estimates for each point of X[I]. A numeric vector of length equal to
npoints(X[I]). Incompatible with lambda.

lambdaJ Intensity estimates for each point of X[J]. A numeric vector of length equal to
npoints(X[J]). Incompatible with lambda.

lambdamin A lower bound for the intensity, or at least a lower bound for the values in
lambdaJ or lambda[J].

... Ignored.

r Vector of distance values at which the inhomogeneous G function should be
estimated. There is a sensible default.

ReferenceMeasureMarkSetI

Optional. The total measure of the mark set. A positive number.

ratio Logical value indicating whether to save ratio information.

Details

See Cronie and Van Lieshout (2015).

Value

Object of class "fv" containing the estimate of the inhomogeneous multitype G function.

Author(s)

Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point
processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z

Gres 303

See Also

Ginhom, Gmulti

Examples

X <- rescale(amacrine)
I <- (marks(X) == "on")
J <- (marks(X) == "off")
mod <- ppm(X ~ marks * x)
lam <- fitted(mod, dataonly=TRUE)
lmin <- min(predict(mod)[["off"]]) * 0.9
plot(GmultiInhom(X, I, J, lambda=lam, lambdamin=lmin))
equivalent
plot(GmultiInhom(X, I, J, lambdaI=lam[I], lambdaJ=lam[J], lambdamin=lmin),

main="")

Gres Residual G Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual G
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Gres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Gcom.

... Arguments passed to Gcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the G function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Gres first calls Gcom
to compute both the nonparametric estimate of the G function and its model compensator. Then
Gres computes the difference between them, which is the residual G-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Gcom. Then Gres computes the residual from this object.

304 Gres

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gcom, Gest.

Alternative functions: Kres, psstA, psstG, psst.

Model-fitting: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson
G0 <- Gres(fit0)
plot(G0)

Hanisch correction estimate
plot(G0, hres ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))
plot(Gres(fit1), hres ~ r)

fit looks approximately OK; try adjusting interaction distance

plot(Gres(cells, interaction=Strauss(0.12)))

How to make envelopes
if(interactive()) {

E <- envelope(fit1, Gres, model=fit1, nsim=39)
plot(E)

}
For computational efficiency

Gc <- Gcom(fit1)
G1 <- Gres(Gc)

Hardcore 305

Hardcore The Hard Core Point Process Model

Description

Creates an instance of the hard core point process model which can then be fitted to point pattern
data.

Usage

Hardcore(hc=NA)

Arguments

hc The hard core distance

Details

A hard core process with hard core distance h and abundance parameter β is a pairwise interaction
point process in which distinct points are not allowed to come closer than a distance h apart.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
and α is the normalising constant.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hard core process pairwise interaction is yielded by the function
Hardcore(). See the examples below.

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the hard core pro-
cess with hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

306 hardcoredist

See Also

Strauss, StraussHard, MultiHard, ppm, pairwise.family, ppm.object

Examples

Hardcore(0.02)
prints a sensible description of itself

ppm(cells ~1, Hardcore(0.05))
fit the stationary hard core process to `cells'

estimate hard core radius from data
ppm(cells, ~1, Hardcore())
ppm(cells ~1, Hardcore)

ppm(cells ~ polynom(x,y,3), Hardcore(0.05))
fit a nonstationary hard core process
with log-cubic polynomial trend

hardcoredist Extract the Hard Core Distance of a Point Process Model

Description

Extract or compute the hard core distance of a point process model.

Usage

hardcoredist(x, ...)

S3 method for class 'fii'
hardcoredist(x, ..., epsilon = 0)

S3 method for class 'ppm'
hardcoredist(x, ..., epsilon = 0)

Arguments

x An object representing a point process model (class "ppm") or the interaction
structure of a point process (class "fii") or similar.

... Additional arguments passed to methods.

epsilon Tolerance for defining the hard core.

harmonic 307

Details

A point process model has a hard core distance h if it is impossible for two random points to lie
closer than the distance h apart.

The function hardcoredist is generic, with methods for objects of class "ppm" (point process
models) and "fii" (fitted point process interactions). It extracts or computes the hard core distance.

If epsilon is specified, then the code calculates the largest distance at which the interaction factor
is smaller than epsilon, implying that points are unlikely to occur closer than this distance.

The result is zero if the model does not have a hard core distance.

Value

A single numeric value, or for multitype point processes, a numeric matrix giving the hard core
distances for each pair of types of points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

m <- ppm(cells~1, Hardcore())
hardcoredist(m)

harmonic Basis for Harmonic Functions

Description

Evaluates a basis for the harmonic polynomials in x and y of degree less than or equal to n.

Usage

harmonic(x, y, n)

Arguments

x Vector of x coordinates

y Vector of y coordinates

n Maximum degree of polynomial

308 harmonic

Details

This function computes a basis for the harmonic polynomials in two variables x and y up to a
given degree n and evaluates them at given x, y locations. It can be used in model formulas (for
example in the model-fitting functions lm,glm,gam and ppm) to specify a linear predictor which is
a harmonic function.

A function f(x, y) is harmonic if
∂2

∂x2
f +

∂2

∂y2
f = 0.

The harmonic polynomials of degree less than or equal to n have a basis consisting of 2n functions.

This function was implemented on a suggestion of P. McCullagh for fitting nonstationary spatial
trend to point process models.

Value

A data frame with 2 * n columns giving the values of the basis functions at the coordinates. Each
column is labelled by an algebraic expression for the corresponding basis function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, polynom

Examples

inhomogeneous point pattern
X <- unmark(longleaf)

fit Poisson point process with log-cubic intensity
fit.3 <- ppm(X ~ polynom(x,y,3), Poisson())

fit Poisson process with log-cubic-harmonic intensity
fit.h <- ppm(X ~ harmonic(x,y,3), Poisson())

Likelihood ratio test
lrts <- 2 * (logLik(fit.3) - logLik(fit.h))
df <- with(coords(X),

ncol(polynom(x,y,3)) - ncol(harmonic(x,y,3)))
pval <- 1 - pchisq(lrts, df=df)

harmonise.fv 309

harmonise.fv Make Function Tables Compatible

Description

Convert several objects of class "fv" to the same values of the function argument.

Usage

S3 method for class 'fv'
harmonise(..., strict=FALSE)

S3 method for class 'fv'
harmonize(..., strict=FALSE)

Arguments

... Any number of function tables (objects of class "fv").

strict Logical. If TRUE, a column of data will be deleted if columns of the same name
do not appear in every object.

Details

A function value table (object of class "fv") is essentially a data frame giving the values of a
function f(x) (or several alternative estimates of this value) at equally-spaced values of the function
argument x.

The command harmonise is generic. This is the method for objects of class "fv".

This command makes any number of "fv" objects compatible, in the loose sense that they have the
same sequence of values of x. They can then be combined by cbind.fv, but not necessarily by
eval.fv.

All arguments ... must be function value tables (objects of class "fv"). The result will be a list, of
length equal to the number of arguments ..., containing new versions of each of these functions,
converted to a common sequence of x values. If the arguments were named (name=value) then the
return value also carries these names.

The range of x values in the resulting functions will be the intersection of the ranges of x values in
the original functions. The spacing of x values in the resulting functions will be the finest (narrow-
est) of the spacings of the x values in the original functions. Function values are interpolated using
approxfun.

If strict=TRUE, each column of data will be retained only if a column of the same name appears in
all of the arguments This ensures that the resulting objects are strictly compatible in the sense
of compatible.fv, and can be combined using eval.fv or collapse.fv.

If strict=FALSE (the default), this does not occur, and then the resulting objects are not guaranteed
to be compatible in the sense of compatible.fv.

310 harmonise.msr

Value

A list, of length equal to the number of arguments ..., whose entries are objects of class "fv". If
the arguments were named (name=value) then the return value also carries these names.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

See Also

fv.object, cbind.fv, eval.fv, compatible.fv

Examples

H <- harmonise(K=Kest(cells), G=Gest(cells))
H

harmonise.msr Make Measures Compatible

Description

Convert several measures to a common quadrature scheme

Usage

S3 method for class 'msr'
harmonise(...)

Arguments

... Any number of measures (objects of class "msr").

Details

This function makes any number of measures compatible, by converting them all to a common
quadrature scheme.

The command harmonise is generic. This is the method for objects of class "msr".

Value

A list, of length equal to the number of arguments ..., whose entries are measures.

Hest 311

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

harmonise, msr

Examples

fit1 <- ppm(cells ~ x)
fit2 <- ppm(rpoispp(ex=cells) ~ x)
m1 <- residuals(fit1)
m2 <- residuals(fit2)
harmonise(m1, m2)
s1 <- residuals(fit1, type="score")
s2 <- residuals(fit2, type="score")
harmonise(s1, s2)

Hest Spherical Contact Distribution Function

Description

Estimates the spherical contact distribution function of a random set.

Usage

Hest(X, r=NULL, breaks=NULL, ...,
W,
correction=c("km", "rs", "han"),
conditional=TRUE)

Arguments

X The observed random set. An object of class "ppp", "psp" or "owin". Alterna-
tively a pixel image (class "im") with logical values.

r Optional. Vector of values for the argument r at which H(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

... Arguments passed to as.mask to control the discretisation.

W Optional. A window (object of class "owin") to be taken as the window of
observation. The contact distribution function will be estimated from values of
the contact distance inside W. The default is W=Frame(X) when X is a window,
and W=Window(X) otherwise.

312 Hest

correction Optional. The edge correction(s) to be used to estimate H(r). A vector of
character strings selected from "none", "rs", "km", "han" and "best". Alter-
natively correction="all" selects all options.

conditional Logical value indicating whether to compute the conditional or unconditional
distribution. See Details.

Details

The spherical contact distribution function of a stationary random set X is the cumulative distribu-
tion function H of the distance from a fixed point in space to the nearest point of X , given that the
point lies outside X . That is, H(r) equals the probability that X lies closer than r units away from
the fixed point x, given that X does not cover x.

Let D = d(x,X) be the shortest distance from an arbitrary point x to the set X. Then the spherical
contact distribution function is

H(r) = P (D ≤ r | D > 0)

For a point process, the spherical contact distribution function is the same as the empty space
function F discussed in Fest.

The argument X may be a point pattern (object of class "ppp"), a line segment pattern (object of
class "psp") or a window (object of class "owin"). It is assumed to be a realisation of a stationary
random set.

The algorithm first calls distmap to compute the distance transform of X, then computes the Kaplan-
Meier and reduced-sample estimates of the cumulative distribution following Hansen et al (1999). If
conditional=TRUE (the default) the algorithm returns an estimate of the spherical contact function
H(r) as defined above. If conditional=FALSE, it instead returns an estimate of the cumulative
distribution function H∗(r) = P (D ≤ r) which includes a jump at r = 0 if X has nonzero area.

Accuracy depends on the pixel resolution, which is controlled by the arguments eps, dimyx and
xy passed to as.mask. For example, use eps=0.1 to specify square pixels of side 0.1 units, and
dimyx=256 to specify a 256 by 256 grid of pixels.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing up to six columns:

r the values of the argument r at which the function H(r) has been estimated
rs the “reduced sample” or “border correction” estimator of H(r)

km the spatial Kaplan-Meier estimator of H(r)

hazard the hazard rate λ(r) of H(r) by the spatial Kaplan-Meier method
han the spatial Hanisch-Chiu-Stoyan estimator of H(r)

raw the uncorrected estimate of H(r), i.e. the empirical distribution of the distance
from a fixed point in the window to the nearest point of X

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> with contributions from Kassel Hingee.

HierHard 313

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37-78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Hansen, M.B., Baddeley, A.J. and Gill, R.D. First contact distributions for spatial patterns: regular-
ity and estimation. Advances in Applied Probability 31 (1999) 15-33.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Fest

Examples

X <- runifpoint(42)
H <- Hest(X)
Y <- rpoisline(10)
H <- Hest(Y)
H <- Hest(Y, dimyx=256)
X <- heather$coarse
plot(Hest(X))
H <- Hest(X, conditional=FALSE)

P <- owin(poly=list(x=c(5.3, 8.5, 8.3, 3.7, 1.3, 3.7),
y=c(9.7, 10.0, 13.6, 14.4, 10.7, 7.2)))

plot(X)
plot(P, add=TRUE, col="red")
H <- Hest(X, W=P)
Z <- as.im(FALSE, Frame(X))
Z[X] <- TRUE
Z <- Z[P, drop=FALSE]
plot(Z)
H <- Hest(Z)

HierHard The Hierarchical Hard Core Point Process Model

Description

Creates an instance of the hierarchical hard core point process model which can then be fitted to
point pattern data.

314 HierHard

Usage

HierHard(hradii=NULL, types=NULL, archy=NULL)

Arguments

hradii Optional matrix of hard core distances

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) hard core process withm types, with hard core distances
hij and parameters βj , is a point process in which each point of type j contributes a factor βj to
the probability density of the point pattern. If any pair of points of types i and j lies closer than hij
units apart, the configuration of points is impossible (probability density zero).

The nonstationary hierarchical hard core process is similar except that the contribution of each
individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical hard core process pairwise interaction is yielded by the
function HierHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierHard interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrix iradii must be square, with entries which are either positive numbers, or zero or
NA. A value of zero or NA indicates that no hard core interaction term should be included for this
combination of types.

Note that only the hard core distances are specified in HierHard. The canonical parameters log(βj)
are estimated by ppm(), not fixed in HierHard().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
hard core process with hard core distances hradii[i, j].

hierpair.family 315

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiHard for the corresponding symmetrical interaction.

HierStrauss, HierStraussHard.

Examples

h <- matrix(c(4, NA, 10, 15), 2, 2)
HierHard(h)
prints a sensible description of itself
ppm(ants ~1, HierHard(h))
fit the stationary hierarchical hard core process to ants data

hierpair.family Hierarchical Pairwise Interaction Process Family

Description

An object describing the family of all hierarchical pairwise interaction Gibbs point processes.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the hierarchical pairwise
interaction family of point process models.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

316 HierStrauss

See Also

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

Hierarchical Strauss interaction: HierStrauss.

HierStrauss The Hierarchical Strauss Point Process Model

Description

Creates an instance of the hierarchical Strauss point process model which can then be fitted to point
pattern data.

Usage

HierStrauss(radii, types=NULL, archy=NULL)

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss process with m types, with interaction radii rij
and parameters βj and γij is a point process in which each point of type j contributes a factor βj to
the probability density of the point pattern, and a pair of points of types i and j closer than rij units
apart contributes a factor γij to the density provided i ≤ j.
The nonstationary hierarchical Strauss process is similar except that the contribution of each indi-
vidual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss process pairwise interaction is yielded by the
function HierStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

HierStraussHard 317

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in HierStrauss. The canonical parameters log(βj)
and log(γij) are estimated by ppm(), not fixed in HierStrauss().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss process with interaction radii radii[i, j].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStrauss for the corresponding symmetrical interaction.

HierHard, HierStraussHard.

Examples

r <- matrix(10 * c(3,4,4,3), nrow=2,ncol=2)
HierStrauss(r)
prints a sensible description of itself
ppm(ants ~1, HierStrauss(r, , c("Messor", "Cataglyphis")))
fit the stationary hierarchical Strauss process to ants data

HierStraussHard The Hierarchical Strauss Hard Core Point Process Model

Description

Creates an instance of the hierarchical Strauss-hard core point process model which can then be
fitted to point pattern data.

Usage

HierStraussHard(iradii, hradii=NULL, types=NULL, archy=NULL)

318 HierStraussHard

Arguments

iradii Matrix of interaction radii

hradii Optional matrix of hard core distances

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

archy Optional: the hierarchical order. See Details.

Details

This is a hierarchical point process model for a multitype point pattern (Högmander and Särkkä,
1999; Grabarnik and Särkkä, 2009). It is appropriate for analysing multitype point pattern data in
which the types are ordered so that the points of type j depend on the points of type 1, 2, . . . , j− 1.

The hierarchical version of the (stationary) Strauss hard core process with m types, with interaction
radii rij , hard core distances hij and parameters βj and γij is a point process in which each point
of type j contributes a factor βj to the probability density of the point pattern, and a pair of points
of types i and j closer than rij units apart contributes a factor γij to the density provided i ≤ j.
If any pair of points of types i and j lies closer than hij units apart, the configuration of points is
impossible (probability density zero).

The nonstationary hierarchical Strauss hard core process is similar except that the contribution of
each individual point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the hierarchical Strauss hard core process pairwise interaction is yielded
by the function HierStraussHard(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the HierStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrix radii.

The argument archy can be used to specify a hierarchical ordering of the types. It can be either
a vector of integers or a character vector matching the possible types. The default is the sequence
1, 2, . . . ,m meaning that type j depends on types 1, 2, . . . , j − 1.

The matrices iradii and hradii must be square, with entries which are either positive numbers
or zero or NA. A value of zero or NA indicates that no interaction term should be included for this
combination of types.

Note that only the interaction radii and hard core distances are specified in HierStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in HierStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the hierarchical
Strauss-hard core process with interaction radii iradii[i, j] and hard core distances hradii[i, j].

hopskel 319

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>.

References

Grabarnik, P. and Särkkä, A. (2009) Modelling the spatial structure of forest stands by multivariate
point processes with hierarchical interactions. Ecological Modelling 220, 1232–1240.

Högmander, H. and Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions.
Biometrics 55, 1051–1058.

See Also

MultiStraussHard for the corresponding symmetrical interaction.

HierHard, HierStrauss.

Examples

r <- matrix(c(30, NA, 40, 30), nrow=2,ncol=2)
h <- matrix(c(4, NA, 10, 15), 2, 2)
HierStraussHard(r, h)
prints a sensible description of itself
ppm(ants ~1, HierStraussHard(r, h))
fit the stationary hierarchical Strauss-hard core process to ants data

hopskel Hopkins-Skellam Test

Description

Perform the Hopkins-Skellam test of Complete Spatial Randomness, or simply calculate the test
statistic.

Usage

hopskel(X)

hopskel.test(X, ...,
alternative=c("two.sided", "less", "greater",

"clustered", "regular"),
method=c("asymptotic", "MonteCarlo"),
nsim=999)

320 hopskel

Arguments

X Point pattern (object of class "ppp").

alternative String indicating the type of alternative for the hypothesis test. Partially matched.

method Method of performing the test. Partially matched.

nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.

... Ignored.

Details

Hopkins and Skellam (1954) proposed a test of Complete Spatial Randomness based on comparing
nearest-neighbour distances with point-event distances.

If the point pattern X contains n points, we first compute the nearest-neighbour distances P1, . . . , Pn
so that Pi is the distance from the ith data point to the nearest other data point. Then we generate
another completely random pattern U with the same number n of points, and compute for each point
of U the distance to the nearest point of X, giving distances I1, . . . , In. The test statistic is

A =

∑
i P

2
i∑

i I
2
i

The null distribution of A is roughly an F distribution with shape parameters (2n, 2n). (This is
equivalent to using the test statistic H = A/(1 + A) and referring H to the Beta distribution with
parameters (n, n)).

The function hopskel calculates the Hopkins-Skellam test statisticA, and returns its numeric value.
This can be used as a simple summary of spatial pattern: the value H = 1 is consistent with
Complete Spatial Randomness, while values H < 1 are consistent with spatial clustering, and
values H > 1 are consistent with spatial regularity.

The function hopskel.test performs the test. If method="asymptotic" (the default), the test
statistic H is referred to the F distribution. If method="MonteCarlo", a Monte Carlo test is per-
formed using nsim simulated point patterns.

Value

The value of hopskel is a single number.

The value of hopskel.test is an object of class "htest" representing the outcome of the test. It
can be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Hopkins, B. and Skellam, J.G. (1954) A new method of determining the type of distribution of plant
individuals. Annals of Botany 18, 213–227.

hotbox 321

See Also

clarkevans, clarkevans.test, nndist, nncross

Examples

hopskel(redwood)
hopskel.test(redwood, alternative="clustered")

hotbox Heat Kernel for a Two-Dimensional Rectangle

Description

Calculate values of the heat kernel in a rectangle with insulated edges.

Usage

hotbox(Xsource, Xquery, sigma,
..., W=NULL, squared=FALSE, nmax=20)

Arguments

Xsource Point pattern of sources of heat. Object of class "ppp" or convertible to a point
pattern using as.ppp(Xsource, W).

Xquery Locations where the heat kernel value is required. An object of class "ppp"
specifying query location points, or an object of class "im" or "owin" specifying
a grid of query points.

sigma Bandwidth for kernel. A single number.

... Extra arguments (passed to as.mask) controlling the pixel resolution of the re-
sult, when Xquery is a window or an image.

W Window (object of class "owin") used to define the spatial domain when Xsource
is not of class "ppp".

squared Logical value indicating whether to take the square of each heat kernel value,
before summing over the source points.

nmax Number of terms to be used from the infinite-sum expression for the heat kernel.
A single integer.

Details

This function computes the sum of heat kernels associated with each of the source points, evaluating
them at each query location.

The window for evaluation of the heat kernel must be a rectangle.

The heat kernel in any region can be expressed as an infinite sum of terms associated with the
eigenfunctions of the Laplacian. The heat kernel in a rectangle is the product of heat kernels for one-
dimensional intervals on the horizontal and vertical axes. This function uses hotrod to compute the

322 Hybrid

one-dimensional heat kernels, truncating the infinite sum to the first nmax terms, and then calculates
the two-dimensional heat kernel from each source point to each query location. If squared=TRUE
these values are squared. Finally the values are summed over all source points to obtain a single
value for each query location.

Value

If Xquery is a point pattern, the result is a numeric vector with one entry for each query point.

If Xquery is an image or window, the result is a pixel image.

Author(s)

Adrian Baddeley and Greg McSwiggan.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2021) Diffusion smoothing for
spatial point patterns. Statistical Science, in press.

See Also

densityHeat.ppp

Examples

X <- runifpoint(10)

Y <- runifpoint(5)
hotbox(X, Y, 0.1)

plot(hotbox(X, Window(X), 0.1))
points(X, pch=16)

Hybrid Hybrid Interaction Point Process Model

Description

Creates an instance of a hybrid point process model which can then be fitted to point pattern data.

Usage

Hybrid(...)

Arguments

... Two or more interactions (objects of class "interact") or objects which can be
converted to interactions. See Details.

Hybrid 323

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2013) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.

The hybrid of two point processes, with probability densities f(x) and g(x) respectively, is the
point process with probability density

h(x) = c f(x) g(x)

where c is a normalising constant.

Equivalently, the hybrid of two point processes with conditional intensities λ(u, x) and κ(u, x) is
the point process with conditional intensity

φ(u, x) = λ(u, x)κ(u, x).

The hybrid of m > 3 point processes is defined in a similar way.

The function ppm, which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of a hybrid interaction is yielded by the function Hybrid().

The arguments ... will be interpreted as interpoint interactions (objects of class "interact") and
the result will be the hybrid of these interactions. Each argument must either be an interpoint
interaction (object of class "interact"), or a point process model (object of class "ppm") from
which the interpoint interaction will be extracted.

The arguments ... may also be given in the form name=value. This is purely cosmetic: it can be
used to attach simple mnemonic names to the component interactions, and makes the printed output
from print.ppm neater.

Value

An object of class "interact" describing an interpoint interaction structure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

ppm

324 hybrid.family

Examples

Hybrid(Strauss(0.1), Geyer(0.2, 3))

Hybrid(Ha=Hardcore(0.05), St=Strauss(0.1), Ge=Geyer(0.2, 3))

fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
fit

ctr <- rmhcontrol(nrep=5e4, expand=1)
plot(simulate(fit, control=ctr))

hybrid components can be models (including hybrid models)
Hybrid(fit, S=Softcore(0.5))

plot.fii only works if every component is a pairwise interaction
data(swedishpines)
fit2 <- ppm(swedishpines, ~1, Hybrid(DG=DiggleGratton(2,10), S=Strauss(5)))
plot(fitin(fit2))
plot(fitin(fit2), separate=TRUE, mar.panel=rep(4,4))

hybrid.family Hybrid Interaction Family

Description

An object describing the family of all hybrid interactions.

Details

Advanced Use Only!
This structure would not normally be touched by the user. It describes the family of all hybrid point
process models.

If you need to create a specific hybrid interaction model for use in modelling, use the function
Hybrid.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

Use Hybrid to make hybrid interactions.

Other families: pairwise.family, pairsat.family, ord.family, inforder.family.

ic.kppm 325

ic.kppm Model selection criteria for the intensity function of a point process

Description

Information criteria for selecting the intensity function model of a Poisson, cluster or Cox point
process.

Usage

ic(object)

S3 method for class 'ppm'
ic(object)

S3 method for class 'kppm'
ic(object)

Arguments

object Fitted point process model (object of class "ppm" or "kppm").

Details

This function returns information criteria for selecting the intensity function model of a Poisson,
Cox or cluster point process fitted by first order composite likelihood (i.e. using the Poisson likeli-
hood function).

Degrees of freedom df for the information criteria are given by the trace of S−1Σ where S is the
sensitivity matrix and Σ is the variance matrix for the log composite likelihood score function. In
case of a Poisson process, df is the number of parameters in the model for the intensity function.

The composite Bayesian information criterion (cbic) is −2` + log(n)df where ` is the maximal
log first-order composite likelihood (Poisson loglikelihood for the intensity function) and n is the
observed number of points. It reduces to the BIC criterion in case of a Poisson process.

The composite information criterion (cic) is −2`+ 2df and reduces to the AIC in case of a Poisson
process.

NOTE: the information criteria are for selecting the intensity function model (a set of covariates)
within a given model class. They cannot be used to choose among different types of cluster or Cox
point process models (e.g. can not be used to choose between Thomas and LGCP models).

Value

A list with entries loglike, cbic, cic and df. Here loglike is the fitted log first-order composite
likelihood, cbic is composite Bayesian information criterion, cic is is the composite likelihood
criterion and df is the adjusted degrees of freedom for the fitted intensity function model.

326 idw

Author(s)

Achmad Choiruddin, Jean-Francois Coeurjolly and Rasmus Waagepetersen.

References

Choiruddin, A., Coeurjolly, J.F. and Waagepetersen, R. (2020) Information criteria for inhomoge-
neous spatial point processes. Australian and New Zealand Journal of Statistics. To appear.

See Also

kppm

Examples

if(interactive()) {

model with one covariate
fit1 <- kppm(bei~elev,data=bei.extra)
ic1 <- ic(fit1)

model with two covariates
fit2 <- kppm(bei~elev+grad,data=bei.extra)
ic2 <- ic(fit2)

smallest cbic for fit1 but smallest cic for fit2
}

idw Inverse-distance weighted smoothing of observations at irregular
points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations using inverse-
distance weighting.

Usage

idw(X, power=2, at=c("pixels", "points"), ..., se=FALSE)

Arguments

X A marked point pattern (object of class "ppp").
power Numeric. Power of distance used in the weighting.
at Character string specifying whether to compute the intensity values at a grid of

pixel locations (at="pixels") or only at the points of X (at="points"). String
is partially matched.

... Arguments passed to as.mask to control the pixel resolution of the result.
se Logical value specifying whether to calculate a standard error.

idw 327

Details

This function performs spatial smoothing of numeric values observed at a set of irregular locations.

Smoothing is performed by inverse distance weighting. If the observed values are v1, . . . , vn at
locations x1, . . . , xn respectively, then the smoothed value at a location u is

g(u) =

∑
i wivi∑
i wi

where the weights are the inverse p-th powers of distance,

wi =
1

d(u, xi)p

where d(u, xi) = ||u− xi|| is the Euclidean distance from u to xi.

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column
of marks.

If at="pixels" (the default), the smoothed mark value is calculated at a grid of pixels, and the
result is a pixel image. The arguments ... control the pixel resolution. See as.mask.

If at="points", the smoothed mark values are calculated at the data points only, using a leave-one-
out rule (the mark value at a data point is excluded when calculating the smoothed value for that
point).

An estimate of standard error is also calculated, if se=TRUE. The calculation assumes that the data
point locations are fixed, that is, the standard error only takes into account the variability in the
mark values, and not the variability due to randomness of the data point locations.

An alternative to inverse-distance weighting is kernel smoothing, which is performed by Smooth.ppp.

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

If se=TRUE, then the result is a list with two entries named estimate and SE, which each have the
format described above.

328 Iest

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>. Variance calculation by Andrew P Wheeler with modifi-
cations by Adrian Baddeley.

References

Shepard, D. (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceed-
ings of the 1968 ACM National Conference, 1968, pages 517–524. DOI: 10.1145/800186.810616

See Also

density.ppp, ppp.object, im.object.

See Smooth.ppp for kernel smoothing and nnmark for nearest-neighbour interpolation.

To perform other kinds of interpolation, see also the akima package.

Examples

data frame of marks: trees marked by diameter and height
plot(idw(finpines))
idw(finpines, at="points")[1:5,]
plot(idw(finpines, se=TRUE)$SE)
idw(finpines, at="points", se=TRUE)$SE[1:5,]

Iest Estimate the I-function

Description

Estimates the summary function I(r) for a multitype point pattern.

Usage

Iest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of I(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.
eps the resolution of the discrete approximation to Euclidean distance (see below).

There is a sensible default.
r Optional. Numeric vector of values for the argument r at which I(r) should be

evaluated. There is a sensible default. First-time users are strongly advised not
to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.
correction Optional. Vector of character strings specifying the edge correction(s) to be used

by Jest.

Iest 329

Details

The I function summarises the dependence between types in a multitype point process (Van Lieshout
and Baddeley, 1999) It is based on the concept of the J function for an unmarked point process (Van
Lieshout and Baddeley, 1996). See Jest for information about the J function.

The I function is defined as

I(r) =

m∑
i=1

piJii(r)− J••(r)

where J•• is the J function for the entire point process ignoring the marks, while Jii is the J
function for the process consisting of points of type i only, and pi is the proportion of points which
are of type i.

The I function is designed to measure dependence between points of different types, even if the
points are not Poisson. LetX be a stationary multitype point process, and writeXi for the process of
points of type i. If the processes Xi are independent of each other, then the I-function is identically
equal to 0. Deviations I(r) < 1 or I(r) > 1 typically indicate negative and positive association,
respectively, between types. See Van Lieshout and Baddeley (1999) for further information.

An estimate of I derived from a multitype spatial point pattern dataset can be used in exploratory
data analysis and formal inference about the pattern. The estimate of I(r) is compared against the
constant function 0. Deviations I(r) < 1 or I(r) > 1 may suggest negative and positive association,
respectively.

This algorithm estimates the I-function from the multitype point pattern X. It assumes that X can be
treated as a realisation of a stationary (spatially homogeneous) random spatial marked point process
in the plane, observed through a bounded window.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can
be supplied in any of the formats recognised by as.ppp(). It must be a multitype point pattern (it
must have a marks vector which is a factor).

The function Jest is called to compute estimates of the J functions in the formula above. In fact
three different estimates are computed using different edge corrections. See Jest for information.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function I has been estimated

rs the “reduced sample” or “border correction” estimator of I(r) computed from
the border-corrected estimates of J functions

km the spatial Kaplan-Meier estimator of I(r) computed from the Kaplan-Meier
estimates of J functions

han the Hanisch-style estimator of I(r) computed from the Hanisch-style estimates
of J functions

un the uncorrected estimate of I(r) computed from the uncorrected estimates of J

theo the theoretical value of I(r) for a stationary Poisson process: identically equal
to 0

330 improve.kppm

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jest

Examples

data(amacrine)
Ic <- Iest(amacrine)
plot(Ic, main="Amacrine Cells data")
values are below I= 0, suggesting negative association
between 'on' and 'off' cells.

improve.kppm Improve Intensity Estimate of Fitted Cluster Point Process Model

Description

Update the fitted intensity of a fitted cluster point process model.

Usage

improve.kppm(object, type=c("quasi", "wclik1", "clik1"), rmax = NULL,
eps.rmax = 0.01, dimyx = 50, maxIter = 100, tolerance = 1e-06,
fast = TRUE, vcov = FALSE, fast.vcov = FALSE, verbose = FALSE,

save.internals = FALSE)

improve.kppm 331

Arguments

object Fitted cluster point process model (object of class "kppm").

type A character string indicating the method of estimation. Current options are
"clik1", "wclik1" and "quasi" for, respectively, first order composite (Pois-
son) likelihood, weighted first order composite likelihood and quasi-likelihood.

rmax Optional. The dependence range. Not usually specified by the user.

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function. Namely rmax is the smallest value
of r at which (g(r) − 1)/(g(0) − 1) falls below eps.rmax. Ignored if rmax is
provided.

dimyx Pixel array dimensions. See Details.

maxIter Integer. Maximum number of iterations of iterative weighted least squares (Fisher
scoring).

tolerance Numeric. Tolerance value specifying when to stop iterative weighted least squares
(Fisher scoring).

fast Logical value indicating whether tapering should be used to make the computa-
tions faster (requires the package Matrix).

vcov Logical value indicating whether to calculate the asymptotic variance covari-
ance/matrix.

fast.vcov Logical value indicating whether tapering should be used for the variance/covariance
matrix to make the computations faster (requires the package Matrix). Caution:
This is expected to underestimate the true asymptotic variances/covariances.

verbose A logical indicating whether the details of computations should be printed.

save.internals A logical indicating whether internal quantities should be saved in the returned
object (mostly for development purposes).

Details

This function reestimates the intensity parameters in a fitted "kppm" object. If type="clik1"
estimates are based on the first order composite (Poisson) likelihood, which ignores dependence
between the points. Note that type="clik1" is mainly included for testing purposes and is not rec-
ommended for the typical user; instead the more efficient kppm with improve.type="none" should
be used.

When type="quasi" or type="wclik1" the dependence structure between the points is incorpo-
rated in the estimation procedure by using the estimated pair correlation function in the estimating
equation.

In all cases the estimating equation is based on dividing the observation window into small subre-
gions and count the number of points in each subregion. To do this the observation window is first
converted into a digital mask by as.mask where the resolution is controlled by the argument dimyx.
The computational time grows with the cube of the number of subregions, so fine grids may take
very long to compute (or even run out of memory).

Value

A fitted cluster point process model of class "kppm".

332 increment.fv

Author(s)

Abdollah Jalilian <jalilian@razi.ac.ir>

and Rasmus Waagepetersen <rw@math.aau.dk> adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Ege Rubak <rubak@math.aau.dk>

References

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes, Biometrics, 63, 252-258.

Guan, Y. and Shen, Y. (2010) A weighted estimating equation approach to inference for inhomoge-
neous spatial point processes, Biometrika, 97, 867-880.

Guan, Y., Jalilian, A. and Waagepetersen, R. (2015) Quasi-likelihood for spatial point processes.
Journal of the Royal Statistical Society, Series B 77, 677–697.

See Also

ppm, kppm, improve.kppm

Examples

fit a Thomas process using minimum contrast estimation method
to model interaction between points of the pattern
fit0 <- kppm(bei ~ elev + grad, data = bei.extra)

fit the log-linear intensity model with quasi-likelihood method
fit1 <- improve.kppm(fit0, type="quasi")

compare
coef(fit0)
coef(fit1)

increment.fv Increments of a Function

Description

Compute the change in the value of a function f when the function argument increases by delta.

Usage

increment.fv(f, delta)

Arguments

f Object of class "fv" representing a function.

delta Numeric. The increase in the value of the function argument.

influence.ppm 333

Details

This command computes the new function

g(x) = f(x+ h)− f(x− h)

where h = delta/2. The value of g(x) is the change in the value of f over an interval of length
delta centred at x.

Value

Another object of class "fv" compatible with X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv.object, deriv.fv

Examples

plot(increment.fv(Kest(cells), 0.05))

influence.ppm Influence Measure for Spatial Point Process Model

Description

Computes the influence measure for a fitted spatial point process model.

Usage

S3 method for class 'ppm'
influence(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").
... Ignored.
drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-

tions from quadrature points that were not used to fit the model.
iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

334 influence.ppm

Details

Given a fitted spatial point process model model, this function computes the influence measure
described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner (2019).

The function influence is generic, and influence.ppm is the method for objects of class "ppm"
representing point process models.

The influence of a point process model is a value attached to each data point (i.e. each point of the
point pattern to which the model was fitted). The influence value s(xi) at a data point xi represents
the change in the maximised log (pseudo)likelihood that occurs when the point xi is deleted. A
relatively large value of s(xi) indicates a data point with a large influence on the fitted model.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of influence.ppm is an object of class "influence.ppm". It can be printed and plotted.
It can be converted to a marked point pattern by as.ppp (see as.ppp.influence.ppm). There are
also methods for [, as.owin, domain, shift, integral and Smooth.

Value

An object of class "influence.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

leverage.ppm, dfbetas.ppm, ppmInfluence, plot.influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
plot(influence(fit))

inforder.family 335

inforder.family Infinite Order Interaction Family

Description

An object describing the family of all Gibbs point processes with infinite interaction order.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the area-interaction process
AreaInter.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

AreaInter to create the area interaction process structure.

Other families: pairwise.family, pairsat.family, ord.family.

integral.msr Integral of a Measure

Description

Computes the integral (total value) of a measure over its domain.

Usage

S3 method for class 'msr'
integral(f, domain=NULL, ...)

336 integral.msr

Arguments

f A signed measure or vector-valued measure (object of class "msr").

domain Optional window specifying the domain of integration. Alternatively a tessella-
tion.

... Ignored.

Details

The integral (total value of the measure over its domain) is calculated.

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess") then the integral of f in each tile of domain will be computed.

For a multitype measure m, use split.msr to separate the contributions for each type of point, as
shown in the Examples.

Value

A numeric value, vector, or matrix.

integral(f) returns a numeric value (for a signed measure) or a vector of values (for a vector-
valued measure).

If domain is a tessellation then integral(f, domain) returns a numeric vector with one entry for
each tile (if f is a signed measure) or a numeric matrix with one row for each tile (if f is a vector-
valued measure).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, integral

Examples

fit <- ppm(cells ~ x)
rr <- residuals(fit)
integral(rr)

vector-valued measure
rs <- residuals(fit, type="score")
integral(rs)

multitype
fitA <- ppm(amacrine ~ x)
rrA <- residuals(fitA)
sapply(split(rrA), integral)

multitype and vector-valued

intensity.dppm 337

rsA <- residuals(fitA, type="score")
sapply(split(rsA), integral)

integral over a subregion
integral(rr, domain=square(0.5))
integrals over the tiles of a tessellation
integral(rr, domain=quadrats(cells, 2))

intensity.dppm Intensity of Determinantal Point Process Model

Description

Extracts the intensity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
intensity(X, ...)

S3 method for class 'dppm'
intensity(X, ...)

Arguments

X A determinantal point process model (object of class "detpointprocfamily"
or "dppm").

... Ignored.

Value

A numeric value (if the model is stationary), a pixel image (if the model is non-stationary) or NA if
the intensity is unknown for the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

338 intensity.ppm

intensity.ppm Intensity of Fitted Point Process Model

Description

Computes the intensity of a fitted point process model.

Usage

S3 method for class 'ppm'
intensity(X, ..., approx=c("Poisson", "DPP"))

Arguments

X A fitted point process model (object of class "ppm").

... Arguments passed to predict.ppm in some cases. See Details.

approx Character string (partially matched) specifying the type of approximation to the
intensity for a non-Poisson model.

Details

This is a method for the generic function intensity for fitted point process models (class "ppm").

The intensity of a point process model is the expected number of random points per unit area.

If X is a Poisson point process model, the intensity of the process is computed exactly. The result is
a numerical value if X is a stationary Poisson point process, and a pixel image if X is non-stationary.
(In the latter case, the resolution of the pixel image is controlled by the arguments ... which are
passed to predict.ppm.)

If X is a Gibbs point process model that is not a Poisson model, the intensity is computed approxi-
mately:

• if approx="Poisson" (the default), the intensity is computed using the Poisson-saddlepoint
approximation (Baddeley and Nair, 2012a, 2012b, 2017; Anderssen et al, 2014). This ap-
proximation is currently available for pairwise-interaction models (Baddeley and Nair, 2012a,
2012b) and for the area-interaction model and Geyer saturation model (Baddeley and Nair,
2017).
If the model is non-stationary. the pseudostationary solution (Baddeley and Nair, 2012b;
Anderssen et al, 2014) is used. The result is a pixel image, whose resolution is controlled by
the arguments ... which are passed to predict.ppm.

• if approx="DPP", the intensity is calculated using the approximation of (Coeurjolly and La-
vancier, 2018) based on a determinantal point process. This approximation is more accurate
than the Poisson saddlepoint approximation, for inhibitory interactions. However the DPP
approximation is only available for stationary pairwise interaction models.

Value

A numeric value (if the model is stationary) or a pixel image.

intensity.slrm 339

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Gopalan Nair, and Frédéric Lavancier.

References

Anderssen, R.S., Baddeley, A., DeHoog, F.R. and Nair, G.M. (2014) Solution of an integral equation
arising in spatial point process theory. Journal of Integral Equations and Applications 26 (4) 437–
453.

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. DOI: 10.1002/sta4.5

Baddeley, A. and Nair, G. (2017) Poisson-saddlepoint approximation for Gibbs point processes
with infinite-order interaction: in memory of Peter Hall. Journal of Applied Probability 54, 4,
1008–1026.

Coeurjolly, J.-F. and Lavancier, F. (2018) Approximation intensity for pairwise interaction Gibbs
point processes using determinantal point processes. Electronic Journal of Statistics 12 3181–3203.

See Also

intensity, intensity.ppp

Examples

fitP <- ppm(swedishpines ~ 1)
intensity(fitP)
fitS <- ppm(swedishpines ~ 1, Strauss(9))
intensity(fitS)
intensity(fitS, approx="D")
fitSx <- ppm(swedishpines ~ x, Strauss(9))
lamSx <- intensity(fitSx)
fitG <- ppm(swedishpines ~ 1, Geyer(9, 1))
lamG <- intensity(fitG)
fitA <- ppm(swedishpines ~ 1, AreaInter(7))
lamA <- intensity(fitA)

intensity.slrm Intensity of Fitted Spatial Logistic Regression Model

Description

Computes the intensity of a fitted spatial logistic regression model, treated as a point process model.

Usage

S3 method for class 'slrm'
intensity(X, ...)

340 intensity.slrm

Arguments

X A fitted spatial logistic regression model (object of class "slrm").

... Arguments passed to predict.slrm in some cases. See Details.

Details

This is a method for the generic function intensity for spatial logistic regression models (class
"slrm").

The fitted spatial logistic regression model X is interpreted as a point process model. The intensity
of a point process model is defined as the expected number of random points per unit area. The
fitted probabilities of presence according to X are converted to intensity values.

The result is a numerical value if X is stationary, and a pixel image if X is non-stationary. In the
latter case, the resolution of the pixel image is controlled by the arguments ... which are passed to
predict.slrm.

Value

A numeric value (if the model is stationary) or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

See Also

intensity, intensity.ppm

Examples

fitS <- slrm(swedishpines ~ 1)
intensity(fitS)
fitX <- slrm(swedishpines ~ x)
intensity(fitX)

interactionorder 341

interactionorder Determine the Order of Interpoint Interaction in a Model

Description

Given a point process model, report the order of interpoint interaction.

Usage

interactionorder(object)

S3 method for class 'ppm'
interactionorder(object)

S3 method for class 'interact'
interactionorder(object)

S3 method for class 'isf'
interactionorder(object)

S3 method for class 'fii'
interactionorder(object)

Arguments

object A point process model (class "ppm") or similar information.

Details

This function determines the order of interpoint interaction in a Gibbs point process model (or a
related object).

The interaction order is defined as the largest number k such that the probability density of the
model contains terms involving k points at a time. For example, in a pairwise interaction process
such as the Strauss process, the probability density contains interaction terms between each pair of
points, but does not contain any terms that involve three points at a time, so the interaction order is
2.

Poisson point processes have interaction order 1. Pairwise-interaction processes have interaction
order 2. Point processes with the triplet interaction Triplets have interaction order 3. The Geyer
saturation model Geyer and the area-interaction model AreaInter have infinite order of interaction.

Value

A positive integer, or Inf.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

342 ippm

Examples

interactionorder(ppm(cells ~ 1))
interactionorder(Strauss(0.1))
interactionorder(Triplets(0.1))
interactionorder(Geyer(0.1, 2))
interactionorder(Hybrid(Strauss(0.1), Triplets(0.2)))

ippm Fit Point Process Model Involving Irregular Trend Parameters

Description

Experimental extension to ppm which finds optimal values of the irregular trend parameters in a
point process model.

Usage

ippm(Q, ...,
iScore=NULL,
start=list(),
covfunargs=start,
nlm.args=list(stepmax=1/2),
silent=FALSE,
warn.unused=TRUE)

Arguments

Q,... Arguments passed to ppm to fit the point process model.

iScore Optional. A named list of R functions that compute the partial derivatives of the
logarithm of the trend, with respect to each irregular parameter. See Details.

start Named list containing initial values of the irregular parameters over which to
optimise.

covfunargs Argument passed to ppm. A named list containing values for all irregular param-
eters required by the covariates in the model. Must include all the parameters
named in start.

nlm.args Optional list of arguments passed to nlm to control the optimization algorithm.

silent Logical. Whether to print warnings if the optimization algorithm fails to con-
verge.

warn.unused Logical. Whether to print a warning if some of the parameters in start are not
used in the model.

ippm 343

Details

This function is an experimental extension to the point process model fitting command ppm. The
extension allows the trend of the model to include irregular parameters, which will be maximised
by a Newton-type iterative method, using nlm.

For the sake of explanation, consider a Poisson point process with intensity function λ(u) at location
u. Assume that

λ(u) = exp(α+ βZ(u)) f(u, γ)

where α, β, γ are parameters to be estimated, Z(u) is a spatial covariate function, and f is some
known function. Then the parameters α, β are called regular because they appear in a loglinear
form; the parameter γ is called irregular.

To fit this model using ippm, we specify the intensity using the trend formula in the same way as
usual for ppm. The trend formula is a representation of the log intensity. In the above example the
log intensity is

log λ(u) = α+ βZ(u) + log f(u, γ)

So the model above would be encoded with the trend formula ~Z + offset(log(f)). Note that the
irregular part of the model is an offset term, which means that it is included in the log trend as it is,
without being multiplied by another regular parameter.

The optimisation runs faster if we specify the derivative of log f(u, γ) with respect to γ. We call this
the irregular score. To specify this, the user must write an R function that computes the irregular
score for any value of γ at any location (x,y).

Thus, to code such a problem,

1. The argument trend should define the log intensity, with the irregular part as an offset;

2. The argument start should be a list containing initial values of each of the irregular parame-
ters;

3. The argument iScore, if provided, must be a list (with one entry for each entry of start)
of functions with arguments x,y,..., that evaluate the partial derivatives of log f(u, γ) with
respect to each irregular parameter.

The coded example below illustrates the model with two irregular parameters γ, δ and irregular term

f((x, y), (γ, δ)) = 1 + exp(γ − δx3)

Arguments ... passed to ppm may also include interaction. In this case the model is not a
Poisson point process but a more general Gibbs point process; the trend formula trend determines
the first-order trend of the model (the first order component of the conditional intensity), not the
intensity.

Value

A fitted point process model (object of class "ppm") which also belongs to the special class "ippm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

344 is.dppm

See Also

ppm, profilepl

Examples

nd <- 32

gamma0 <- 3
delta0 <- 5
POW <- 3
Terms in intensity
Z <- function(x,y) { -2*y }
f <- function(x,y,gamma,delta) { 1 + exp(gamma - delta * x^POW) }
True intensity
lamb <- function(x,y,gamma,delta) { 200 * exp(Z(x,y)) * f(x,y,gamma,delta) }
Simulate realisation
lmax <- max(lamb(0,0,gamma0,delta0), lamb(1,1,gamma0,delta0))
set.seed(42)
X <- rpoispp(lamb, lmax=lmax, win=owin(), gamma=gamma0, delta=delta0)
Partial derivatives of log f
DlogfDgamma <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
topbit/(1 + topbit)

}
DlogfDdelta <- function(x,y, gamma, delta) {

topbit <- exp(gamma - delta * x^POW)
- (x^POW) * topbit/(1 + topbit)

}
irregular score
Dlogf <- list(gamma=DlogfDgamma, delta=DlogfDdelta)
fit model
ippm(X ~Z + offset(log(f)),

covariates=list(Z=Z, f=f),
iScore=Dlogf,
start=list(gamma=1, delta=1),
nlm.args=list(stepmax=1),
nd=nd)

is.dppm Recognise Fitted Determinantal Point Process Models

Description

Check that an object inherits the class dppm

Usage

is.dppm(x)

is.hybrid 345

Arguments

x Any object.

Value

A single logical value.

Author(s)

Ege Rubak <rubak@math.aau.dk> <rubak@math.aau.dk>, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
<Adrian.Baddeley@uwa.edu.au> and Rolf Turner <r.turner@auckland.ac.nz> <r.turner@auckland.ac.nz>

is.hybrid Test Whether Object is a Hybrid

Description

Tests where a point process model or point process interaction is a hybrid of several interactions.

Usage

is.hybrid(x)

S3 method for class 'ppm'
is.hybrid(x)

S3 method for class 'interact'
is.hybrid(x)

Arguments

x A point process model (object of class "ppm") or a point process interaction
structure (object of class "interact").

Details

A hybrid (Baddeley, Turner, Mateu and Bevan, 2012) is a point process model created by combining
two or more point process models, or an interpoint interaction created by combining two or more
interpoint interactions.

The function is.hybrid is generic, with methods for point process models (objects of class "ppm")
and point process interactions (objects of class "interact"). These functions return TRUE if the
object x is a hybrid, and FALSE if it is not a hybrid.

Hybrids of two or more interpoint interactions are created by the function Hybrid. Such a hybrid
interaction can then be fitted to point pattern data using ppm.

346 is.marked.ppm

Value

TRUE if the object is a hybrid, and FALSE otherwise.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

See Also

Hybrid

Examples

S <- Strauss(0.1)
is.hybrid(S)
H <- Hybrid(Strauss(0.1), Geyer(0.2, 3))
is.hybrid(H)

data(redwood)
fit <- ppm(redwood, ~1, H)
is.hybrid(fit)

is.marked.ppm Test Whether A Point Process Model is Marked

Description

Tests whether a fitted point process model involves “marks” attached to the points.

Usage

S3 method for class 'ppm'
is.marked(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.

... Ignored.

is.marked.ppm 347

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a marked
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). See the Examples for a trick to do this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a marked point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

is.marked, is.marked.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.marked(fit1)

fit2 <- ppm(X, ~ 1, Poisson())
is.marked(fit2)

test whether the model formula involves marks
"marks" %in% spatstat.utils::variablesinformula(formula(fit2))

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.marked(fit3)
FALSE

348 is.multitype.ppm

is.multitype.ppm Test Whether A Point Process Model is Multitype

Description

Tests whether a fitted point process model involves “marks” attached to the points that classify the
points into several types.

Usage

S3 method for class 'ppm'
is.multitype(X, ...)

Arguments

X Fitted point process model (object of class "ppm") usually obtained from ppm.

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the longleaf
dataset contains the locations of trees, each tree being marked by its diameter; the amacrine dataset
gives the locations of cells of two types (on/off) and the type of cell may be regarded as a mark
attached to the location of the cell.

The argument X is a fitted point process model (an object of class "ppm") typically obtained by
fitting a model to point pattern data using ppm.

This function returns TRUE if the original data (to which the model X was fitted) were a multitype
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). Currently we have not implemented a
test for this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a multitype point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

is.ppm 349

See Also

is.multitype, is.multitype.ppp

Examples

X <- lansing
Multitype point pattern --- trees marked by species

fit1 <- ppm(X, ~ marks, Poisson())
is.multitype(fit1)
TRUE

fit2 <- ppm(X, ~ 1, Poisson())
is.multitype(fit2)
TRUE

Unmarked point pattern
fit3 <- ppm(cells, ~ 1, Poisson())
is.multitype(fit3)
FALSE

is.ppm Test Whether An Object Is A Fitted Point Process Model

Description

Checks whether its argument is a fitted point process model (object of class "ppm", "kppm", "lppm"
or "slrm").

Usage

is.ppm(x)
is.kppm(x)
is.lppm(x)
is.slrm(x)

Arguments

x Any object.

Details

These functions test whether the object x is a fitted point process model object of the specified class.

The result of is.ppm(x) is TRUE if x has "ppm" amongst its classes, and otherwise FALSE. Similarly
for the other functions.

350 is.stationary.ppm

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

is.stationary.ppm Recognise Stationary and Poisson Point Process Models

Description

Given a point process model (either a model that has been fitted to data, or a model specified by its
parameters), determine whether the model is a stationary point process, and whether it is a Poisson
point process.

Usage

S3 method for class 'ppm'
is.stationary(x)
S3 method for class 'kppm'
is.stationary(x)
S3 method for class 'slrm'
is.stationary(x)
S3 method for class 'dppm'
is.stationary(x)
S3 method for class 'detpointprocfamily'
is.stationary(x)

S3 method for class 'ppm'
is.poisson(x)
S3 method for class 'kppm'
is.poisson(x)
S3 method for class 'slrm'
is.poisson(x)
S3 method for class 'interact'
is.poisson(x)

Arguments

x A fitted spatial point process model (object of class "ppm", "kppm", "lppm",
"dppm" or "slrm") or a specification of a Gibbs point process model (object of
class "rmhmodel") or a similar object.

is.stationary.ppm 351

Details

The argument x represents a fitted spatial point process model or a similar object.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for the classes "ppm"
(Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial lo-
gistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algo-
rithm). Additionally is.stationary has a method for classes "detpointprocfamily" and "dppm"
(both determinantal point processes) and is.poisson has a method for class "interact" (interac-
tion structures for Gibbs models).

is.poisson.kppm will return FALSE, unless the model x is degenerate: either x has zero intensity
so that its realisations are empty with probability 1, or it is a log-Gaussian Cox process where the
log intensity has zero variance.

is.poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.marked to determine whether a model is a marked point process.

summary.ppm for detailed information about a fitted model.

Model-fitting functions ppm, dppm, kppm, slrm.

Examples

fit <- ppm(cells ~ x)
is.stationary(fit)
is.poisson(fit)

fut <- kppm(redwood ~ 1, "MatClust")
is.stationary(fut)
is.poisson(fut)

fot <- slrm(cells ~ x)
is.stationary(fot)
is.poisson(fot)

352 isf.object

isf.object Interaction Structure Family Objects

Description

Objects of class "isf" are used internally by the spatstat package to represent the structure of the
interpoint interactions in a family of point process models.

Details

Advanced Use Only!

An object of class "isf" (Interaction Structure Family) is used internally by the spatstat package
to represent the common mathematical and algorithmic structure of the interpoint interactions in a
family of point process models.

The existing objects of class "isf" are:

pairwise.family pairwise interaction
triplet.family triplet interaction
pairsat.family saturated pairwise interaction
hierpair.family hierarchical pairwise interaction
inforder.family infinite order interaction
hybrid.family hybrids of several interactions
ord.family Ord interactions

The information contained in these objects enables the spatstat package to select the appropriate
algorithm for fitting, predicting and simulating each point process model.

For example, in order to fit a model that involves pairwise interactions, the model-fitting function
ppm would use information contained in pairwise.family to select the appropriate algorithms.

An object of class "isf" is essentially a list of functions for various tasks. The internal format is
undocumented and may be changed without notice.

Value

An object of class "isf", essentially a list of functions for various tasks.

The internal format is undocumented and may be changed without notice.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Jcross 353

Jcross Multitype J Function (i-to-j)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between points of type i and of type j.

Usage

Jcross(X, i, j, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Jij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the function
Jij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jcross and its companions Jdot and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The

354 Jcross

argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level).

The “type i to type j” multitype J function of a stationary multitype point processX was introduced
by Van lieshout and Baddeley (1999). It is defined by

Jij(r) =
1−Gij(r)
1− Fj(r)

where Gij(r) is the distribution function of the distance from a type i point to the nearest point
of type j, and Fj(r) is the distribution function of the distance from a fixed point in space to the
nearest point of type j in the pattern.

An estimate of Jij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points is independent of the subprocess of points of type j,
then Jij(r) ≡ 1. Hence deviations of the empirical estimate of Jij from the value 1 may suggest
dependence between types.

This algorithm estimates Jij(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Jij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Jij(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Jij(r) has been estimated

km the Kaplan-Meier estimator of Jij(r)

rs the “reduced sample” or “border correction” estimator of Jij(r)

han the Hanisch-style estimator of Jij(r)

un the “uncorrected” estimator of Jij(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gij(r) and 1− Fj(r), see Gdot and Fest.

theo the theoretical value of Jij(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gcross and
Fest for the point pattern.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Jdot 355

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jdot, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jhm <- Jcross(woods, "hickory", "maple")
diagnostic plot for independence between hickories and maples
plot(Jhm)

synthetic example with two types "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jcross(pp)

Jdot Multitype J Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype J function summarising the interpoint depen-
dence between the type i points and the points of any type.

Usage

Jdot(X, i, eps=NULL, r=NULL, breaks=NULL, ..., correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype J function
Ji•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

356 Jdot

eps A positive number. The resolution of the discrete approximation to Euclidean
distance (see below). There is a sensible default.

r numeric vector. The values of the argument r at which the function Ji•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

breaks This argument is for internal use only.

... Ignored.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

This function Jdot and its companions Jcross and Jmulti are generalisations of the function Jest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable
to as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor. The
argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an integer
value i=3 will be interpreted as the number 3, not the 3rd smallest level.)

The “type i to any type” multitype J function of a stationary multitype point process X was intro-
duced by Van lieshout and Baddeley (1999). It is defined by

Ji•(r) =
1−Gi•(r)
1− F•(r)

where Gi•(r) is the distribution function of the distance from a type i point to the nearest other
point of the pattern, and F•(r) is the distribution function of the distance from a fixed point in space
to the nearest point of the pattern.

An estimate of Ji•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the pattern is a marked Poisson point process, then Ji•(r) ≡ 1. If the subprocess of type
i points is independent of the subprocess of points of all types not equal to i, then Ji•(r) equals
Jii(r), the ordinary J function (see Jest and Van Lieshout and Baddeley (1996)) of the points of
type i. Hence deviations from zero of the empirical estimate of Ji• − Jii may suggest dependence
between types.

This algorithm estimates Ji•(r) from the point pattern X. It assumes that X can be treated as a reali-
sation of a stationary (spatially homogeneous) random spatial point process in the plane, observed
through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary
shape. Biases due to edge effects are treated in the same manner as in Jest, using the Kaplan-Meier
and border corrections. The main work is done by Gmulti and Fest.

The argument r is the vector of values for the distance r at which Ji•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Jdot 357

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

J the recommended estimator of Ji•(r), currently the Kaplan-Meier estimator.

r the values of the argument r at which the function Ji•(r) has been estimated

km the Kaplan-Meier estimator of Ji•(r)

rs the “reduced sample” or “border correction” estimator of Ji•(r)

han the Hanisch-style estimator of Ji•(r)

un the “uncorrected” estimator of Ji•(r) formed by taking the ratio of uncorrected
empirical estimators of 1−Gi•(r) and 1− F•(r), see Gdot and Fest.

theo the theoretical value of Ji•(r) for a marked Poisson process, namely 1.

The result also has two attributes "G" and "F" which are respectively the outputs of Gdot and Fest
for the point pattern.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jest, Jmulti

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Jh. <- Jdot(woods, "hickory")
plot(Jh.)
diagnostic plot for independence between hickories and other trees
Jhh <- Jest(split(woods)$hickory)
plot(Jhh, add=TRUE, legendpos="bottom")

358 Jest

synthetic example with two marks "a" and "b"
pp <- runifpoint(30) %mark% factor(sample(c("a","b"), 30, replace=TRUE))
J <- Jdot(pp, "a")

Jest Estimate the J-function

Description

Estimates the summary function J(r) for a point pattern in a window of arbitrary shape.

Usage

Jest(X, ..., eps=NULL, r=NULL, breaks=NULL, correction=NULL)

Arguments

X The observed point pattern, from which an estimate of J(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

eps the resolution of the discrete approximation to Euclidean distance (see below).
There is a sensible default.

r vector of values for the argument r at which J(r) should be evaluated. There
is a sensible default. First-time users are strongly advised not to specify this
argument. See below for important conditions on r.

breaks This argument is for internal use only.

correction Optional. Character string specifying the choice of edge correction(s) in Fest
and Gest. See Details.

Details

The J function (Van Lieshout and Baddeley, 1996) of a stationary point process is defined as

J(r) =
1−G(r)

1− F (r)

where G(r) is the nearest neighbour distance distribution function of the point process (see Gest)
and F (r) is its empty space function (see Fest).

For a completely random (uniform Poisson) point process, the J-function is identically equal to
1. Deviations J(r) < 1 or J(r) > 1 typically indicate spatial clustering or spatial regularity,
respectively. The J-function is one of the few characteristics that can be computed explicitly for
a wide range of point processes. See Van Lieshout and Baddeley (1996), Baddeley et al (2000),
Thonnes and Van Lieshout (1999) for further information.

An estimate of J derived from a spatial point pattern dataset can be used in exploratory data analysis
and formal inference about the pattern. The estimate of J(r) is compared against the constant

Jest 359

function 1. Deviations J(r) < 1 or J(r) > 1 may suggest spatial clustering or spatial regularity,
respectively.

This algorithm estimates the J-function from the point pattern X. It assumes that X can be treated
as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane,
observed through a bounded window. The window (which is specified in X as Window(X)) may have
arbitrary shape.

The argument X is interpreted as a point pattern object (of class "ppp", see ppp.object) and can be
supplied in any of the formats recognised by as.ppp().

The functions Fest and Gest are called to compute estimates of F (r) and G(r) respectively. These
estimates are then combined by simply taking the ratio J(r) = (1−G(r))/(1− F (r)).

In fact several different estimates are computed using different edge corrections (Baddeley, 1998).

The Kaplan-Meier estimate (returned as km) is the ratio J = (1-G)/(1-F) of the Kaplan-Meier
estimates of 1 − F and 1 − G computed by Fest and Gest respectively. This is computed if
correction=NULL or if correction includes "km".

The Hanisch-style estimate (returned as han) is the ratio J = (1-G)/(1-F) where F is the Chiu-
Stoyan estimate of F and G is the Hanisch estimate of G. This is computed if correction=NULL or
if correction includes "cs" or "han".

The reduced-sample or border corrected estimate (returned as rs) is the same ratio J = (1-G)/(1-F)
of the border corrected estimates. This is computed if correction=NULL or if correction includes
"rs" or "border".

These edge-corrected estimators are slightly biased for J , since they are ratios of approximately
unbiased estimators. The logarithm of the Kaplan-Meier estimate is exactly unbiased for log J .

The uncorrected estimate (returned as un and computed only if correction includes "none") is the
ratio J = (1-G)/(1-F) of the uncorrected (“raw”) estimates of the survival functions of F and G,
which are the empirical distribution functions of the empty space distances Fest(X,...)$raw and
of the nearest neighbour distances Gest(X,...)$raw. The uncorrected estimates of F and G are
severely biased. However the uncorrected estimate of J is approximately unbiased (if the process is
close to Poisson); it is insensitive to edge effects, and should be used when edge effects are severe
(see Baddeley et al, 2000).

The algorithm for Fest uses two discrete approximations which are controlled by the parameter eps
and by the spacing of values of r respectively. See Fest for details. First-time users are strongly
advised not to specify these arguments.

Note that the value returned by Jest includes the output of Fest and Gest as attributes (see the last
example below). If the user is intending to compute the F,G and J functions for the point pattern, it
is only necessary to call Jest.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing

r the vector of values of the argument r at which the function J has been estimated

rs the “reduced sample” or “border correction” estimator of J(r) computed from
the border-corrected estimates of F and G

360 Jest

km the spatial Kaplan-Meier estimator of J(r) computed from the Kaplan-Meier
estimates of F and G

han the Hanisch-style estimator of J(r) computed from the Hanisch estimate of G
and the Chiu-Stoyan estimate of F

un the uncorrected estimate of J(r) computed from the uncorrected estimates of F
and G

theo the theoretical value of J(r) for a stationary Poisson process: identically equal
to 1

The data frame also has attributes

F the output of Fest for this point pattern, containing three estimates of the empty
space function F (r) and an estimate of its hazard function

G the output of Gest for this point pattern, containing three estimates of the near-
est neighbour distance distribution function G(r) and an estimate of its hazard
function

Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Baddeley, A.J. and Gill, R.D. The empty space hazard of a spatial pattern. Research Report 1994/3,
Department of Mathematics, University of Western Australia, May 1994.

Baddeley, A.J. and Gill, R.D. Kaplan-Meier estimators of interpoint distance distributions for spatial
point processes. Annals of Statistics 25 (1997) 263–292.

Baddeley, A., Kerscher, M., Schladitz, K. and Scott, B.T. Estimating the J function without edge
correction. Statistica Neerlandica 54 (2000) 315–328.

Borgefors, G. Distance transformations in digital images. Computer Vision, Graphics and Image
Processing 34 (1986) 344–371.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Thonnes, E. and Van Lieshout, M.N.M, A comparative study on the power of Van Lieshout and
Baddeley’s J-function. Biometrical Journal 41 (1999) 721–734.

Jinhom 361

Van Lieshout, M.N.M. and Baddeley, A.J. A nonparametric measure of spatial interaction in point
patterns. Statistica Neerlandica 50 (1996) 344–361.

See Also

Jinhom, Fest, Gest, Kest, km.rs, reduced.sample, kaplan.meier

Examples

data(cells)
J <- Jest(cells, 0.01)
plot(J, main="cells data")
values are far above J = 1, indicating regular pattern

data(redwood)
J <- Jest(redwood, 0.01, legendpos="center")
plot(J, main="redwood data")
values are below J = 1, indicating clustered pattern

Jinhom Inhomogeneous J-function

Description

Estimates the inhomogeneous J function of a non-stationary point pattern.

Usage

Jinhom(X, lambda = NULL, lmin = NULL, ...,
sigma = NULL, varcov = NULL,
r = NULL, breaks = NULL, ratio=FALSE,
update = TRUE, warn.bias=TRUE, savelambda=FALSE)

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
J function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

lmin Optional. The minimum possible value of the intensity over the spatial domain.
A positive numerical value.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

362 Jinhom

... Extra arguments passed to as.mask to control the pixel resolution, or passed to
density.ppp to control the smoothing bandwidth.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

update Logical. If lambda is a fitted model (class "ppm" or "kppm") and update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without fitting it to X.

warn.bias Logical value specifying whether to issue a warning when the inhomogeneity
correction factor takes extreme values, which can often lead to biased results.
This usually occurs when insufficient smoothing is used to estimate the intensity.

savelambda Logical value specifying whether to save the values of lmin and lambda as at-
tributes of the result.

Details

This command computes estimates of the inhomogeneous J-function (Van Lieshout, 2010) of a
point pattern. It is the counterpart, for inhomogeneous spatial point patterns, of the J function for
homogeneous point patterns computed by Jest.

The argument X should be a point pattern (object of class "ppp").

The inhomogeneous J function is computed as Jinhom(r) = (1−Ginhom(r))/(1−Finhom(r))
where Ginhom,F inhom are the inhomogeneous G and F functions computed using the border
correction (equations (7) and (6) respectively in Van Lieshout, 2010).

The argument lambda should supply the (estimated) values of the intensity function λ of the point
process. It may be either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm" or "kppm") whose fitted trend can be used as
the fitted intensity. (If update=TRUE the model will first be refitted to the data X before the
trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then

Jmulti 363

looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother. The estimate
lambda[i] for the point X[i] is computed by removing X[i] from the point pattern, applying kernel
smoothing to the remaining points using density.ppp, and evaluating the smoothed intensity at
the point X[i]. The smoothing kernel bandwidth is controlled by the arguments sigma and varcov,
which are passed to density.ppp along with any extra arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)

Original code by Marie-Colette van Lieshout. C implementation and R adaptation by Adrian Bad-
deley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

References

van Lieshout, M.N.M. and Baddeley, A.J. (1996) A nonparametric measure of spatial interaction in
point patterns. Statistica Neerlandica 50, 344–361.

van Lieshout, M.N.M. (2010) A J-function for inhomogeneous point processes. Statistica Neer-
landica 65, 183–201.

See Also

Ginhom, Finhom, Jest

Examples

plot(Jinhom(swedishpines, sigma=bw.diggle, adjust=2))

plot(Jinhom(swedishpines, sigma=10))

Jmulti Marked J Function

Description

For a marked point pattern, estimate the multitype J function summarising dependence between the
points in subset I and those in subset J .

364 Jmulti

Usage

Jmulti(X, I, J, eps=NULL, r=NULL, breaks=NULL, ..., disjoint=NULL,
correction=NULL)

Arguments

X The observed point pattern, from which an estimate of the multitype distance
distribution function JIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset of points of X from which distances are measured. See Details.

J Subset of points in X to which distances are measured. See Details.

eps A positive number. The pixel resolution of the discrete approximation to Eu-
clidean distance (see Jest). There is a sensible default.

r numeric vector. The values of the argument r at which the distribution function
JIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

... Ignored.

disjoint Optional flag indicating whether the subsets I and J are disjoint. If missing, this
value will be computed by inspecting the vectors I and J.

correction Optional. Character string specifying the edge correction(s) to be used. Options
are "none", "rs", "km", "Hanisch" and "best". Alternatively correction="all"
selects all options.

Details

The function Jmulti generalises Jest (for unmarked point patterns) and Jdot and Jcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. Define

JIJ(r) =
1−GIJ(r)

1− FJ(r)

where FJ(r) is the cumulative distribution function of the distance from a fixed location to the
nearest point of XJ , and GIJ(r) is the distribution function of the distance from a typical point of
XI to the nearest distinct point of XJ .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

Jmulti 365

It is assumed that X can be treated as a realisation of a stationary (spatially homogeneous) random
spatial point process in the plane, observed through a bounded window. The window (which is
specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the
same manner as in Jest.

The argument r is the vector of values for the distance r at which JIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances. The reduced-sample and Kaplan-Meier estimators are computed from histogram counts.
In the case of the Kaplan-Meier estimator this introduces a discretisation error which is controlled
by the fineness of the breakpoints.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.
Furthermore, the successive entries of r must be finely spaced.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing six numeric columns

r the values of the argument r at which the function JIJ(r) has been estimated

rs the “reduced sample” or “border correction” estimator of JIJ(r)

km the spatial Kaplan-Meier estimator of JIJ(r)

han the Hanisch-style estimator of JIJ(r)

un the uncorrected estimate of JIJ(r), formed by taking the ratio of uncorrected
empirical estimators of 1−GIJ(r) and 1− FJ(r), see Gdot and Fest.

theo the theoretical value of JIJ(r) for a marked Poisson process with the same esti-
mated intensity, namely 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Jcross, Jdot, Jest

Examples

trees <- longleaf
Longleaf Pine data: marks represent diameter

Jm <- Jmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(Jm)

366 K3est

K3est K-function of a Three-Dimensional Point Pattern

Description

Estimates the K-function from a three-dimensional point pattern.

Usage

K3est(X, ...,
rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
ratio=FALSE)

Arguments

X Three-dimensional point pattern (object of class "pp3").
... Ignored.
rmax Optional. Maximum value of argument r for which K3(r) will be estimated.
nrval Optional. Number of values of r for which K3(r) will be estimated. A large

value of nrval is required to avoid discretisation effects.
correction Optional. Character vector specifying the edge correction(s) to be applied. See

Details.
ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-

mate will also be saved, for use in analysing replicated point patterns.

Details

For a stationary point process Φ in three-dimensional space, the three-dimensional K function is

K3(r) =
1

λ
E(N(Φ, x, r) | x ∈ Φ)

where λ is the intensity of the process (the expected number of points per unit volume) andN(Φ, x, r)
is the number of points of Φ, other than x itself, which fall within a distance r of x. This is the
three-dimensional generalisation of Ripley’s K function for two-dimensional point processes (Rip-
ley, 1977).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point
process Φ. The distance between each pair of distinct points is computed. The empirical cumulative
distribution function of these values, with appropriate edge corrections, is renormalised to give the
estimate of K3(r).

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)
"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,

1977; Baddeley et al, 1993).

Alternatively correction="all" selects all options.

kaplan.meier 367

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

pcf3est, F3est, G3est for other summary functions of a three-dimensional point pattern.

Kest to estimate the K-function of point patterns in two dimensions or other spaces.

Examples

X <- rpoispp3(42)
Z <- K3est(X)
if(interactive()) plot(Z)

kaplan.meier Kaplan-Meier Estimator using Histogram Data

Description

Compute the Kaplan-Meier estimator of a survival time distribution function, from histogram data

Usage

kaplan.meier(obs, nco, breaks, upperobs=0)

Arguments

obs vector of n integers giving the histogram of all observations (censored or uncen-
sored survival times)

nco vector of n integers giving the histogram of uncensored observations (those sur-
vival times that are less than or equal to the censoring time)

breaks Vector of n+ 1 breakpoints which were used to form both histograms.
upperobs Number of observations beyond the rightmost breakpoint, if any.

368 Kcom

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
obs of all observed times T̃i. That is, obs[k] counts the number of values T̃i in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1. These two histograms are
the arguments passed to kaplan.meier.

The vectors km and lambda returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).

The histogram breaks must include 0. If the histogram breaks do not span the range of the obser-
vations, it is important to count how many survival times T̃i exceed the rightmost breakpoint, and
give this as the value upperobs.

Value

A list with two elements:

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

lambda corresponding Nelson-Aalen estimate of the hazard rate λ(t)

These are numeric vectors of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

reduced.sample, km.rs

Kcom Model Compensator of K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the compensator
of theK function based on the fitted model (as well as the usual nonparametric estimates ofK based
on the data alone). Comparison between the nonparametric and model-compensated K functions
serves as a diagnostic for the model.

Kcom 369

Usage

Kcom(object, r = NULL, breaks = NULL, ...,
correction = c("border", "isotropic", "translate"),
conditional = !is.poisson(object),
restrict = FALSE,
model = NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
compute.var = TRUE,
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the function K(r) should
be computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for advanced use only.

... Ignored.

correction Optional vector of character strings specifying the edge correction(s) to be used.
See Kest for options.

conditional Optional. Logical value indicating whether to compute the estimates for the
conditional case. See Details.

restrict Logical value indicating whether to compute the restriction estimator (restrict=TRUE)
or the reweighting estimator (restrict=FALSE, the default). Applies only if
conditional=TRUE. See Details.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

compute.var Logical value indicating whether to compute the Poincare variance bound for
the residual K function (calculation is only implemented for the isotropic cor-
rection).

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

370 Kcom

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes an estimate of the K function of the dataset, together with a
model compensator of the K function, which should be approximately equal if the model is a good
fit to the data.

The first argument, object, is usually a fitted point process model (object of class "ppm"), obtained
from the model-fitting function ppm.

For convenience, object can also be a point pattern (object of class "ppp"). In that case, a point
process model will be fitted to it, by calling ppm using the arguments trend (for the first order
trend), interaction (for the interpoint interaction) and rbord (for the erosion distance in the bor-
der correction for the pseudolikelihood). See ppm for details of these arguments.

The algorithm first extracts the original point pattern dataset (to which the model was fitted) and
computes the standard nonparametric estimates of the K function. It then also computes the model
compensator of the K function. The different function estimates are returned as columns in a data
frame (of class "fv").

The argument correction determines the edge correction(s) to be applied. See Kest for explana-
tion of the principle of edge corrections. The following table gives the options for the correction
argument, and the corresponding column names in the result:

correction description of correction nonparametric compensator
"isotropic" Ripley isotropic correction iso icom
"translate" Ohser-Stoyan translation correction trans tcom
"border" border correction border bcom

The nonparametric estimates can all be expressed in the form

K̂(r) =
∑
i

∑
j<i

e(xi, xj , r, x)I{d(xi, xj) ≤ r}

where xi is the i-th data point, d(xi, xj) is the distance between xi and xj , and e(xi, xj , r, x) is
a term that serves to correct edge effects and to re-normalise the sum. The corresponding model
compensator is

C K̃(r) =

∫
W

λ(u, x)
∑
j

e(u, xj , r, x ∪ u)I{d(u, xj) ≤ r}

where the integral is over all locations u in the observation window, λ(u, x) denotes the conditional
intensity of the model at the location u, and x ∪ u denotes the data point pattern x augmented by
adding the extra point u.

If the fitted model is a Poisson point process, then the formulae above are exactly what is computed.
If the fitted model is not Poisson, the formulae above are modified slightly to handle edge effects.

The modification is determined by the arguments conditional and restrict. The value of
conditional defaults to FALSE for Poisson models and TRUE for non-Poisson models. If conditional=FALSE
then the formulae above are not modified. If conditional=TRUE, then the algorithm calculates the
restriction estimator if restrict=TRUE, and calculates the reweighting estimator if restrict=FALSE.
See Appendix D of Baddeley, Rubak and Møller (2011). Thus, by default, the reweighting estimator
is computed for non-Poisson models.

Kcom 371

The nonparametric estimates of K(r) are approximately unbiased estimates of the K-function,
assuming the point process is stationary. The model compensators are unbiased estimates of the
mean values of the corresponding nonparametric estimates, assuming the model is true. Thus, if
the model is a good fit, the mean value of the difference between the nonparametric estimates and
model compensators is approximately zero.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Kres, Kest.

Alternative functions: Gcom, psstG, psstA, psst.

Point process models: ppm.

Examples

fit0 <- ppm(cells, ~1) # uniform Poisson

if(interactive()) {
plot(Kcom(fit0))

compare the isotropic-correction estimates
plot(Kcom(fit0), cbind(iso, icom) ~ r)

uniform Poisson is clearly not correct
}

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kcom(fit1)
K1
if(interactive()) {

plot(K1)
plot(K1, cbind(iso, icom) ~ r)
plot(K1, cbind(trans, tcom) ~ r)

how to plot the difference between nonparametric estimates and compensators
plot(K1, iso - icom ~ r)

fit looks approximately OK; try adjusting interaction distance
}

372 Kcross

fit2 <- ppm(cells, ~1, Strauss(0.12))

K2 <- Kcom(fit2)
if(interactive()) {

plot(K2)
plot(K2, cbind(iso, icom) ~ r)
plot(K2, iso - icom ~ r)

}

Kcross Multitype K Function (Cross-type)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of points of type j within a given distance of a point of type i.

Usage

Kcross(X, i, j, r=NULL, breaks=NULL, correction,
..., ratio=FALSE, from, to)

Arguments

X The observed point pattern, from which an estimate of the cross typeK function
Kij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

r numeric vector. The values of the argument r at which the distribution function
Kij(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from,to An alternative way to specify i and j respectively.

Kcross 373

Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The “cross-type” (type i to type j) K function of a stationary multitype point process X is defined
so that λjKij(r) equals the expected number of additional random points of type j within a distance
r of a typical point of type i in the process X . Here λj is the intensity of the type j points, i.e. the
expected number of points of type j per unit area. The function Kij is determined by the second
order moment properties of X .

An estimate ofKij(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the process of type i points were independent of the process of type j points, thenKij(r)
would equal πr2. Deviations between the empirical Kij curve and the theoretical curve πr2 may
suggest dependence between the points of types i and j.

This algorithm estimates the distribution function Kij(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the border correction.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kcross; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

374 Kcross

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

amacrine cells data
K01 <- Kcross(amacrine, "off", "on")
plot(K01)

K10 <- Kcross(amacrine, "on", "off")

synthetic example: point pattern with marks 0 and 1
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, npoints(pp), replace=TRUE))
K <- Kcross(pp, "0", "1")
K <- Kcross(pp, 0, 1) # equivalent

Kcross.inhom 375

Kcross.inhom Inhomogeneous Cross K Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross K function, which
counts the expected number of points of type j within a given distance of a point of type i, adjusted
for spatially varying intensity.

Usage

Kcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL,
lambdaIJ=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type K function Kij(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the the estimated intensity of the sub-process of points of
type j. Either a pixel image (object of class "im"), a numeric vector containing
the intensity values at each of the type j points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

r Optional. Numeric vector giving the values of the argument r at which the cross
K function Kij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for advanced use only.

376 Kcross.inhom

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley" ,"translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdaJ if they are omitted. Incom-
patible with sigma.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points of types i and j respectively.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

The inhomogeneous cross-type K function is described by Møller and Waagepetersen (2003, pages
48-49 and 51-53).

Briefly, given a multitype point process, suppose the sub-process of points of type j has intensity
function λj(u) at spatial locations u. Suppose we place a mass of 1/λj(ζ) at each point ζ of type
j. Then the expected total mass per unit area is 1. The inhomogeneous “cross-type” K function
Kinhom
ij (r) equals the expected total mass within a radius r of a point of the process of type i.

If the process of type i points were independent of the process of type j points, then Kinhom
ij (r)

would equal πr2. Deviations between the empiricalKij curve and the theoretical curve πr2 suggest
dependence between the points of types i and j.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X$marks. (Warning: this means
that an integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i and j
are missing, they default to the first and second level of the marks factor, respectively.

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

Kcross.inhom 377

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function which can be evaluated to give values of the intensity at any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ should contain estimated values of the intensity of the sub-process of points of
type j. It may be either a pixel image, a function, a numeric vector, or omitted.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The optional argument lambdaIJ is for advanced use only. It is a matrix containing estimated values
of the products of these two intensities for each pair of data points of types i and j respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Kij(r) has been estimated

theo the theoretical value of Kij(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Kij(r)
obtained by the edge corrections named.

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

378 Kcross.inhom

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kcross, Kinhom, Kdot.inhom, Kmulti.inhom, pcf

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
K <- Kcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): leave-one-out
K <- Kcross.inhom(woods, "whiteoak", "maple", sigma=0.15)

method (3): fit parametric intensity model
fit <- ppm(woods ~marks * polynom(x,y,2))
alternative (a): use fitted model as 'lambda' argument
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambdaI=fit, lambdaJ=fit, update=FALSE)
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambdaX=fit, update=FALSE)
alternative (b): evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, marks(woods))
K <- Kcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kcross.inhom(X, "A", "B",

Kdot 379

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Kdot Multitype K Function (i-to-any)

Description

For a multitype point pattern, estimate the multitype K function which counts the expected number
of other points of the process within a given distance of a point of type i.

Usage

Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE, from)

Arguments

X The observed point pattern, from which an estimate of the multitype K function
Ki•(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the distribution function
Ki•(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

from An alternative way to specify i.

Details

This function Kdot and its companions Kcross and Kmulti are generalisations of the function Kest
to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible
“colours” or “types”. In the spatstat package, a multitype pattern is represented as a single point
pattern object in which the points carry marks, and the mark value attached to each point determines
the type of that point.

380 Kdot

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.
The argument i will be interpreted as a level of the factor X$marks. If i is missing, it defaults to the
first level of the marks factor, i = levels(X$marks)[1].
The “type i to any type” multitype K function of a stationary multitype point process X is defined
so that λKi•(r) equals the expected number of additional random points within a distance r of a
typical point of type i in the process X . Here λ is the intensity of the process, i.e. the expected
number of points of X per unit area. The function Ki• is determined by the second order moment
properties of X .
An estimate ofKi•(r) is a useful summary statistic in exploratory data analysis of a multitype point
pattern. If the subprocess of type i points were independent of the subprocess of points of all types
not equal to i, then Ki•(r) would equal πr2. Deviations between the empirical Ki• curve and the
theoretical curve πr2 may suggest dependence between types.
This algorithm estimates the distribution function Ki•(r) from the point pattern X. It assumes that
X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point pro-
cess in the plane, observed through a bounded window. The window (which is specified in X as
Window(X)) may have arbitrary shape. Biases due to edge effects are treated in the same manner as
in Kest, using the chosen edge correction(s).
The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.
The pair correlation function can also be applied to the result of Kdot; see pcf.

Value

An object of class "fv" (see fv.object).
Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated
theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.
If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.
The reduced sample estimator of Ki• is pointwise approximately unbiased, but need not be a valid
distribution function; it may not be a nondecreasing function of r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Kdot.inhom 381

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

See Also

Kdot, Kest, Kmulti, pcf

Examples

Lansing woods data: 6 types of trees
woods <- lansing

Kh. <- Kdot(woods, "hickory")
diagnostic plot for independence between hickories and other trees
plot(Kh.)

synthetic example with two marks "a" and "b"
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
K <- Kdot(pp, "a")

Kdot.inhom Inhomogeneous Multitype K Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot K function, which
counts the expected number of points of any type within a given distance of a point of type i,
adjusted for spatially varying intensity.

Usage

Kdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, ..., r=NULL, breaks=NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL, lambdaIdot=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

382 Kdot.inhom

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type K function Ki•(r) will be computed. It must be a multitype point pattern
(a marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity of the sub-process of points of type
i. Either a pixel image (object of class "im"), a numeric vector containing the
intensity values at each of the type i points in X, a fitted point process model
(object of class "ppm" or "kppm" or "dppm"), or a function(x,y) which can be
evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity of the entire point process, Either
a pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X, a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.

r Optional. Numeric vector giving the values of the argument r at which the cross
K function Kij(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

sigma Standard deviation of isotropic Gaussian smoothing kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted.

varcov Variance-covariance matrix of anisotropic Gaussian kernel, used in computing
leave-one-out kernel estimates of lambdaI, lambdadot if they are omitted. In-
compatible with sigma.

lambdaIdot Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdadot for each pair of points, the first point of type i and the second
of any type.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (ob-
ject of class "im"), a numeric vector containing the intensity values at each of
the points in X, a fitted point process model (object of class "ppm" or "kppm"
or "dppm"), or a function(x,y) which can be evaluated to give the intensity
value at any location. If present, this argument overrides both lambdaI and
lambdadot.

update Logical value indicating what to do when lambdaI, lambdadot or lambdaX is
a fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm

Kdot.inhom 383

or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

This is a generalisation of the function Kdot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Kinhom.

Briefly, given a multitype point process, consider the points without their types, and suppose this
unmarked point process has intensity function λ(u) at spatial locations u. Suppose we place a mass
of 1/λ(ζ) at each point ζ of the process. Then the expected total mass per unit area is 1. The
inhomogeneous “dot-type” K function Kinhom

i• (r) equals the expected total mass within a radius
r of a point of the process of type i, discounting this point itself.

If the process of type i points were independent of the points of other types, then Kinhom
i• (r)

would equal πr2. Deviations between the empiricalKi• curve and the theoretical curve πr2 suggest
dependence between the points of types i and j for j 6= i.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern, and the mark vector X$marks must be a factor.

The argument i will be interpreted as a level of the factor X$marks. (Warning: this means that an
integer value i=3 will be interpreted as the number 3, not the 3rd smallest level). If i is missing, it
defaults to the first level of the marks factor, i = levels(X$marks)[1].

The argument lambdaI supplies the values of the intensity of the sub-process of points of type i. It
may be either

a pixel image (object of class "im") which gives the values of the type i intensity at all locations
in the window containing X;

a numeric vector containing the values of the type i intensity evaluated only at the data points of
type i. The length of this vector must equal the number of type i points in X.

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly the argument lambdadot should contain estimated values of the intensity of the entire
point process. It may be either a pixel image, a numeric vector of length equal to the number of
points in X, a function, or omitted.

384 Kdot.inhom

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points
of X, and the arguments lambdaI, lambdadot will be ignored. (The two arguments lambdaI,
lambdadot allow the user to specify two different methods for calculating the intensities of the
two kinds of points, while lambdaX ensures that the same method is used for both kinds of points.)

For advanced use only, the optional argument lambdaIdot is a matrix containing estimated values
of the products of these two intensities for each pair of points, the first point of type i and the second
of any type.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

The argument correction chooses the edge correction as explained e.g. in Kest.

The pair correlation function can also be applied to the result of Kcross.inhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Ki•(r) has been estimated

theo the theoretical value of Ki•(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Ki•(r)
obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Kdot, Kinhom, Kcross.inhom, Kmulti.inhom, pcf

kernel.factor 385

Examples

Lansing Woods data
woods <- lansing
woods <- woods[seq(1,npoints(woods), by=10)]
ma <- split(woods)$maple
lg <- unmark(woods)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
K <- Kdot.inhom(woods, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

Equivalent
K <- Kdot.inhom(woods, "maple", sigma=0.15)

Fit model
fit <- ppm(woods ~ marks * polynom(x,y,2))
K <- Kdot.inhom(woods, "maple", lambdaX=fit, update=FALSE)

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
K <- Kdot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

kernel.factor Scale factor for density kernel

Description

Returns a scale factor for the kernels used in density estimation for numerical data.

Usage

kernel.factor(kernel = "gaussian")

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

386 kernel.moment

This function computes a scale constant for the kernel. For the Gaussian kernel, this constant is
equal to 1. Otherwise, the constant c is such that the kernel with standard deviation 1 is supported
on the interval [−c, c].

For more information about these kernels, see density.default.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton

See Also

density.default, dkernel, kernel.moment, kernel.squint

Examples

kernel.factor("rect")
bandwidth for Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")

kernel.moment Moment of Smoothing Kernel

Description

Computes the complete or incomplete mth moment of a smoothing kernel.

Usage

kernel.moment(m, r, kernel = "gaussian")

Arguments

m Exponent (order of moment). An integer.

r Upper limit of integration for the incomplete moment. A numeric value or nu-
meric vector. Set r=Inf to obtain the complete moment.

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

kernel.squint 387

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above. For more information about these kernels, see
density.default.

The function kernel.moment computes the partial integral∫ r

−∞
tmk(t)dt

where k(t) is the selected kernel, r is the upper limit of integration, and m is the exponent or order.
Here k(t) is the standard form of the kernel, which has support [−1, 1] and standard deviation
sigma = 1/c where c = kernel.factor(kernel).

Value

A single number, or a numeric vector of the same length as r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Martin Hazelton.

See Also

density.default, dkernel, kernel.factor,

Examples

kernel.moment(1, 0.1, "epa")
curve(kernel.moment(2, x, "epa"), from=-1, to=1)

kernel.squint Integral of Squared Kernel

Description

Computes the integral of the squared kernel, for the kernels used in density estimation for numerical
data.

Usage

kernel.squint(kernel = "gaussian", bw=1)

Arguments

kernel String name of the kernel. Options are "gaussian", "rectangular", "triangular",
"epanechnikov", "biweight", "cosine" and "optcosine". (Partial matching
is used).

bw Bandwidth (standard deviation) of the kernel.

388 Kest

Details

Kernel estimation of a probability density in one dimension is performed by density.default
using a kernel function selected from the list above.

This function computes the integral of the squared kernel,

R =

∫ ∞
−∞

k(x)2 dx

where k(x) is the kernel with bandwidth bw.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton

See Also

density.default, dkernel, kernel.moment, kernel.factor

Examples

kernel.squint("gaussian", 3)

integral of squared Epanechnikov kernel with half-width h=1
h <- 1
bw <- h/kernel.factor("epa")
kernel.squint("epa", bw)

Kest K-function

Description

Estimates Ripley’s reduced second moment function K(r) from a point pattern in a window of
arbitrary shape.

Usage

Kest(X, ..., r=NULL, rmax=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
nlarge=3000, domain=NULL, var.approx=FALSE, ratio=FALSE)

Kest 389

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.
If necessary, specify rmax.

rmax Optional. Maximum desired value of the argument r.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"rigid", "none", "good" or "best". It specifies the edge correction(s) to be
applied. Alternatively correction="all" selects all options.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed (by default), using a fast algorithm.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

var.approx Logical. If TRUE, the approximate variance of K̂(r) under CSR will also be
computed.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

The K function (variously called “Ripley’s K-function” and the “reduced second moment func-
tion”) of a stationary point process X is defined so that λK(r) equals the expected number of
additional random points within a distance r of a typical random point of X . Here λ is the intensity
of the process, i.e. the expected number of points of X per unit area. The K function is determined
by the second order moment properties of X .

An estimate of K derived from a spatial point pattern dataset can be used in exploratory data anal-
ysis and formal inference about the pattern (Cressie, 1991; Diggle, 1983; Ripley, 1977, 1988). In
exploratory analyses, the estimate of K is a useful statistic summarising aspects of inter-point “de-
pendence” and “clustering”. For inferential purposes, the estimate of K is usually compared to the
true value ofK for a completely random (Poisson) point process, which isK(r) = πr2. Deviations
between the empirical and theoretical K curves may suggest spatial clustering or spatial regularity.

This routine Kest estimates the K function of a stationary point process, given observation of the
process inside a known, bounded window. The argument X is interpreted as a point pattern object (of
class "ppp", see ppp.object) and can be supplied in any of the formats recognised by as.ppp().

The estimation of K is hampered by edge effects arising from the unobservability of points of the
random pattern outside the window. An edge correction is needed to reduce bias (Baddeley, 1998;
Ripley, 1988). The corrections implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

390 Kest

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented for rectangular and polygonal windows (not for binary masks).

translate/translation Translation correction (Ohser, 1983). Implemented for all window geome-
tries, but slow for complex windows.

rigid Rigid motion correction (Ohser and Stoyan, 1981). Implemented for all window geometries,
but slow for complex windows.

none Uncorrected estimate. An estimate of the K function without edge correction. (i.e. setting
eij = 1 in the equation below. This estimate is biased and should not be used for data analysis,
unless you have an extremely large point pattern (more than 100,000 points).

best Selects the best edge correction that is available for the geometry of the window. Currently
this is Ripley’s isotropic correction for a rectangular or polygonal window, and the translation
correction for masks.

good Selects the best edge correction that can be computed in a reasonable time. This is the same
as "best" for datasets with fewer than 3000 points; otherwise the selected edge correction is
"border", unless there are more than 100,000 points, when it is "none".

The estimates of K(r) are of the form

K̂(r) =
a

n(n− 1)

∑
i

∑
j

I(dij ≤ r)eij

where a is the area of the window, n is the number of data points, and the sum is taken over all
ordered pairs of points i and j in X. Here dij is the distance between the two points, and I(dij ≤ r)
is the indicator that equals 1 if the distance is less than or equal to r. The term eij is the edge
correction weight (which depends on the choice of edge correction listed above).

Note that this estimator assumes the process is stationary (spatially homogeneous). For inhomoge-
neous point patterns, see Kinhom.

If the point pattern X contains more than about 3000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

If X contains more than about 100,000 points, even the border correction is time-consuming. You
may want to consider setting correction="none" in this case. There is an even faster algorithm
for the uncorrected estimate.

Approximations to the variance of K̂(r) are available, for the case of the isotropic edge correction
estimator, assuming complete spatial randomness (Ripley, 1988; Lotwick and Silverman, 1982;
Diggle, 2003, pp 51-53). If var.approx=TRUE, then the result of Kest also has a column named
rip giving values of Ripley’s (1988) approximation to var(K̂(r)), and (if the window is a rectangle)
a column named ls giving values of Lotwick and Silverman’s (1982) approximation.

If the argument domain is given, the calculations will be restricted to a subset of the data. In
the formula for K(r) above, the first point i will be restricted to lie inside domain. The result is an
approximately unbiased estimate ofK(r) based on pairs of points in which the first point lies inside
domain and the second point is unrestricted. This is useful in bootstrap techniques. The argument
domain should be a window (object of class "owin") or something acceptable to as.owin. It must
be a subset of the window of the point pattern X.

Kest 391

The estimator Kest ignores marks. Its counterparts for multitype point patterns are Kcross, Kdot,
and for general marked point patterns see Kmulti.

Some writers, particularly Stoyan (1994, 1995) advocate the use of the “pair correlation function”

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r). See pcf on how to estimate this function.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function K(r) obtained by the
edge corrections named.

If var.approx=TRUE then the return value also has columns rip and ls containing approximations
to the variance of K̂(r) under CSR.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Envelopes, significance bands and confidence intervals

To compute simulation envelopes for the K-function under CSR, use envelope.

To compute a confidence interval for the true K-function, use varblock or lohboot.

Warnings

The estimator of K(r) is approximately unbiased for each fixed r, for point processes which do
not have very strong interaction. (For point processes with a strong clustering interaction, the
estimator is negatively biased; for point processes with a strong inhibitive interaction, the estimator
is positively biased.)

Bias increases with r and depends on the window geometry. For a rectangular window it is prudent
to restrict the r values to a maximum of 1/4 of the smaller side length of the rectangle (Ripley,
1977, 1988; Diggle, 1983). Bias may become appreciable for point patterns consisting of fewer
than 15 points.

While K(r) is always a non-decreasing function, the estimator of K is not guaranteed to be non-
decreasing. This is rarely a problem in practice, except for the border correction estimators when
the number of points is small.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

392 Kest

References

Baddeley, A.J. Spatial sampling and censoring. In O.E. Barndorff-Nielsen, W.S. Kendall and
M.N.M. van Lieshout (eds) Stochastic Geometry: Likelihood and Computation. Chapman and
Hall, 1998. Chapter 2, pages 37–78.

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ohser, J. and Stoyan, D. (1981) On the second-order and orientation analysis of planar stationary
point processes. Biometrical Journal 23, 523–533.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

localK to extract individual summands in the K function.

pcf for the pair correlation.

Fest, Gest, Jest for alternative summary functions.

Kcross, Kdot, Kinhom, Kmulti for counterparts of the K function for multitype point patterns.

reduced.sample for the calculation of reduced sample estimators.

Examples

X <- runifpoint(50)
K <- Kest(X)
K <- Kest(cells, correction="isotropic")
plot(K)
plot(K, main="K function for cells")
plot the L function
plot(K, sqrt(iso/pi) ~ r)
plot(K, sqrt(./pi) ~ r, ylab="L(r)", main="L function for cells")

Kest.fft 393

Kest.fft K-function using FFT

Description

Estimates the reduced second moment function K(r) from a point pattern in a window of arbitrary
shape, using the Fast Fourier Transform.

Usage

Kest.fft(X, sigma, r=NULL, ..., breaks=NULL)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation of the isotropic Gaussian smoothing kernel.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. There is a sensible default.

... Arguments passed to as.mask determining the spatial resolution for the FFT
calculation.

breaks This argument is for internal use only.

Details

This is an alternative to the function Kest for estimating the K function. It may be useful for very
large patterns of points.

Whereas Kest computes the distance between each pair of points analytically, this function discre-
tises the point pattern onto a rectangular pixel raster and applies Fast Fourier Transform techniques
to estimate K(t). The hard work is done by the function Kmeasure.

The result is an approximation whose accuracy depends on the resolution of the pixel raster. The res-
olution is controlled by the arguments ..., or by setting the parameter npixel in spatstat.options.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

border the estimates of K(r) for these values of r

theo the theoretical value K(r) = πr2 for a stationary Poisson process

394 Kinhom

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kmeasure, spatstat.options

Examples

pp <- runifpoint(10000)

Kpp <- Kest.fft(pp, 0.01)
plot(Kpp)

Kinhom Inhomogeneous K-function

Description

Estimates the inhomogeneous K function of a non-stationary point pattern.

Usage

Kinhom(X, lambda=NULL, ..., r = NULL, breaks = NULL,
correction=c("border", "bord.modif", "isotropic", "translate"),
renormalise=TRUE,
normpower=1,
update=TRUE,
leaveoneout=TRUE,
nlarge = 1000,
lambda2=NULL, reciplambda=NULL, reciplambda2=NULL,
diagonal=TRUE,
sigma=NULL, varcov=NULL,
ratio=FALSE)

Kinhom 395

Arguments

X The observed data point pattern, from which an estimate of the inhomogeneous
K function will be computed. An object of class "ppp" or in a format recognised
by as.ppp()

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm" or "kppm") or a function(x,y) which can be evaluated to give
the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

r vector of values for the argument r at which the inhomogeneous K function
should be evaluated. Not normally given by the user; there is a sensible default.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

nlarge Optional. Efficiency threshold. If the number of points exceeds nlarge, then
only the border correction will be computed, using a fast algorithm.

lambda2 Advanced use only. Matrix containing estimates of the products λ(xi)λ(xj) of
the intensities at each pair of data points xi and xj .

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

reciplambda2 Advanced use only. Alternative to lambda2. A matrix giving values of the
estimated reciprocal products 1/λ(xi)λ(xj) of the intensities at each pair of
data points xi and xj .

diagonal Do not use this argument.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

396 Kinhom

Details

This computes a generalisation of the K function for inhomogeneous point patterns, proposed by
Baddeley, Møller and Waagepetersen (2000).

The “ordinary” K function (variously known as the reduced second order moment function and
Ripley’s K function), is described under Kest. It is defined only for stationary point processes.

The inhomogeneous K function Kinhom(r) is a direct generalisation to nonstationary point pro-
cesses. Suppose x is a point process with non-constant intensity λ(u) at each location u. Define
Kinhom(r) to be the expected value, given that u is a point of x, of the sum of all terms 1/λ(xj) over
all points xj in the process separated from u by a distance less than r. This reduces to the ordinary
K function if λ() is constant. If x is an inhomogeneous Poisson process with intensity function
λ(u), then Kinhom(r) = πr2.

Given a point pattern dataset, the inhomogeneous K function can be estimated essentially by sum-
ming the values 1/(λ(xi)λ(xj)) for all pairs of points xi, xj separated by a distance less than r.

This allows us to inspect a point pattern for evidence of interpoint interactions after allowing for
spatial inhomogeneity of the pattern. Values Kinhom(r) > πr2 are suggestive of clustering.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

Kinhom 397

Edge corrections are used to correct bias in the estimation of Kinhom. Each edge-corrected estimate
of Kinhom(r) is of the form

K̂inhom(r) = (1/A)
∑
i

∑
j

1{dij ≤ r}e(xi, xj , r)
λ(xi)λ(xj)

where A is a constant denominator, dij is the distance between points xi and xj , and e(xi, xj , r) is
an edge correction factor. For the ‘border’ correction,

e(xi, xj , r) =
1(bi > r)∑

j 1(bj > r)/λ(xj)

where bi is the distance from xi to the boundary of the window. For the ‘modified border’ correction,

e(xi, xj , r) =
1(bi > r)

area(W 	 r)

where W 	 r is the eroded window obtained by trimming a margin of width r from the border of
the original window. For the ‘translation’ correction,

e(xi, xj , r) =
1

area(W ∩ (W + (xj − xi)))

and for the ‘isotropic’ correction,

e(xi, xj , r) =
1

area(W)g(xi, xj)

where g(xi, xj) is the fraction of the circumference of the circle with centre xi and radius ||xi−xj ||
which lies inside the window.

If renormalise=TRUE (the default), then the estimates described above are multiplied by cnormpower

where c = area(W)/
∑

(1/λ(xi)). This rescaling reduces the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1
(for consistency with previous versions of spatstat) but the most sensible value is 2, which would
correspond to rescaling the lambda values so that

∑
(1/λ(xi)) = area(W).

If the point pattern X contains more than about 1000 points, the isotropic and translation edge correc-
tions can be computationally prohibitive. The computations for the border method are much faster,
and are statistically efficient when there are large numbers of points. Accordingly, if the number of
points in X exceeds the threshold nlarge, then only the border correction will be computed. Set-
ting nlarge=Inf or correction="best" will prevent this from happening. Setting nlarge=0 is
equivalent to selecting only the border correction with correction="border".

The pair correlation function can also be applied to the result of Kinhom; see pcf.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which Kinhom(r) has been estimated

398 Kinhom

theo vector of values of πr2, the theoretical value ofKinhom(r) for an inhomogeneous
Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kinhom(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of Kinhom(r).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kest, pcf

Examples

inhomogeneous pattern of maples
X <- unmark(split(lansing)$maple)

(1) intensity function estimated by model-fitting
Fit spatial trend: polynomial in x and y coordinates
fit <- ppm(X, ~ polynom(x,y,2), Poisson())
(a) predict intensity values at points themselves,
obtaining a vector of lambda values
lambda <- predict(fit, locations=X, type="trend")
inhomogeneous K function
Ki <- Kinhom(X, lambda)
plot(Ki)
(b) predict intensity at all locations,
obtaining a pixel image
lambda <- predict(fit, type="trend")
Ki <- Kinhom(X, lambda)
plot(Ki)

(2) intensity function estimated by heavy smoothing
Ki <- Kinhom(X, sigma=0.1)
plot(Ki)

(3) simulated data: known intensity function
lamfun <- function(x,y) { 50 + 100 * x }

km.rs 399

inhomogeneous Poisson process
Y <- rpoispp(lamfun, 150, owin())
inhomogeneous K function
Ki <- Kinhom(Y, lamfun)
plot(Ki)

How to make simulation envelopes:
Example shows method (2)
if(interactive()) {
smo <- density.ppp(X, sigma=0.1)
Ken <- envelope(X, Kinhom, nsim=99,

simulate=expression(rpoispp(smo)),
sigma=0.1, correction="trans")

plot(Ken)
}

km.rs Kaplan-Meier and Reduced Sample Estimator using Histograms

Description

Compute the Kaplan-Meier and Reduced Sample estimators of a survival time distribution function,
using histogram techniques

Usage

km.rs(o, cc, d, breaks)

Arguments

o vector of observed survival times

cc vector of censoring times

d vector of non-censoring indicators

breaks Vector of breakpoints to be used to form histograms.

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the Kaplan-Meier estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

The arguments to this function are vectors o, cc, d of observed values of T̃i, Ci and Di respectively.
The function computes histograms and forms the reduced-sample and Kaplan-Meier estimates of
F (t) by invoking the functions kaplan.meier and reduced.sample. This is efficient if the lengths
of o, cc, d (i.e. the number of observations) is large.

400 Kmark

The vectors km and hazard returned by kaplan.meier are (histogram approximations to) the
Kaplan-Meier estimator of F (t) and its hazard rate λ(t). Specifically, km[k] is an estimate of
F(breaks[k+1]), and lambda[k] is an estimate of the average of λ(t) over the interval (breaks[k],breaks[k+1]).
This approximation is exact only if the survival times are discrete and the histogram breaks are fine
enough to ensure that each interval (breaks[k],breaks[k+1]) contains only one possible value
of the survival time.

The vector rs is the reduced-sample estimator, rs[k] being the reduced sample estimate of F(breaks[k+1]).
This value is exact, i.e. the use of histograms does not introduce any approximation error in the
reduced-sample estimator.

Value

A list with five elements

rs Reduced-sample estimate of the survival time c.d.f. F (t)

km Kaplan-Meier estimate of the survival time c.d.f. F (t)

hazard corresponding Nelson-Aalen estimate of the hazard rate λ(t)

r values of t for which F (t) is estimated

breaks the breakpoints vector

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

reduced.sample, kaplan.meier

Kmark Mark-Weighted K Function

Description

Estimates the mark-weighted K function of a marked point pattern.

Usage

Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)

Kmark 401

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied. Alternatively
correction="all" selects all options.

... Ignored.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

returnL Compute the analogue of the K-function if returnL=FALSE or the analogue of
the L-function if returnL=TRUE.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

Details

The functions Kmark and markcorrint are identical. (Eventually markcorrint will be deprecated.)

The mark-weighted K function Kf (r) of a marked point process (Penttinen et al, 1992) is a gener-
alisation of Ripley’s K function, in which the contribution from each pair of points is weighted by
a function of their marks. If the marks of the two points are m1,m2 then the weight is proportional
to f(m1,m2) where f is a specified test function.

The mark-weighted K function is defined so that

λKf (r) =
Cf (r)

E[f(M1,M2)]

where

Cf (r) = E

[∑
x∈X

f(m(u),m(x))10 < ||u− x|| ≤ r
∣∣ u ∈ X]

for any spatial location u taken to be a typical point of the point process X . Here ||u − x|| is
the euclidean distance between u and x, so that the sum is taken over all random points x that
lie within a distance r of the point u. The function Cf (r) is the unnormalised mark-weighted K
function. To obtain Kf (r) we standardise Cf (r) by dividing by E[f(M1,M2)], the expected value
of f(M1,M2) when M1 and M2 are independent random marks with the same distribution as the
marks in the point process.

Under the hypothesis of random labelling, the mark-weighted K function is equal to Ripley’s K
function, Kf (r) = K(r).

402 Kmark

The mark-weighted K function is sometimes called the mark correlation integral because it is
related to the mark correlation function kf (r) and the pair correlation function g(r) by

Kf (r) = 2π

∫ r

0

skf (s) g(s) ds

See markcorr for a definition of the mark correlation function.

Given a marked point pattern X, this command computes edge-corrected estimates of the mark-
weighted K function. If returnL=FALSE then the estimated function Kf (r) is returned; otherwise
the function

Lf (r) =
√
Kf (r)/π

is returned.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark correlation integral Kf (r) has
been estimated

theo the theoretical value of Kf (r) when the marks attached to different points are
independent, namely πr2

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark-weighted K function Kf (r) obtained by
the edge corrections named (if returnL=FALSE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Penttinen, A., Stoyan, D. and Henttonen, H. M. (1992) Marked point processes in forest statistics.
Forest Science 38 (1992) 806-824.

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical analysis and modelling of
spatial point patterns. Chichester: John Wiley.

See Also

markcorr to estimate the mark correlation function.

Kmeasure 403

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- Kmark(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- Kmark(X)
plot(Xc)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
M <- Kmark(amacrine, function(m1,m2) {m1==m2},

correction="translate")
plot(M)

Kmeasure Reduced Second Moment Measure

Description

Estimates the reduced second moment measure κ from a point pattern in a window of arbitrary
shape.

Usage

Kmeasure(X, sigma, edge=TRUE, ..., varcov=NULL)

Arguments

X The observed point pattern, from which an estimate of κ will be computed. An
object of class "ppp", or data in any format acceptable to as.ppp().

sigma Standard deviation σ of the Gaussian smoothing kernel. Incompatible with
varcov.

edge Logical value indicating whether an edge correction should be applied.

... Arguments passed to as.mask controlling the pixel resolution.

varcov Variance-covariance matrix of the Gaussian smoothing kernel. Incompatible
with sigma.

404 Kmeasure

Details

Given a point pattern dataset, this command computes an estimate of the reduced second moment
measure κ of the point process. The result is a pixel image whose pixel values are estimates of the
density of the reduced second moment measure.

The reduced second moment measure κ can be regarded as a generalisation of the more familiar
K-function. An estimate of κ derived from a spatial point pattern dataset can be useful in ex-
ploratory data analysis. Its advantage over the K-function is that it is also sensitive to anisotropy
and directional effects.

In a nutshell, the command Kmeasure computes a smoothed version of the Fry plot. As explained
under fryplot, the Fry plot is a scatterplot of the vectors joining all pairs of points in the pattern.
The reduced second moment measure is (essentially) defined as the average of the Fry plot over
different realisations of the point process. The command Kmeasure effectively smooths the Fry plot
of a dataset to obtain an estimate of the reduced second moment measure.

In formal terms, the reduced second moment measure κ of a stationary point processX is a measure
defined on the two-dimensional plane such that, for a ‘typical’ point x of the process, the expected
number of other points y of the process such that the vector y− x lies in a region A, equals λκ(A).
Here λ is the intensity of the process, i.e. the expected number of points of X per unit area.

The K-function is a special case. The function value K(t) is the value of the reduced second
moment measure for the disc of radius t centred at the origin; that is, K(t) = κ(b(0, t)).

The command Kmeasure computes an estimate of κ from a point pattern dataset X, which is assumed
to be a realisation of a stationary point process, observed inside a known, bounded window. Marks
are ignored.

The algorithm approximates the point pattern and its window by binary pixel images, introduces a
Gaussian smoothing kernel and uses the Fast Fourier Transform fft to form a density estimate of
κ. The calculation corresponds to the edge correction known as the “translation correction”.

The Gaussian smoothing kernel may be specified by either of the arguments sigma or varcov. If
sigma is a single number, this specifies an isotropic Gaussian kernel with standard deviation sigma
on each coordinate axis. If sigma is a vector of two numbers, this specifies a Gaussian kernel with
standard deviation sigma[1] on the x axis, standard deviation sigma[2] on the y axis, and zero
correlation between the x and y axes. If varcov is given, this specifies the variance-covariance
matrix of the Gaussian kernel. There do not seem to be any well-established rules for selecting the
smoothing kernel in this context.

The density estimate of κ is returned in the form of a real-valued pixel image. Pixel values are
estimates of the normalised second moment density at the centre of the pixel. (The uniform Poisson
process would have values identically equal to 1.) The image x and y coordinates are on the same
scale as vector displacements in the original point pattern window. The point x=0, y=0 corresponds
to the ‘typical point’. A peak in the image near (0,0) suggests clustering; a dip in the image near
(0,0) suggests inhibition; peaks or dips at other positions suggest possible periodicity.

If desired, the value of κ(A) for a region A can be estimated by computing the integral of the
pixel image over the domain A, i.e.\ summing the pixel values and multiplying by pixel area, using
integral.im. One possible application is to compute anisotropic counterparts of the K-function
(in which the disc of radius t is replaced by another shape). See Examples.

Kmeasure 405

Value

A real-valued pixel image (an object of class "im", see im.object) whose pixel values are estimates
of the density of the reduced second moment measure at each location.

Warning

Some writers use the term reduced second moment measure when they mean the K-function. This
has caused confusion.

As originally defined, the reduced second moment measure is a measure, obtained by modifying the
second moment measure, while the K-function is a function obtained by evaluating this measure
for discs of increasing radius. In spatstat, the K-function is computed by Kest and the reduced
second moment measure is computed by Kmeasure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, fryplot, spatstat.options, integral.im, im.object

Examples

plot(Kmeasure(cells, 0.05))
shows pronounced dip around origin consistent with strong inhibition
plot(Kmeasure(redwood, 0.03), col=grey(seq(1,0,length=32)))
shows peaks at several places, reflecting clustering and ?periodicity
M <- Kmeasure(cells, 0.05)
evaluate measure on a sector
W <- Window(M)
ang <- as.im(atan2, W)
rad <- as.im(function(x,y){sqrt(x^2+y^2)}, W)
sector <- solutionset(ang > 0 & ang < 1 & rad < 0.6)
integral.im(M[sector, drop=FALSE])

406 Kmodel

Kmodel K Function or Pair Correlation Function of a Point Process Model

Description

Returns the theoretical K function or the pair correlation function of a point process model.

Usage

Kmodel(model, ...)

pcfmodel(model, ...)

Arguments

model A fitted point process model of some kind.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model.

The functions Kmodel and pcfmodel give the theoretical K-function and the theoretical pair corre-
lation function for a point process model that has been fitted to data.

The functions Kmodel and pcfmodel are generic, with methods for the classes "kppm" (cluster
processes and Cox processes) and "ppm" (Gibbs processes).

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

Kmodel.kppm for the method for cluster processes and Cox processes.

Kmodel.ppm for the method for Gibbs processes.

Kmodel.dppm 407

Kmodel.dppm K-function or Pair Correlation Function of a Determinantal Point Pro-
cess Model

Description

Returns the theoretical K-function or theoretical pair correlation function of a determinantal point
process model as a function of one argument r.

Usage

S3 method for class 'dppm'
Kmodel(model, ...)

S3 method for class 'dppm'
pcfmodel(model, ...)

S3 method for class 'detpointprocfamily'
Kmodel(model, ...)

S3 method for class 'detpointprocfamily'
pcfmodel(model, ...)

Arguments

model Model of class "detpointprocfamily" or "dppm".

... Ignored (not quite true – there is some undocumented internal use)

Value

A function in the R language, with one numeric argument r, that can be used to evaluate the theo-
retical K-function or pair correlation function of the model at distances r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

model <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
KMatern <- Kmodel(model)
pcfMatern <- pcfmodel(model)
plot(KMatern, xlim = c(0,0.05))
plot(pcfMatern, xlim = c(0,0.05))

408 Kmodel.kppm

Kmodel.kppm K Function or Pair Correlation Function of Cluster Model or Cox
model

Description

Returns the theoretical K function or the pair correlation function of a cluster point process model
or Cox point process model.

Usage

S3 method for class 'kppm'
Kmodel(model, ...)

S3 method for class 'kppm'
pcfmodel(model, ...)

Arguments

model A fitted cluster point process model (object of class "kppm") typically obtained
from the model-fitting algorithm kppm.

... Ignored.

Details

For certain types of point process models, it is possible to write down a mathematical expression
for the K function or the pair correlation function of the model. In particular this is possible for a
fitted cluster point process model (object of class "kppm" obtained from kppm).

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "kppm".

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Kmodel.ppm 409

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

kppm to fit cluster models.

Kmodel for the generic functions.

Kmodel.ppm for the method for Gibbs processes.

Examples

data(redwood)
fit <- kppm(redwood, ~x, "MatClust")
K <- Kmodel(fit)
K(c(0.1, 0.2))
curve(K(x), from=0, to=0.25)

Kmodel.ppm K Function or Pair Correlation Function of Gibbs Point Process model

Description

Returns the theoretical K function or the pair correlation function of a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
Kmodel(model, ...)

S3 method for class 'ppm'
pcfmodel(model, ...)

Arguments

model A fitted Poisson or Gibbs point process model (object of class "ppm") typically
obtained from the model-fitting algorithm ppm.

... Ignored.

Details

This function computes an approximation to the K function or the pair correlation function of a
Gibbs point process.

The functions Kmodel and pcfmodel are generic. The functions documented here are the methods
for the class "ppm".

The approximation is only available for stationary pairwise-interaction models. It uses the second
order Poisson-saddlepoint approximation (Baddeley and Nair, 2012b) which is a combination of
the Poisson-Boltzmann-Emden and Percus-Yevick approximations.

410 Kmulti

The return value is a function in the R language, which takes one argument r. Evaluation of this
function, on a numeric vector r, yields values of the desired K function or pair correlation function
at these distance values.

Value

A function in the R language, which takes one argument r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Gopalan Nair.

References

Baddeley, A. and Nair, G. (2012a) Fast approximation of the intensity of Gibbs point processes.
Electronic Journal of Statistics 6 1155–1169.

Baddeley, A. and Nair, G. (2012b) Approximating the moments of a spatial point process. Stat 1,
1, 18–30. DOI: 10.1002/sta4.5

See Also

Kest or pcf to estimate the K function or pair correlation function nonparametrically from data.

ppm to fit Gibbs models.

Kmodel for the generic functions.

Kmodel.kppm for the method for cluster/Cox processes.

Examples

fit <- ppm(swedishpines, ~1, Strauss(8))
p <- pcfmodel(fit)
K <- Kmodel(fit)
p(6)
K(8)
curve(K(x), from=0, to=15)

Kmulti Marked K-Function

Description

For a marked point pattern, estimate the multitype K function which counts the expected number
of points of subset J within a given distance from a typical point in subset I.

Usage

Kmulti(X, I, J, r=NULL, breaks=NULL, correction, ..., rmax=NULL, ratio=FALSE)

Kmulti 411

Arguments

X The observed point pattern, from which an estimate of the multitype K function
KIJ(r) will be computed. It must be a marked point pattern. See under Details.

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

r numeric vector. The values of the argument r at which the multitypeK function
KIJ(r) should be evaluated. There is a sensible default. First-time users are
strongly advised not to specify this argument. See below for important condi-
tions on r. If necessary, specify rmax.

breaks This argument is for internal use only.

correction A character vector containing any selection of the options "border", "bord.modif",
"isotropic", "Ripley", "translate", "translation", "none" or "best". It
specifies the edge correction(s) to be applied. Alternatively correction="all"
selects all options.

... Ignored.

rmax Optional. Maximum desired value of the argument r.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

Details

The function Kmulti generalises Kest (for unmarked point patterns) and Kdot and Kcross (for
multitype point patterns) to arbitrary marked point patterns.

Suppose XI , XJ are subsets, possibly overlapping, of a marked point process. The multitype K
function is defined so that λJKIJ(r) equals the expected number of additional random points of
XJ within a distance r of a typical point of XI . Here λJ is the intensity of XJ i.e. the expected
number of points of XJ per unit area. The function KIJ is determined by the second order moment
properties of X .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

412 Kmulti

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular and polygonal windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The function KIJ is not necessarily differentiable.

The border correction (reduced sample) estimator of KIJ used here is pointwise approximately
unbiased, but need not be a nondecreasing function of r, while the trueKIJ must be nondecreasing.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neurosci. Meth. 18, 115–125.

Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants’ nests. Applied Statis-
tics 32, 293–303

Kmulti.inhom 413

Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several
types of points. J. Royal Statist. Soc. Ser. B 44, 406–413.

Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition.
Springer Verlag, 1995.

Van Lieshout, M.N.M. and Baddeley, A.J. (1999) Indices of dependence between types in multi-
variate point patterns. Scandinavian Journal of Statistics 26, 511–532.

See Also

Kcross, Kdot, Kest, pcf

Examples

Longleaf Pine data: marks represent diameter
trees <- longleaf

K <- Kmulti(trees, marks(trees) <= 15, marks(trees) >= 25)
plot(K)
functions determining subsets
f1 <- function(X) { marks(X) <= 15 }
f2 <- function(X) { marks(X) >= 15 }
K <- Kmulti(trees, f1, f2)

Kmulti.inhom Inhomogeneous Marked K-Function

Description

For a marked point pattern, estimate the inhomogeneous version of the multitype K function which
counts the expected number of points of subset J within a given distance from a typical point in
subset I, adjusted for spatially varying intensity.

Usage

Kmulti.inhom(X, I, J, lambdaI=NULL, lambdaJ=NULL,
...,
r=NULL, breaks=NULL,
correction=c("border", "isotropic", "Ripley", "translate"),
lambdaIJ=NULL,
sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

414 Kmulti.inhom

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype K function KIJ(r) will be computed. It must be a marked point pattern.
See under Details.

I Subset index specifying the points of X from which distances are measured. See
Details.

J Subset index specifying the points in X to which distances are measured. See
Details.

lambdaI Optional. Values of the estimated intensity of the sub-process X[I]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[I], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location,

lambdaJ Optional. Values of the estimated intensity of the sub-process X[J]. Either a
pixel image (object of class "im"), a numeric vector containing the intensity
values at each of the points in X[J], a fitted point process model (object of class
"ppm" or "kppm" or "dppm"), or a function(x,y) which can be evaluated to
give the intensity value at any location.

... Ignored.
r Optional. Numeric vector. The values of the argument r at which the multitype

K function KIJ(r) should be evaluated. There is a sensible default. First-time
users are strongly advised not to specify this argument. See below for important
conditions on r.

breaks This argument is for internal use only.
correction A character vector containing any selection of the options "border", "bord.modif",

"isotropic", "Ripley", "translate", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

lambdaIJ Optional. A matrix containing estimates of the product of the intensities lambdaI
and lambdaJ for each pair of points, the first point belonging to subset I and the
second point to subset J.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

lambdaX Optional. Values of the intensity for all points of X. Either a pixel image (object
of class "im"), a numeric vector containing the intensity values at each of the
points in X, a fitted point process model (object of class "ppm" or "kppm" or
"dppm"), or a function(x,y) which can be evaluated to give the intensity value
at any location. If present, this argument overrides both lambdaI and lambdaJ.

update Logical value indicating what to do when lambdaI, lambdaJ or lambdaX is a
fitted point process model (class "ppm", "kppm" or "dppm"). If update=TRUE
(the default), the model will first be refitted to the data X (using update.ppm
or update.kppm) before the fitted intensity is computed. If update=FALSE, the
fitted intensity of the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Kmulti.inhom 415

Details

The function Kmulti.inhom is the counterpart, for spatially-inhomogeneous marked point patterns,
of the multitype K function Kmulti.

Suppose X is a marked point process, with marks of any kind. Suppose XI , XJ are two sub-
processes, possibly overlapping. Typically XI would consist of those points of X whose marks
lie in a specified range of mark values, and similarly for XJ . Suppose that λI(u), λJ(u) are the
spatially-varying intensity functions of XI and XJ respectively. Consider all the pairs of points
(u, v) in the point process X such that the first point u belongs to XI , the second point v belongs
to XJ , and the distance between u and v is less than a specified distance r. Give this pair (u, v) the
numerical weight 1/(λI(u)λJ(u)). Calculate the sum of these weights over all pairs of points as
described. This sum (after appropriate edge-correction and normalisation) is the estimated inhomo-
geneous multitype K function.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp.

The arguments I and J specify two subsets of the point pattern. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The argument lambdaI supplies the values of the intensity of the sub-process identified by index I.
It may be either

a pixel image (object of class "im") which gives the values of the intensity of X[I] at all locations
in the window containing X;

a numeric vector containing the values of the intensity of X[I] evaluated only at the data points
of X[I]. The length of this vector must equal the number of points in X[I].

a function of the form function(x,y) which can be evaluated to give values of the intensity at
any locations.

a fitted point process model (object of class "ppm", "kppm" or "dppm") whose fitted trend can be
used as the fitted intensity. (If update=TRUE the model will first be refitted to the data X before
the trend is computed.)

omitted: if lambdaI is omitted then it will be estimated using a leave-one-out kernel smoother.

If lambdaI is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate of lambdaI for a given point is
computed by removing the point from the point pattern, applying kernel smoothing to the remaining
points using density.ppp, and evaluating the smoothed intensity at the point in question. The
smoothing kernel bandwidth is controlled by the arguments sigma and varcov, which are passed to
density.ppp along with any extra arguments.

Similarly lambdaJ supplies the values of the intensity of the sub-process identified by index J.

Alternatively if the argument lambdaX is given, then it specifies the intensity values for all points of
X, and the arguments lambdaI, lambdaJ will be ignored.

The argument r is the vector of values for the distance r at which KIJ(r) should be evaluated. It is
also used to determine the breakpoints (in the sense of hist) for the computation of histograms of
distances.

416 Kmulti.inhom

First-time users would be strongly advised not to specify r. However, if it is specified, r must satisfy
r[1] = 0, and max(r) must be larger than the radius of the largest disc contained in the window.

Biases due to edge effects are treated in the same manner as in Kinhom. The edge corrections
implemented here are

border the border method or “reduced sample” estimator (see Ripley, 1988). This is the least
efficient (statistically) and the fastest to compute. It can be computed for a window of arbitrary
shape.

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is currently
implemented only for rectangular windows.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

The pair correlation function pcf can also be applied to the result of Kmulti.inhom.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function KIJ(r) has been estimated

theo the theoretical value of KIJ(r) for a marked Poisson process, namely πr2

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function KIJ(r)
obtained by the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

See Also

Kmulti, Kdot.inhom, Kcross.inhom, pcf

Examples

Finnish Pines data: marked by diameter and height
plot(finpines, which.marks="height")
II <- (marks(finpines)$height <= 2)
JJ <- (marks(finpines)$height > 3)
K <- Kmulti.inhom(finpines, II, JJ)
plot(K)
functions determining subsets
f1 <- function(X) { marks(X)$height <= 2 }

kppm 417

f2 <- function(X) { marks(X)$height > 3 }
K <- Kmulti.inhom(finpines, f1, f2)

kppm Fit Cluster or Cox Point Process Model

Description

Fit a homogeneous or inhomogeneous cluster process or Cox point process model to a point pattern.

Usage

kppm(X, ...)

S3 method for class 'formula'
kppm(X,

clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
...,
data=NULL)

S3 method for class 'ppp'
kppm(X,

trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),
data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm", "adapcl"),
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
stabilize=TRUE,
algorithm,
statistic="K",
statargs=list(),
rmax = NULL,
epsilon=0.01,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

S3 method for class 'quad'
kppm(X,

trend = ~1,
clusters = c("Thomas","MatClust","Cauchy","VarGamma","LGCP"),

418 kppm

data = NULL,
...,
covariates=data,
subset,
method = c("mincon", "clik2", "palm", "adapcl"),
improve.type = c("none", "clik1", "wclik1", "quasi"),
improve.args = list(),
weightfun=NULL,
control=list(),
stabilize=TRUE,
algorithm,
statistic="K",
statargs=list(),
rmax = NULL,
epsilon=0.01,
covfunargs=NULL,
use.gam=FALSE,
nd=NULL, eps=NULL)

Arguments

X A point pattern dataset (object of class "ppp" or "quad") to which the model
should be fitted, or a formula in the R language defining the model. See Details.

trend An R formula, with no left hand side, specifying the form of the log intensity.

clusters Character string determining the cluster model. Partially matched. Options are
"Thomas", "MatClust", "Cauchy", "VarGamma" and "LGCP".

data,covariates

The values of spatial covariates (other than the Cartesian coordinates) required
by the model. A named list of pixel images, functions, windows, tessellations
or numeric constants.

... Additional arguments. See Details.

subset Optional. A subset of the spatial domain, to which the model-fitting should be
restricted. A window (object of class "owin") or a logical-valued pixel image
(object of class "im"), or an expression (possibly involving the names of entries
in data) which can be evaluated to yield a window or pixel image.

method The fitting method. Either "mincon" for minimum contrast, "clik2" for sec-
ond order composite likelihood, "adapcl" for adaptive second order composite
likelihood, or "palm" for Palm likelihood. Partially matched.

improve.type Method for updating the initial estimate of the trend. Initially the trend is es-
timated as if the process is an inhomogeneous Poisson process. The default,
improve.type = "none", is to use this initial estimate. Otherwise, the trend
estimate is updated by improve.kppm, using information about the pair correla-
tion function. Options are "clik1" (first order composite likelihood, essentially
equivalent to "none"), "wclik1" (weighted first order composite likelihood)
and "quasi" (quasi likelihood).

improve.args Additional arguments passed to improve.kppm when improve.type != "none".
See Details.

kppm 419

weightfun Optional weighting function w in the composite likelihoods or Palm likelihood.
A function in the R language. See Details.

control List of control parameters passed to the optimization function optim.

stabilize Logical value specifying whether to numerically stabilize the optimization algo-
rithm, by specifying suitable default values of control$fnscale and control$parscale.

algorithm Character string determining the mathematical algorithm to be used to solve
the fitting problem. If method="mincon", "clik2" or "palm" this argument
is passed to the generic optimization function optim (renamed as the argument
method to optim) with default "Nelder-Mead". If method="adapcl") the argu-
ment is passed to the equation solver nleqslv (renamed as the argument method
to nleqslv) with default "Bryden".

statistic Name of the summary statistic to be used for minimum contrast estimation:
either "K" or "pcf".

statargs Optional list of arguments to be used when calculating the statistic. See
Details.

rmax Maximum value of interpoint distance to use in the composite likelihood.

epsilon Tuning parameter for the adaptive composite likelihood method.
covfunargs,use.gam,nd,eps

Arguments passed to ppm when fitting the intensity.

Details

This function fits a clustered point process model to the point pattern dataset X.

The model may be either a Neyman-Scott cluster process or another Cox process. The type of model
is determined by the argument clusters. Currently the options are clusters="Thomas" for the
Thomas process, clusters="MatClust" for the Matérn cluster process, clusters="Cauchy" for
the Neyman-Scott cluster process with Cauchy kernel, clusters="VarGamma" for the Neyman-
Scott cluster process with Variance Gamma kernel (requires an additional argument nu to be passed
through the dots; see rVarGamma for details), and clusters="LGCP" for the log-Gaussian Cox
process (may require additional arguments passed through ...; see rLGCP for details on argument
names). The first four models are Neyman-Scott cluster processes.

The algorithm first estimates the intensity function of the point process using ppm. The argument
X may be a point pattern (object of class "ppp") or a quadrature scheme (object of class "quad").
The intensity is specified by the trend argument. If the trend formula is ~1 (the default) then the
model is homogeneous. The algorithm begins by estimating the intensity as the number of points
divided by the area of the window. Otherwise, the model is inhomogeneous. The algorithm begins
by fitting a Poisson process with log intensity of the form specified by the formula trend. (See ppm
for further explanation).

The argument X may also be a formula in the R language. The right hand side of the formula gives
the trend as described above. The left hand side of the formula gives the point pattern dataset to
which the model should be fitted.

If improve.type="none" this is the final estimate of the intensity. Otherwise, the intensity estimate
is updated, as explained in improve.kppm. Additional arguments to improve.kppm are passed as a
named list in improve.args.

420 kppm

The cluster parameters of the model are then fitted either by minimum contrast estimation, or by
a composite likelihood method (maximum composite likelihood, maximum Palm likelihood, or by
solving the adaptive composite likelihood estimating equation).

Minimum contrast: If method = "mincon" (the default) clustering parameters of the model will
be fitted by minimum contrast estimation, that is, by matching the theoretical K-function of
the model to the empirical K-function of the data, as explained in mincontrast.
For a homogeneous model (trend = ~1) the empirical K-function of the data is computed
using Kest, and the parameters of the cluster model are estimated by the method of minimum
contrast.
For an inhomogeneous model, the inhomogeneous K function is estimated by Kinhom using
the fitted intensity. Then the parameters of the cluster model are estimated by the method of
minimum contrast using the inhomogeneous K function. This two-step estimation procedure
is due to Waagepetersen (2007).
If statistic="pcf" then instead of using the K-function, the algorithm will use the pair
correlation function pcf for homogeneous models and the inhomogeneous pair correlation
function pcfinhom for inhomogeneous models. In this case, the smoothing parameters of the
pair correlation can be controlled using the argument statargs, as shown in the Examples.
Additional arguments ... will be passed to clusterfit to control the minimum contrast
fitting algorithm.
The optimisation is performed by the generic optimisation algorithm optim.

Second order composite likelihood: If method = "clik2" the clustering parameters of the model
will be fitted by maximising the second-order composite likelihood (Guan, 2006). The log
composite likelihood is

∑
i,j

w(dij) log ρ(dij ; θ)−

∑
i,j

w(dij)

 log

∫
D

∫
D

w(‖u− v‖)ρ(‖u− v‖; θ) du dv

where the sums are taken over all pairs of data points xi, xj separated by a distance dij =
‖xi − xj‖ less than rmax, and the double integral is taken over all pairs of locations u, v in
the spatial window of the data. Here ρ(d; θ) is the pair correlation function of the model with
cluster parameters θ.
The function w in the composite likelihood is a weighting function and may be chosen arbi-
trarily. It is specified by the argument weightfun. If this is missing or NULL then the default
is a threshold weight function, w(d) = 1(d ≤ R), where R is rmax/2.
The optimisation is performed by the generic optimisation algorithm optim.

Palm likelihood: If method = "palm" the clustering parameters of the model will be fitted by max-
imising the Palm loglikelihood (Tanaka et al, 2008)

∑
i,j

w(xi, xj) log λP (xj | xi; θ)−
∫
D

w(xi, u)λP (u | xi; θ)du

with the same notation as above. Here λP (u|v; θ is the Palm intensity of the model at location
u given there is a point at v.
The optimisation is performed by the generic optimisation algorithm optim.

kppm 421

Adaptive Composite likelihood: If method = "cladap" the clustering parameters of the model
will be fitted by solving the adaptive second order composite likelihood estimating equation
(Lavancier et al, 2021). The estimating function is∑
u,v

w(ε
|g(0; θ)− 1|

g(‖u− v‖; θ)− 1
)
∇θg(‖u− v‖; θ)
g(‖u− v‖; θ)

−
∫
D

∫
D

w(ε
M(u, v; θ)

∇ θ
g(‖u−v‖; θ)ρ(u)ρ(v) du dv

where the sum is taken over all distinct pairs of points. Here g(d; θ) is the pair correlation
function with parameters θ. The partial derivative with respect to θ is g′(d; θ), and ρ(u)
denotes the fitted intensity function of the model.
The tuning parameter ε is independent of the data. It can be specified by the argument epsilon
and has default value 0.01.
The function w in the estimating function is a weighting function of bounded support [−1, 1].
It is specified by the argument weightfun. If this is missing or NULL then the default is
w(d) = 1(‖d‖ ≤ 1) exp(1/(r2 − 1)). The estimating equation is solved using the nonlinear
equation solver nleqslv from the package nleqslv. The package nleqslv must be installed in
order to use this option.

Fitting the LGCP model requires the RandomFields package, except in the default case where the
exponential covariance is assumed.

Value

An object of class "kppm" representing the fitted model. There are methods for printing, plotting,
predicting, simulating and updating objects of this class.

Optimization algorithm

The following details allow greater control over the fitting procedure.

For the first three fitting methods (method="mincon", "clik2" and "palm"), the optimisation is
performed by the generic optimisation algorithm optim. The behaviour of this algorithm can be
controlled by the following arguments to kppm:

• startpar determines the initial estimates of the cluster parameters.

• algorithm determines the particular optimization method. This argument is passed to optim
as the argument method. Options are listed in the help for optim. The default is the Nelder-
Mead simplex method.

• control is a named list of control parameters, documented in the help for optim. Useful
control arguments include trace, maxit and abstol.

• lower and upper specify bounds for the cluster parameters, when algorithm="L-BFGS-B"
or algorithm="Brent", as described in the help for optim.

For method="adapcl", the estimating equation is solved using the nonlinear equation solver nleqslv
from the package nleqslv. The package nleqslv must be installed in order to use this option. The
behaviour of this algorithm can be controlled by the following arguments to kppm:

• startpar determines the initial estimates of the cluster parameters.

• algorithm determines the method for solving the equation. This argument is passed to
nleqslv as the argument method. Options are listed in the help for nleqslv.

422 kppm

• globStrat determines the global strategy to be applied. This argument is is passed to nleqslv
as the argument global. Options are listed in the help for nleqslv.

• control is a named list of control parameters, documented in the help for nleqslv.

Log-Gaussian Cox Models

To fit a log-Gaussian Cox model with non-exponential covariance, specify clusters="LGCP" and
use additional arguments to specify the covariance structure. These additional arguments can be
given individually in the call to kppm, or they can be collected together in a list called covmodel.

For example a Matérn model with parameter ν = 0.5 could be specified either by kppm(X, clusters="LGCP",
model="matern", nu=0.5) or by kppm(X, clusters="LGCP", covmodel=list(model="matern",
nu=0.5)).

The argument model specifies the type of covariance model: the default is model="exp" for an ex-
ponential covariance. Alternatives include "matern", "cauchy" and "spheric". Model names cor-
respond to functions beginning with RM in the RandomFields package: for example model="matern"
corresponds to the function RMmatern in the RandomFields package.

Additional arguments are passed to the relevant function in the RandomFields package: for exam-
ple if model="matern" then the additional argument nu is required, and is passed to the function
RMmatern in the RandomFields package.

Note that it is not possible to use anisotropic covariance models because the kppm technique assumes
the pair correlation function is isotropic.

Error and warning messages

See ppm.ppp for a list of common error messages and warnings originating from the first stage of
model-fitting.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>, with contributions from Abdollah Jalilian and Rasmus
Waagepetersen. Adaptive composite likelihood method contributed by Chiara Fend and modified
by Adrian Baddeley.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Guan, Y., Jalilian, A. and Waagepetersen, R. (2015) Quasi-likelihood for spatial point processes.
Journal of the Royal Statistical Society, Series B 77, 677-697.

Jalilian, A., Guan, Y. and Waagepetersen, R. (2012) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119–137.

Lavancier, F., Poinas, A., and Waagepetersen, R. (2021) Adaptive estimating function inference for
nonstationary determinantal point processes. Scandinavian Journal of Statistics, 48 (1), 87–107.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

kppm 423

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

Methods for kppm objects: plot.kppm, fitted.kppm, predict.kppm, simulate.kppm, update.kppm,
vcov.kppm, methods.kppm, as.ppm.kppm, as.fv.kppm, Kmodel.kppm, pcfmodel.kppm.

See also improve.kppm for improving the fit of a kppm object.

Minimum contrast fitting algorithm: higher level interface clusterfit; low-level algorithm mincontrast.

Alternative fitting algorithms: thomas.estK, matclust.estK, lgcp.estK, cauchy.estK, vargamma.estK,
thomas.estpcf, matclust.estpcf, lgcp.estpcf, cauchy.estpcf, vargamma.estpcf.

Summary statistics: Kest, Kinhom, pcf, pcfinhom.

For fitting Poisson or Gibbs point process models, see ppm.

Examples

online <- interactive()
if(!online) op <- spatstat.options(npixel=32, ndummy.min=16)

method for point patterns
kppm(redwood, ~1, "Thomas")
method for formulas
kppm(redwood ~ 1, "Thomas")

different models for clustering
if(online) kppm(redwood ~ x, "MatClust")
kppm(redwood ~ x, "MatClust", statistic="pcf", statargs=list(stoyan=0.2))
kppm(redwood ~ x, cluster="Cauchy", statistic="K")
kppm(redwood, cluster="VarGamma", nu = 0.5, statistic="pcf")

log-Gaussian Cox process (LGCP) models
kppm(redwood ~ 1, "LGCP", statistic="pcf")
if(require("RandomFields")) {

Random Fields package is needed for non-default choice of covariance model
kppm(redwood ~ x, "LGCP", statistic="pcf",

model="matern", nu=0.3,
control=list(maxit=10))

}

Different fitting techniques
kppm(redwood ~ 1, "Thomas", method="c")
kppm(redwood ~ 1, "Thomas", method="p")
quasi-likelihood improvement
kppm(redwood ~ x, "Thomas", improve.type = "quasi")

if(!online) spatstat.options(op)

424 Kres

Kres Residual K Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual K
function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

Kres(object, ...)

Arguments

object Object to be analysed. Either a fitted point process model (object of class
"ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object
of class "quad"), or the value returned by a previous call to Kcom.

... Arguments passed to Kcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a
point pattern dataset. It computes a residual version of the K function of the dataset, which should
be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Kres first calls Kcom
to compute both the nonparametric estimate of the K function and its model compensator. Then
Kres computes the difference between them, which is the residual K-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a
previous call to Kcom. Then Kres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a
plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

Kscaled 425

See Also

Related functions: Kcom, Kest.

Alternative functions: Gres, psstG, psstA, psst.

Point process models: ppm.

Examples

data(cells)
fit0 <- ppm(cells, ~1) # uniform Poisson

K0 <- Kres(fit0)
K0
plot(K0)

isotropic-correction estimate
plot(K0, ires ~ r)

uniform Poisson is clearly not correct

fit1 <- ppm(cells, ~1, Strauss(0.08))

K1 <- Kres(fit1)

if(interactive()) {
plot(K1, ires ~ r)

fit looks approximately OK; try adjusting interaction distance
plot(Kres(cells, interaction=Strauss(0.12)))

}

How to make envelopes
E <- envelope(fit1, Kres, model=fit1, nsim=19)
plot(E)

For computational efficiency
Kc <- Kcom(fit1)
K1 <- Kres(Kc)

Kscaled Locally Scaled K-function

Description

Estimates the locally-rescaled K-function of a point process.

Usage

Kscaled(X, lambda=NULL, ..., r = NULL, breaks = NULL,
rmax = 2.5,
correction=c("border", "isotropic", "translate"),
renormalise=FALSE, normpower=1,

426 Kscaled

sigma=NULL, varcov=NULL)

Lscaled(...)

Arguments

X The observed data point pattern, from which an estimate of the locally scaled K
function will be computed. An object of class "ppp" or in a format recognised
by as.ppp().

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class
"im") giving the intensity values at all locations, a function(x,y) which can
be evaluated to give the intensity value at any location, or a fitted point process
model (object of class "ppm").

... Arguments passed from Lscaled to Kscaled and from Kscaled to density.ppp
if lambda is omitted.

r vector of values for the argument r at which the locally scaledK function should
be evaluated. (These are rescaled distances.) Not normally given by the user;
there is a sensible default.

breaks This argument is for internal use only.

rmax maximum value of the argument r that should be used. (This is the rescaled
distance).

correction A character vector containing any selection of the options "border", "isotropic",
"Ripley", "translate", "translation", "none" or "best". It specifies the
edge correction(s) to be applied. Alternatively correction="all" selects all
options.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

Details

Kscaled computes an estimate of the K function for a locally scaled point process. Lscaled
computes the corresponding L function L(r) =

√
K(r)/π.

Locally scaled point processes are a class of models for inhomogeneous point patterns, introduced
by Hahn et al (2003). They include inhomogeneous Poisson processes, and many other models.

The template K function of a locally-scaled process is a counterpart of the “ordinary” Ripley K
function, in which the distances between points of the process are measured on a spatially-varying
scale (such that the locally rescaled process has unit intensity).

The template K function is an indicator of interaction between the points. For an inhomogeneous
Poisson process, the theoretical templateK function is approximately equal toK(r) = πr2. Values
Kscaled(r) > πr2 are suggestive of clustering.

Kscaled computes an estimate of the template K function and Lscaled computes the correspond-
ing L function L(r) =

√
K(r)/π.

Kscaled 427

The locally scaled interpoint distances are computed using an approximation proposed by Hahn
(2007). The Euclidean distance between two points is multiplied by the average of the square roots
of the intensity values at the two points.

The argument lambda should supply the (estimated) values of the intensity function λ. It may be
either

a numeric vector containing the values of the intensity function at the points of the pattern X.

a pixel image (object of class "im") assumed to contain the values of the intensity function at all
locations in the window.

a function which can be evaluated to give values of the intensity at any locations.

omitted: if lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother.

If lambda is a numeric vector, then its length should be equal to the number of points in the pattern
X. The value lambda[i] is assumed to be the the (estimated) value of the intensity λ(xi) for the
point xi of the pattern X . Each value must be a positive number; NA’s are not allowed.

If lambda is a pixel image, the domain of the image should cover the entire window of the point
pattern. If it does not (which may occur near the boundary because of discretisation error), then
the missing pixel values will be obtained by applying a Gaussian blur to lambda using blur, then
looking up the values of this blurred image for the missing locations. (A warning will be issued in
this case.)

If lambda is a function, then it will be evaluated in the form lambda(x,y) where x and y are vectors
of coordinates of the points of X. It should return a numeric vector with length equal to the number
of points in X.

If lambda is omitted, then it will be estimated using a ‘leave-one-out’ kernel smoother, as described
in Baddeley, Møller and Waagepetersen (2000). The estimate lambda[i] for the point X[i] is com-
puted by removing X[i] from the point pattern, applying kernel smoothing to the remaining points
using density.ppp, and evaluating the smoothed intensity at the point X[i]. The smoothing kernel
bandwidth is controlled by the arguments sigma and varcov, which are passed to density.ppp
along with any extra arguments.

If renormalise=TRUE, the estimated intensity lambda is multiplied by c(normpower/2) before
performing other calculations, where c = area(W)/sum[i](1/lambda(x[i])). This renormalisa-
tion has about the same effect as in Kinhom, reducing the variability and bias of the estimate in small
samples and in cases of very strong inhomogeneity.

Edge corrections are used to correct bias in the estimation of Kscaled. First the interpoint distances
are rescaled, and then edge corrections are applied as in Kest. See Kest for details of the edge
corrections and the options for the argument correction.

The pair correlation function can also be applied to the result of Kscaled; see pcf and pcf.fv.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing at least the following columns,

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

428 Ksector

theo vector of values of πr2, the theoretical value of Kscaled(r) for an inhomoge-
neous Poisson process

and containing additional columns according to the choice specified in the correction argu-
ment. The additional columns are named border, trans and iso and give the estimated values
of Kscaled(r) using the border correction, translation correction, and Ripley isotropic correction,
respectively.

Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

Hahn, U. (2007) Global and Local Scaling in the Statistics of Spatial Point Processes. Habilitation-
sschrift, Universitaet Augsburg.

Hahn, U., Jensen, E.B.V., van Lieshout, M.N.M. and Nielsen, L.S. (2003) Inhomogeneous spatial
point processes by location-dependent scaling. Advances in Applied Probability 35, 319–336.

Prokes̆ová, M., Hahn, U. and Vedel Jensen, E.B. (2006) Statistics for locally scaled point patterns.
In A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan (eds.) Case Studies in Spatial Point
Pattern Modelling. Lecture Notes in Statistics 185. New York: Springer Verlag. Pages 99–123.

See Also

Kest, pcf

Examples

data(bronzefilter)
X <- unmark(bronzefilter)
K <- Kscaled(X)
fit <- ppm(X, ~x)
lam <- predict(fit)
K <- Kscaled(X, lam)

Ksector Sector K-function

Description

A directional counterpart of Ripley’s K function, in which pairs of points are counted only when
the vector joining the pair happens to lie in a particular range of angles.

Ksector 429

Usage

Ksector(X, begin = 0, end = 360, ...,
units = c("degrees", "radians"),
r = NULL, breaks = NULL,
correction = c("border", "isotropic", "Ripley", "translate"),
domain=NULL, ratio = FALSE, verbose=TRUE)

Arguments

X The observed point pattern, from which an estimate of K(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

begin,end Numeric values giving the range of angles inside which points will be counted.
Angles are measured in degrees (if units="degrees", the default) or radians (if
units="radians") anti-clockwise from the positive x-axis.

... Ignored.

units Units in which the angles begin and end are expressed.

r Optional. Vector of values for the argument r at which K(r) should be evalu-
ated. Users are advised not to specify this argument; there is a sensible default.

breaks This argument is for internal use only.

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "isotropic", "Ripley", "translate", "translation",
"none", "good" or "best". It specifies the edge correction(s) to be applied. Al-
ternatively correction="all" selects all options.

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical value indicating whether to print progress reports and warnings.

Details

This is a directional counterpart of Ripley’s K function (see Kest) in which, instead of counting all
pairs of points within a specified distance r, we count only the pairs (xi, xj) for which the vector
xj − xi falls in a particular range of angles.

This can be used to evaluate evidence for anisotropy in the point pattern X.

Value

An object of class "fv" containing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

430 LambertW

See Also

Kest

Examples

K <- Ksector(swedishpines, 0, 90)
plot(K)

LambertW Lambert’s W Function

Description

Computes Lambert’s W-function.

Usage

LambertW(x)

Arguments

x Vector of nonnegative numbers.

Details

Lambert’s W-function is the inverse function of f(y) = yey . That is, W is the function such that

W (x)eW (x) = x

This command LambertW computes W (x) for each entry in the argument x. If the library gsl has
been installed, then the function lambert_W0 in that library is invoked. Otherwise, values of the
W-function are computed by root-finding, using the function uniroot.

Computation using gsl is about 100 times faster.

If any entries of x are infinite or NA, the corresponding results are NA.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

laslett 431

References

Corless, R, Gonnet, G, Hare, D, Jeffrey, D and Knuth, D (1996), On the Lambert W function.
Computational Mathematics, 5, 325–359.

Roy, R and Olver, F (2010), Lambert W function. In Olver, F, Lozier, D and Boisvert, R (eds.),
NIST Handbook of Mathematical Functions, Cambridge University Press.

Examples

LambertW(exp(1))

laslett Laslett’s Transform

Description

Apply Laslett’s Transform to a spatial region, returning the original and transformed regions, and
the original and transformed positions of the lower tangent points. This is a diagnostic for the
Boolean model.

Usage

laslett(X, ..., verbose = FALSE, plotit = TRUE, discretise = FALSE,
type=c("lower", "upper", "left", "right"))

Arguments

X Spatial region to be transformed. A window (object of class "owin") or a
logical-valued pixel image (object of class "im").

... Graphics arguments to control the plot (passed to plot.laslett when plotit=TRUE)
or arguments determining the pixel resolution (passed to as.mask).

verbose Logical value indicating whether to print progress reports.

plotit Logical value indicating whether to plot the result.

discretise Logical value indicating whether polygonal windows should first be converted
to pixel masks before the Laslett transform is computed. This should be set to
TRUE for very complicated polygons.

type Type of tangent points to be detected. This also determines the direction of
contraction in the set transformation. Default is type="lower".

Details

This function finds the lower tangent points of the spatial region X, then applies Laslett’s Transform
to the space, and records the transformed positions of the lower tangent points.

Laslett’s transform is a diagnostic for the Boolean Model. A test of the Boolean model can be
performed by applying a test of CSR to the transformed tangent points. See the Examples.

432 laslett

The rationale is that, if the region X was generated by a Boolean model with convex grains, then the
lower tangent points of X, when subjected to Laslett’s transform, become a Poisson point process
(Cressie, 1993, section 9.3.5; Molchanov, 1997; Barbour and Schmidt, 2001).

Intuitively, Laslett’s transform is a way to account for the fact that tangent points of X cannot occur
inside X. It treats the interior of X as empty space, and collapses this empty space so that only the
exterior of X remains. In this collapsed space, the tangent points are completely random.

Formally, Laslett’s transform is a random (i.e. data-dependent) spatial transformation which maps
each spatial location (x, y) to a new location (x′, y) at the same height y. The transformation is
defined so that x′ is the total uncovered length of the line segment from (0, y) to (x, y), that is, the
total length of the parts of this segment that fall outside the region X.

In more colourful terms, suppose we use an abacus to display a pixellated version of X. Each wire
of the abacus represents one horizontal line in the pixel image. Each pixel lying outside the region
X is represented by a bead of the abacus; pixels inside X are represented by the absence of a bead.
Next we find any beads which are lower tangent points of X, and paint them green. Then Laslett’s
Transform is applied by pushing all beads to the left, as far as possible. The final locations of all
the beads provide a new spatial region, inside which is the point pattern of tangent points (marked
by the green-painted beads).

If plotit=TRUE (the default), a before-and-after plot is generated, showing the region X and the tan-
gent points before and after the transformation. This plot can also be generated by calling plot(a)
where a is the object returned by the function laslett.

If the argument type is given, then this determines the type of tangents that will be detected, and also
the direction of contraction in Laslett’s transform. The computation is performed by first rotating X,
applying Laslett’s transform for lower tangent points, then rotating back.

There are separate algorithms for polygonal windows and pixellated windows (binary masks).
The polygonal algorithm may be slow for very complicated polygons. If this happens, setting
discretise=TRUE will convert the polygonal window to a binary mask and invoke the pixel raster
algorithm.

Value

A list, which also belongs to the class "laslett" so that it can immediately be printed and plotted.

The list elements are:

oldX: the original dataset X;

TanOld: a point pattern, whose window is Frame(X), containing the lower tangent points of X;

TanNew: a point pattern, whose window is the Laslett transform of Frame(X), and which contains
the Laslett-transformed positions of the tangent points;

Rect: a rectangular window, which is the largest rectangle lying inside the transformed set;

df: a data frame giving the locations of the tangent points before and after transformation.

type: character string specifying the type of tangents.

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Lcross 433

References

Barbour, A.D. and Schmidt, V. (2001) On Laslett’s Transform for the Boolean Model. Advances in
Applied Probability 33(1), 1–5.

Cressie, N.A.C. (1993) Statistics for spatial data, second edition. John Wiley and Sons.

Molchanov, I. (1997) Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley.

See Also

plot.laslett

Examples

a <- laslett(heather$coarse)
transformedHeather <- with(a, Window(TanNew))
plot(transformedHeather, invert=TRUE)

with(a, clarkevans.test(TanNew[Rect], correction="D", nsim=39))

X <- discs(runifrect(15) %mark% 0.2, npoly=16)
b <- laslett(X, type="left")
b

Lcross Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

Lcross(X, i, j, ..., from, to, correction)

Arguments

X The observed point pattern, from which an estimate of the cross-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction,... Arguments passed to Kcross.

from,to An alternative way to specify i and j respectively.

434 Lcross

Details

The cross-type L-function is a transformation of the cross-type K-function,

Lij(r) =

√
Kij(r)

π

where Kij(r) is the cross-type K-function from type i to type j. See Kcross for information about
the cross-type K-function.

The command Lcross first calls Kcross to compute the estimate of the cross-type K-function, and
then applies the square root transformation.

For a marked point pattern in which the points of type i are independent of the points of type j, the
theoretical value of the L-function is Lij(r) = r. The square root also has the effect of stabilising
the variance of the estimator, so that Lij is more appropriate for use in simulation envelopes and
hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Lij has been esti-
mated

theo the theoretical value Lij(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Lij obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kcross, Ldot, Lest

Examples

data(amacrine)
L <- Lcross(amacrine, "off", "on")
plot(L)

Lcross.inhom 435

Lcross.inhom Inhomogeneous Cross Type L Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the cross-type L function.

Usage

Lcross.inhom(X, i, j, ..., correction)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Lij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

correction,... Other arguments passed to Kcross.inhom.

Details

This is a generalisation of the function Lcross to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kcross.inhom, which estimates the inhomogeneous multitype K
function Kij(r) for the point pattern. The resulting values are then transformed by taking L(r) =√
K(r)/π.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Lij(r) has been estimated

theo the theoretical value of Lij(r) for a marked Poisson process, identically equal
to r

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Lij(r)
obtained by the edge corrections named.

436 Lcross.inhom

Warnings

The arguments i and j are always interpreted as levels of the factor X$marks. They are converted
to character strings if they are not already character strings. The value i=1 does not refer to the first
level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Lcross, Linhom, Kcross.inhom

Examples

Lansing Woods data
woods <- lansing

ma <- split(woods)$maple
wh <- split(woods)$whiteoak

method (1): estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdaW <- density.ppp(wh, sigma=0.15, at="points")
L <- Lcross.inhom(woods, "whiteoak", "maple", lambdaW, lambdaM)

method (2): fit parametric intensity model
fit <- ppm(woods ~marks * polynom(x,y,2))
evaluate fitted intensities at data points
(these are the intensities of the sub-processes of each type)
inten <- fitted(fit, dataonly=TRUE)
split according to types of points
lambda <- split(inten, marks(woods))
L <- Lcross.inhom(woods, "whiteoak", "maple",

lambda$whiteoak, lambda$maple)

synthetic example: type A points have intensity 50,
type B points have intensity 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Lcross.inhom(X, "A", "B",

lambdaI=as.im(50, Window(X)), lambdaJ=lamB)

Ldot 437

Ldot Multitype L-function (i-to-any)

Description

Calculates an estimate of the multitype L-function (from type i to any type) for a multitype point
pattern.

Usage

Ldot(X, i, ..., from, correction)

Arguments

X The observed point pattern, from which an estimate of the dot-type L function
Lij(r) will be computed. It must be a multitype point pattern (a marked point
pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction,... Arguments passed to Kdot.

from An alternative way to specify i.

Details

This command computes

Li•(r) =

√
Ki•(r)

π

where Ki•(r) is the multitype K-function from points of type i to points of any type. See Kdot for
information about Ki•(r).

The command Ldot first calls Kdot to compute the estimate of the i-to-any K-function, and then
applies the square root transformation.

For a marked Poisson point process, the theoretical value of the L-function is Li•(r) = r. The
square root also has the effect of stabilising the variance of the estimator, so that Li• is more
appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function Li• has been esti-
mated

theo the theoretical value Li•(r) = r for a stationary Poisson process

438 Ldot.inhom

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function Li• obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kdot, Lcross, Lest

Examples

data(amacrine)
L <- Ldot(amacrine, "off")
plot(L)

Ldot.inhom Inhomogeneous Multitype L Dot Function

Description

For a multitype point pattern, estimate the inhomogeneous version of the dot L function.

Usage

Ldot.inhom(X, i, ..., correction)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross
type L function Li•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor). See under Details.

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

correction,... Other arguments passed to Kdot.inhom.

Details

This a generalisation of the function Ldot to include an adjustment for spatially inhomogeneous
intensity, in a manner similar to the function Linhom.

All the arguments are passed to Kdot.inhom, which estimates the inhomogeneous multitype K
function Ki•(r) for the point pattern. The resulting values are then transformed by taking L(r) =√
K(r)/π.

Ldot.inhom 439

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the function Li•(r) has been estimated
theo the theoretical value of Li•(r) for a marked Poisson process, identical to r.

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", ac-
cording to the selected edge corrections. These columns contain estimates of the function Li•(r)
obtained by the edge corrections named.

Warnings

The argument i is interpreted as a level of the factor X$marks. It is converted to a character string
if it is not already a character string. The value i=1 does not refer to the first level of the factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Møller, J. and Waagepetersen, R. Statistical Inference and Simulation for Spatial Point Processes
Chapman and Hall/CRC Boca Raton, 2003.

See Also

Ldot, Linhom, Kdot.inhom, Lcross.inhom.

Examples

Lansing Woods data
lan <- lansing
lan <- lan[seq(1,npoints(lan), by=10)]
ma <- split(lan)$maple
lg <- unmark(lan)

Estimate intensities by nonparametric smoothing
lambdaM <- density.ppp(ma, sigma=0.15, at="points")
lambdadot <- density.ppp(lg, sigma=0.15, at="points")
L <- Ldot.inhom(lan, "maple", lambdaI=lambdaM,

lambdadot=lambdadot)

synthetic example: type A points have intensity 50,
type B points have intensity 50 + 100 * x
lamB <- as.im(function(x,y){50 + 100 * x}, owin())
lamdot <- as.im(function(x,y) { 100 + 100 * x}, owin())
X <- superimpose(A=runifpoispp(50), B=rpoispp(lamB))
L <- Ldot.inhom(X, "B", lambdaI=lamB, lambdadot=lamdot)

440 LennardJones

LennardJones The Lennard-Jones Potential

Description

Creates the Lennard-Jones pairwise interaction structure which can then be fitted to point pattern
data.

Usage

LennardJones(sigma0=NA)

Arguments

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

In a pairwise interaction point process with the Lennard-Jones pair potential (Lennard-Jones, 1924)
each pair of points in the point pattern, a distance d apart, contributes a factor

v(d) = exp

{
−4ε

[(σ
d

)12
−
(σ
d

)6]}
to the probability density, where σ and ε are positive parameters to be estimated.

See Examples for a plot of this expression.

This potential causes very strong inhibition between points at short range, and attraction between
points at medium range. The parameter σ is called the characteristic diameter and controls the scale
of interaction. The parameter ε is called the well depth and determines the strength of attraction. The
potential switches from inhibition to attraction at d = σ. The maximum value of the pair potential
is exp(ε) occuring at distance d = 21/6σ. Interaction is usually considered to be negligible for
distances d > 2.5σmax{1, ε1/6}.

This potential is used to model interactions between uncharged molecules in statistical physics.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Lennard-Jones pairwise interaction is yielded by the function LennardJones().
See the examples below.

Value

An object of class "interact" describing the Lennard-Jones interpoint interaction structure.

LennardJones 441

Rescaling

To avoid numerical instability, the interpoint distances d are rescaled when fitting the model.

Distances are rescaled by dividing by sigma0. In the formula for v(d) above, the interpoint distance
d will be replaced by d/sigma0.

The rescaling happens automatically by default. If the argument sigma0 is missing or NA (the
default), then sigma0 is taken to be the minimum nearest-neighbour distance in the data point
pattern (in the call to ppm).

If the argument sigma0 is given, it should be a positive number, and it should be a rough estimate
of the parameter σ.

The “canonical regular parameters” estimated by ppm are θ1 = 4ε(σ/σ0)12 and θ2 = 4ε(σ/σ0)6.

Warnings and Errors

Fitting the Lennard-Jones model is extremely unstable, because of the strong dependence between
the functions d−12 and d−6. The fitting algorithm often fails to converge. Try increasing the number
of iterations of the GLM fitting algorithm, by setting gcontrol=list(maxit=1e3) in the call to
ppm.

Errors are likely to occur if this model is fitted to a point pattern dataset which does not exhibit both
short-range inhibition and medium-range attraction between points. The values of the parameters σ
and ε may be NA (because the fitted canonical parameters have opposite sign, which usually occurs
when the pattern is completely random).

An absence of warnings does not mean that the fitted model is sensible. A negative value of ε may
be obtained (usually when the pattern is strongly clustered); this does not correspond to a valid
point process model, but the software does not issue a warning.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Lennard-Jones, J.E. (1924) On the determination of molecular fields. Proc Royal Soc London A
106, 463–477.

See Also

ppm, pairwise.family, ppm.object

Examples

badfit <- ppm(cells ~1, LennardJones(), rbord=0.1)
badfit

fit <- ppm(unmark(longleaf) ~1, LennardJones(), rbord=1)
fit
plot(fitin(fit))

442 Lest

Note the Longleaf Pines coordinates are rounded to the nearest decimetre
(multiple of 0.1 metres) so the apparent inhibition may be an artefact

Lest L-function

Description

Calculates an estimate of the L-function (Besag’s transformation of Ripley’s K-function) for a
spatial point pattern.

Usage

Lest(X, ..., correction)

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction,... Other arguments passed to Kest to control the estimation procedure.

Details

This command computes an estimate of the L-function for the spatial point pattern X. The L-
function is a transformation of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the K-function.
See Kest for information about Ripley’s K-function. The transformation to L was proposed by
Besag (1977).
The command Lest first calls Kest to compute the estimate of the K-function, and then applies the
square root transformation.
For a completely random (uniform Poisson) point pattern, the theoretical value of the L-function is
L(r) = r. The square root also has the effect of stabilising the variance of the estimator, so that
L(r) is more appropriate for use in simulation envelopes and hypothesis tests.
See Kest for the list of arguments.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.
Essentially a data frame containing columns

r the vector of values of the argument r at which the functionL has been estimated
theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

leverage.ppm 443

Variance approximations

If the argument var.approx=TRUE is given, the return value includes columns rip and ls contain-
ing approximations to the variance of L̂(r) under CSR. These are obtained by the delta method
from the variance approximations described in Kest.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193–195.

See Also

Kest, pcf

Examples

data(cells)
L <- Lest(cells)
plot(L, main="L function for cells")

leverage.ppm Leverage Measure for Spatial Point Process Model

Description

Computes the leverage measure for a fitted spatial point process model.

Usage

leverage(model, ...)

S3 method for class 'ppm'
leverage(model, ...,

drop = FALSE, iScore=NULL, iHessian=NULL, iArgs=NULL)

Arguments

model Fitted point process model (object of class "ppm").

... Ignored, except for the arguments dimyx and eps which are passed to as.mask
to control the spatial resolution of the result.

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

444 leverage.ppm

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

Details

The function leverage is generic, and leverage.ppm is the method for objects of class "ppm".

Given a fitted spatial point process model model, the function leverage.ppm computes the leverage
of the model, described in Baddeley, Chang and Song (2013) and Baddeley, Rubak and Turner
(2019).

The leverage of a spatial point process model is a function of spatial location, and is typically
displayed as a colour pixel image. The leverage value h(u) at a spatial location u represents the
change in the fitted trend of the fitted point process model that would have occurred if a data point
were to have occurred at the location u. A relatively large value of h() indicates a part of the space
where the data have a potentially strong effect on the fitted model (specifically, a strong effect on
the intensity or conditional intensity of the fitted model) due to the values of the covariates.

If the point process model trend has irregular parameters that were fitted (using ippm) then the
leverage calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

The result of leverage.ppm is an object of class "leverage.ppm". It can be printed or plotted. It
can be converted to a pixel image by as.im (see as.im.leverage.ppm). There are also methods
for contour, persp, [, as.function, as.owin, domain, Smooth, integral, and mean.

Value

An object of class "leverage.ppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

Baddeley, A., Rubak, E. and Turner, R. (2019) Leverage and influence diagnostics for Gibbs spatial
point processes. Spatial Statistics 29, 15–48.

See Also

influence.ppm, dfbetas.ppm, ppmInfluence, plot.leverage.ppm as.function.leverage.ppm

leverage.slrm 445

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32, ndummy.min=16)

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
le <- leverage(fit)
if(!offline) plot(le)
mean(le)

if(offline) spatstat.options(op)

leverage.slrm Leverage and Influence Diagnostics for Spatial Logistic Regression

Description

For a fitted spatial logistic regression model, these functions compute diagnostics of leverage and
influence.

Usage

S3 method for class 'slrm'
leverage(model, ...)
S3 method for class 'slrm'
influence(model, ...)
S3 method for class 'slrm'
dfbetas(model, ...)
S3 method for class 'slrm'
dffit(object, ...)

Arguments

model,object A fitted spatial logistic regression model (object of class "slrm").

... Arguments passed to methods.

Details

These functions are methods for the generics leverage, influence, dfbetas and dffit for the
class "slrm".

These functions adapt the standard diagnostics for logistic regression (see influence.measures)
to a fitted spatial logistic regression model (object of class "slrm"). This adaptation was described
by Baddeley, Chang and Song (2013).

leverage.slrm computes the leverage value (diagonal of the hat matrix) for the covariate data in
each pixel. The result is a pixel image.

influence.slrm computes the likelihood influence for the data (covariates and presence/absence
of points) in each pixel. The result is a pixel image.

446 lgcp.estK

dfbetas.slrm computes the parameter influence for the data (covariates and presence/absence of
points) in each pixel. The result is a list of pixel images, one image for each of the model coefficients
in coef(model). The list can be plotted immediately.

dffit.slrm computes the total influence for the data (covariates and presence/absence of points)
in each pixel. The result is a pixel image.

Value

A pixel image, or a list of pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

influence.measures.

leverage.ppm, influence.ppm, dfbetas.ppm, dffit.ppm

Examples

H <- unmark(humberside)
fit <- slrm(H ~ x+y, dimyx=32)
plot(leverage(fit))
plot(influence(fit))
plot(dfbetas(fit))
plot(dffit(fit))

lgcp.estK Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast.

Usage

lgcp.estK(X, startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

lgcp.estK 447

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the K function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical K function of the LGCP
model and the observed K function. For a more detailed explanation of the Method of Minimum
Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

The K-function of the LGCP is

K(r) =

∫ r

0

2πs exp(C(s)) ds.

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

The covariance function C(r) is parametrised in the form

C(r) = σ2c(r/α)

448 lgcp.estK

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength
and scale parameters σ2 and α will be estimated by the algorithm as the values var and scale
respectively. The template covariance function c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be of
the form list(model="modelname", ...) where modelname is a string identifying the template
model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

To determine the template model, the string "modelname" will be prefixed by "RM" and the code
will search for a function of this name in the RandomFields package. For a list of available models
see RMmodel in the RandomFields package. For example the Matérn covariance with exponent
ν = 0.3 is specified by covmodel=list(model="matern", nu=0.3) corresponding to the function
RMmatern in the RandomFields package.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Note

This function is considerably slower than lgcp.estpcf because of the computation time required
for the integral in the K-function.

Computation can be accelerated, at the cost of less accurate results, by setting spatstat.options(fastK.lgcp=TRUE).

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk>. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Further modifications by Rasmus Waagepetersen and Shen Guochun, and by Ege Rubak <rubak@math.aau.dk>.

lgcp.estpcf 449

References

Møller, J, Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

lgcp.estpcf for alternative method of fitting LGCP.

matclust.estK, thomas.estK for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

RMmodel in the RandomFields package, for covariance function models.

Kest for the K function.

Examples

if(interactive()) {
u <- lgcp.estK(redwood)
print(u)
plot(u)

} else {
faster - better starting point
u <- lgcp.estK(redwood, c(var=1.05, scale=0.1))

}

if(FALSE) {
takes several minutes!
lgcp.estK(redwood, covmodel=list(model="matern", nu=0.3))

}

lgcp.estpcf Fit a Log-Gaussian Cox Point Process by Minimum Contrast

Description

Fits a log-Gaussian Cox point process model to a point pattern dataset by the Method of Minimum
Contrast using the pair correlation function.

450 lgcp.estpcf

Usage

lgcp.estpcf(X,
startpar=c(var=1,scale=1),
covmodel=list(model="exponential"),
lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the log-Gaussian Cox process
model.

covmodel Specification of the covariance model for the log-Gaussian field. See Details.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits a log-Gaussian Cox point process (LGCP) model to a point pattern dataset by
the Method of Minimum Contrast, using the estimated pair correlation function of the point pattern.

The shape of the covariance of the LGCP must be specified: the default is the exponential covariance
function, but other covariance models can be selected.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits a log-Gaussian Cox point process (LGCP) model to X, by finding the parameters
of the LGCP model which give the closest match between the theoretical pair correlation function
of the LGCP model and the observed pair correlation function. For a more detailed explanation of
the Method of Minimum Contrast, see mincontrast.

The model fitted is a stationary, isotropic log-Gaussian Cox process (Møller and Waagepetersen,
2003, pp. 72-76). To define this process we start with a stationary Gaussian random field Z in the
two-dimensional plane, with constant mean µ and covariance function C(r). Given Z, we generate
a Poisson point process Y with intensity function λ(u) = exp(Z(u)) at location u. Then Y is a
log-Gaussian Cox process.

lgcp.estpcf 451

The theoretical pair correlation function of the LGCP is

g(r) = exp(C(s))

The intensity of the LGCP is

λ = exp(µ+
C(0)

2
).

The covariance function C(r) takes the form

C(r) = σ2c(r/α)

where σ2 and α are parameters controlling the strength and the scale of autocorrelation, respectively,
and c(r) is a known covariance function determining the shape of the covariance. The strength and
scale parameters σ2 and α will be estimated by the algorithm. The template covariance function
c(r) must be specified as explained below.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters σ2 and α. Then the remaining parameter µ is inferred from the estimated intensity λ.

The template covariance function c(r) is specified using the argument covmodel. This should be of
the form list(model="modelname", ...) where modelname is a string identifying the template
model as explained below, and ... are optional arguments of the form tag=value giving the values
of parameters controlling the shape of the template model. The default is the exponential covariance
c(r) = e−r so that the scaled covariance is

C(r) = σ2e−r/α.

To determine the template model, the string "modelname" will be prefixed by "RM" and the code
will search for a function of this name in the RandomFields package. For a list of available models
see RMmodel in the RandomFields package. For example the Matérn covariance with exponent
ν = 0.3 is specified by covmodel=list(model="matern", nu=0.3) corresponding to the function
RMmatern in the RandomFields package.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

452 Linhom

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> with modifications by Shen Guochun and
Rasmus Waagepetersen <rw@math.auc.dk> and Ege Rubak <rubak@math.aau.dk>.

References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

lgcp.estK for alternative method of fitting LGCP.

matclust.estpcf, thomas.estpcf for other models.

mincontrast for the generic minimum contrast fitting algorithm, including important parameters
that affect the accuracy of the fit.

RMmodel in the RandomFields package, for covariance function models.

pcf for the pair correlation function.

Examples

data(redwood)
u <- lgcp.estpcf(redwood, c(var=1, scale=0.1))
u
plot(u)
if(require(RandomFields)) {

lgcp.estpcf(redwood, covmodel=list(model="matern", nu=0.3))
}

Linhom Inhomogeneous L-function

Description

Calculates an estimate of the inhomogeneous version of the L-function (Besag’s transformation of
Ripley’s K-function) for a spatial point pattern.

Usage

Linhom(X, ..., correction)

Linhom 453

Arguments

X The observed point pattern, from which an estimate of L(r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

correction,... Other arguments passed to Kinhom to control the estimation procedure.

Details

This command computes an estimate of the inhomogeneous version of the L-function for a spatial
point pattern.

The original L-function is a transformation (proposed by Besag) of Ripley’s K-function,

L(r) =

√
K(r)

π

where K(r) is the Ripley K-function of a spatially homogeneous point pattern, estimated by Kest.

The inhomogeneous L-function is the corresponding transformation of the inhomogeneous K-
function, estimated by Kinhom. It is appropriate when the point pattern clearly does not have a
homogeneous intensity of points. It was proposed by Baddeley, Møller and Waagepetersen (2000).

The command Linhom first calls Kinhom to compute the estimate of the inhomogeneous K-function,
and then applies the square root transformation.

For a Poisson point pattern (homogeneous or inhomogeneous), the theoretical value of the inhomo-
geneous L-function is L(r) = r. The square root also has the effect of stabilising the variance of
the estimator, so that L is more appropriate for use in simulation envelopes and hypothesis tests.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the functionL has been estimated

theo the theoretical value L(r) = r for a stationary Poisson process

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function L(r) obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Møller, J. and Waagepetersen, R. (2000) Non- and semiparametric estimation of
interaction in inhomogeneous point patterns. Statistica Neerlandica 54, 329–350.

454 localK

See Also

Kest, Lest, Kinhom, pcf

Examples

data(japanesepines)
X <- japanesepines
L <- Linhom(X, sigma=0.1)
plot(L, main="Inhomogeneous L function for Japanese Pines")

localK Neighbourhood density function

Description

Computes the neighbourhood density function, a local version of the K-function or L-function,
defined by Getis and Franklin (1987).

Usage

localK(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)
localL(X, ..., rmax = NULL, correction = "Ripley", verbose = TRUE, rvalue=NULL)

Arguments

X A point pattern (object of class "ppp").

... Ignored.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

Details

The command localL computes the neighbourhood density function, a local version of the L-
function (Besag’s transformation of Ripley’s K-function) that was proposed by Getis and Franklin
(1987). The command localK computes the corresponding local analogue of the K-function.

Given a spatial point pattern X, the neighbourhood density function Li(r) associated with the ith
point in X is computed by

Li(r) =

√
a

(n− 1)π

∑
j

eij

localK 455

where the sum is over all points j 6= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Li(r) can also be interpreted as one of the summands that contributes to the
global estimate of the L function.

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Inhomogeneous counterparts of localK and localL are computed by localKinhom and localLinhom.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Getis, A. and Franklin, J. (1987) Second-order neighbourhood analysis of mapped point patterns.
Ecology 68, 473–477.

See Also

Kest, Lest, localKinhom, localLinhom.

Examples

data(ponderosa)
X <- ponderosa

compute all the local L functions
L <- localL(X)

456 localKcross

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

Spatially interpolate the values of L12
Compare Figure 5(b) of Getis and Franklin (1987)
X12 <- X %mark% L12
Z <- Smooth(X12, sigma=5, dimyx=128)

plot(Z, col=topo.colors(128), main="smoothed neighbourhood density")
contour(Z, add=TRUE)
points(X, pch=16, cex=0.5)

localKcross Local Multitype K Function (Cross-Type)

Description

for a multitype point pattern, computes the cross-type version of the local K function.

Usage

localKcross(X, from, to, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLcross(X, from, to, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLcross to localKcross.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

localKcross 457

Details

Given a multitype spatial point pattern X, the local cross-type K function localKcross is the local
version of the multitype K function Kcross. Recall that Kcross(X, from, to) is a sum of con-
tributions from all pairs of points in X where the first point belongs to from and the second point
belongs to type to. The local cross-type K function is defined for each point X[i] that belongs to
type from, and it consists of all the contributions to the cross-type K function that originate from
point X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j 6= i belonging to type to, that lie within a distance r of the ith
point, a is the area of the observation window, n is the number of points in X, and eij is an edge
correction term (as described in Kest). The value of Ki,from,to(r) can also be interpreted as one of
the summands that contributes to the global estimate of the Kcross function.

By default, the functionKi,from,to(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local cross-type L function localLcross is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Kcross, Lcross, localK, localL.

Inhomogeneous counterparts of localK and localL are computed by localKcross.inhom and
localLinhom.

458 localKcross.inhom

Examples

X <- amacrine

compute all the local Lcross functions
L <- localLcross(X)

plot all the local Lcross functions against r
plot(L, main="local Lcross functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLcross(X, rvalue=0.1)

localKcross.inhom Inhomogeneous Multitype K Function

Description

Computes spatially-weighted versions of the the local multitype K-function or L-function.

Usage

localKcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL,
..., rmax = NULL,
correction = "Ripley", sigma=NULL, varcov=NULL,
lambdaX=NULL, update=TRUE, leaveoneout=TRUE)

localLcross.inhom(X, from, to,
lambdaFrom=NULL, lambdaTo=NULL, ..., rmax = NULL)

Arguments

X A point pattern (object of class "ppp").

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

to Type of points to which distances should be measured. A single value; one of
the possible levels of marks(X), or an integer indicating which level.

lambdaFrom,lambdaTo

Optional. Values of the estimated intensity function for the points of type from
and to, respectively. Each argument should be either a vector giving the inten-
sity values at the required points, a pixel image (object of class "im") giving
the intensity values at all locations, a fitted point process model (object of class
"ppm") or a function(x,y) which can be evaluated to give the intensity value
at any location.

localKcross.inhom 459

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambdaFrom and lambdaTo, if they are missing.

lambdaX Optional. Values of the estimated intensity function for all points of X. Either a
vector giving the intensity values at each point of X, a pixel image (object of class
"im") giving the intensity values at all locations, a list of pixel images giving the
intensity values at all locations for each type of point, or a fitted point process
model (object of class "ppm") or a function(x,y) or function(x,y,m) which
can be evaluated to give the intensity value at any location.

update Logical value indicating what to do when lambdaFrom, lambdaTo or lambdaX is
a fitted model (class "ppm", "kppm" or "dppm"). If update=TRUE (the default),
the model will first be refitted to the data X (using update.ppm or update.kppm)
before the fitted intensity is computed. If update=FALSE, the fitted intensity of
the model will be computed without re-fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

Details

The functions localKcross.inhom and localLcross.inhom are inhomogeneous or weighted ver-
sions of the local multitype K and L functions implemented in localKcross and localLcross.

Given a multitype spatial point pattern X, and two designated types from and to, the local multitype
K function is defined for each point X[i] that belongs to type from, and is computed by

Ki(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j 6= i of type to that lie within a distance r of the ith point, λj
is the estimated intensity of the point pattern at the point j, and eij is an edge correction term (as
described in Kest).

The function Ki(r) is computed for a range of r values for each point i. The results are stored
as a function value table (object of class "fv") with a column of the table containing the function
estimates for each point of the pattern X of type from.

The correspondingL functionLi(r) is computed by applying the transformationL(r) =
√
K(r)/(2π).

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

460 localKdot

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern of type from. The last two columns contain the r and theo values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Kinhom, Linhom, localK, localL.

Examples

X <- amacrine

compute all the local L functions
L <- localLcross.inhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

localKdot Local Multitype K Function (Dot-Type)

Description

for a multitype point pattern, computes the dot-type version of the local K function.

Usage

localKdot(X, from, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL)

localLdot(X, from, ..., rmax = NULL, correction = "Ripley")

Arguments

X A multitype point pattern (object of class "ppp" with marks which are a factor).

... Further arguments passed from localLdot to localKdot.

rmax Optional. Maximum desired value of the argument r.

from Type of points from which distances should be measured. A single value; one
of the possible levels of marks(X), or an integer indicating which level.

localKdot 461

correction String specifying the edge correction to be applied. Options are "none", "translate",
"translation", "Ripley", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.
rvalue Optional. A single value of the distance argument r at which the function L or

K should be computed.

Details

Given a multitype spatial point pattern X, the local dot-type K function localKdot is the local
version of the multitype K function Kdot. Recall that Kdot(X, from) is a sum of contributions
from all pairs of points in X where the first point belongs to from. The local dot-type K function is
defined for each point X[i] that belongs to type from, and it consists of all the contributions to the
dot-type K function that originate from point X[i]:

Ki,from,to(r) =

√
a

(n− 1)π

∑
j

eij

where the sum is over all points j 6= i that lie within a distance r of the ith point, a is the area of the
observation window, n is the number of points in X, and eij is an edge correction term (as described
in Kest). The value of Ki,from(r) can also be interpreted as one of the summands that contributes
to the global estimate of the Kdot function.

By default, the function Ki,from(r) is computed for a range of r values for each point i belonging
to type from. The results are stored as a function value table (object of class "fv") with a column
of the table containing the function estimates for each point of the pattern X belonging to type from.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X belonging to type from.

The local dot-type L function localLdot is computed by applying the transformation L(r) =√
K(r)/(2π).

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern that belong to type from.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point of type from. The last two columns contain
the r and theo values.

Author(s)

Ege Rubak <rubak@math.aau.dk> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

462 localKinhom

See Also

Kdot, Ldot, localK, localL.

Examples

X <- amacrine

compute all the local Ldot functions
L <- localLdot(X)

plot all the local Ldot functions against r
plot(L, main="local Ldot functions for amacrine", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 0.1 metres
L12 <- localLdot(X, rvalue=0.1)

localKinhom Inhomogeneous Neighbourhood Density Function

Description

Computes spatially-weighted versions of the the local K-function or L-function.

Usage

localKinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

localLinhom(X, lambda, ..., rmax = NULL,
correction = "Ripley", verbose = TRUE, rvalue=NULL,
sigma = NULL, varcov = NULL, update=TRUE, leaveoneout=TRUE)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object of
class "ppm" or "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

... Extra arguments. Ignored if lambda is present. Passed to density.ppp if
lambda is omitted.

rmax Optional. Maximum desired value of the argument r.

localKinhom 463

correction String specifying the edge correction to be applied. Options are "none", "translate",
"Ripley", "translation", "isotropic" or "best". Only one correction may
be specified.

verbose Logical flag indicating whether to print progress reports during the calculation.

rvalue Optional. A single value of the distance argument r at which the function L or
K should be computed.

sigma, varcov Optional arguments passed to density.ppp to control the kernel smoothing pro-
cedure for estimating lambda, if lambda is missing.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

Details

The functions localKinhom and localLinhom are inhomogeneous or weighted versions of the
neighbourhood density function implemented in localK and localL.

Given a spatial point pattern X, the inhomogeneous neighbourhood density function Li(r) associ-
ated with the ith point in X is computed by

Li(r) =

√
1

π

∑
j

eij
λj

where the sum is over all points j 6= i that lie within a distance r of the ith point, λj is the estimated
intensity of the point pattern at the point j, and eij is an edge correction term (as described in Kest).
The value of Li(r) can also be interpreted as one of the summands that contributes to the global
estimate of the inhomogeneous L function (see Linhom).

By default, the function Li(r) or Ki(r) is computed for a range of r values for each point i. The re-
sults are stored as a function value table (object of class "fv") with a column of the table containing
the function estimates for each point of the pattern X.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Value

If rvalue is given, the result is a numeric vector of length equal to the number of points in the point
pattern.

If rvalue is absent, the result is an object of class "fv", see fv.object, which can be plotted
directly using plot.fv. Essentially a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

464 localpcf

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the neighbourhood density function for each point
in the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Mike Kuhn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Kinhom, Linhom, localK, localL.

Examples

data(ponderosa)
X <- ponderosa

compute all the local L functions
L <- localLinhom(X)

plot all the local L functions against r
plot(L, main="local L functions for ponderosa", legend=FALSE)

plot only the local L function for point number 7
plot(L, iso007 ~ r)

compute the values of L(r) for r = 12 metres
L12 <- localL(X, rvalue=12)

localpcf Local pair correlation function

Description

Computes individual contributions to the pair correlation function from each data point.

Usage

localpcf(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15, rvalue=NULL)

localpcfinhom(X, ..., delta=NULL, rmax=NULL, nr=512, stoyan=0.15,
lambda=NULL, sigma=NULL, varcov=NULL,
update=TRUE, leaveoneout=TRUE, rvalue=NULL)

localpcf 465

Arguments

X A point pattern (object of class "ppp").

delta Smoothing bandwidth for pair correlation. The halfwidth of the Epanechnikov
kernel.

rmax Optional. Maximum value of distance r for which pair correlation values g(r)
should be computed.

nr Optional. Number of values of distance r for which pair correlation g(r) should
be computed.

stoyan Optional. The value of the constant c in Stoyan’s rule of thumb for selecting the
smoothing bandwidth delta.

lambda Optional. Values of the estimated intensity function, for the inhomogeneous
pair correlation. Either a vector giving the intensity values at the points of the
pattern X, a pixel image (object of class "im") giving the intensity values at all
locations, a fitted point process model (object of class "ppm", "kppm" or "dppm")
or a function(x,y) which can be evaluated to give the intensity value at any
location.

sigma,varcov,...

These arguments are ignored by localpcf but are passed by localpcfinhom
(when lambda=NULL) to the function density.ppp to control the kernel smooth-
ing estimation of lambda.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

update Logical value indicating what to do when lambda is a fitted model (class "ppm",
"kppm" or "dppm"). If update=TRUE (the default), the model will first be refitted
to the data X (using update.ppm or update.kppm) before the fitted intensity is
computed. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

rvalue Optional. A single value of the distance argument r at which the local pair
correlation should be computed.

Details

localpcf computes the contribution, from each individual data point in a point pattern X, to the
empirical pair correlation function of X. These contributions are sometimes known as LISA (local
indicator of spatial association) functions based on pair correlation.

localpcfinhom computes the corresponding contribution to the inhomogeneous empirical pair cor-
relation function of X.

Given a spatial point pattern X, the local pcf gi(r) associated with the ith point in X is computed by

gi(r) =
a

2πn

∑
j

k(di,j − r)

where the sum is over all points j 6= i, a is the area of the observation window, n is the number of
points in X, and dij is the distance between points i and j. Here k is the Epanechnikov kernel,

k(t) =
3

4δ
max(0, 1− t2

δ2
).

466 localpcf

Edge correction is performed using the border method (for the sake of computational efficiency):
the estimate gi(r) is set to NA if r > bi, where bi is the distance from point i to the boundary of the
observation window.

The smoothing bandwidth δ may be specified. If not, it is chosen by Stoyan’s rule of thumb δ = c/λ̂

where λ̂ = n/a is the estimated intensity and c is a constant, usually taken to be 0.15. The value of
c is controlled by the argument stoyan.

For localpcfinhom, the optional argument lambda specifies the values of the estimated intensity
function. If lambda is given, it should be either a numeric vector giving the intensity values at the
points of the pattern X, a pixel image (object of class "im") giving the intensity values at all locations,
a fitted point process model (object of class "ppm", "kppm" or "dppm") or a function(x,y) which
can be evaluated to give the intensity value at any location. If lambda is not given, then it will be
estimated using a leave-one-out kernel density smoother as described in pcfinhom.

Alternatively, if the argument rvalue is given, and it is a single number, then the function will only
be computed for this value of r, and the results will be returned as a numeric vector, with one entry
of the vector for each point of the pattern X.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv. Essentially
a data frame containing columns

r the vector of values of the argument r at which the function K has been esti-
mated

theo the theoretical value K(r) = πr2 or L(r) = r for a stationary Poisson process

together with columns containing the values of the local pair correlation function for each point in
the pattern. Column i corresponds to the ith point. The last two columns contain the r and theo
values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

localK, localKinhom, pcf, pcfinhom

Examples

X <- ponderosa

g <- localpcf(X, stoyan=0.5)
colo <- c(rep("grey", npoints(X)), "blue")
a <- plot(g, main=c("local pair correlation functions", "Ponderosa pines"),

legend=FALSE, col=colo, lty=1)

plot only the local pair correlation function for point number 7
plot(g, est007 ~ r)

logLik.dppm 467

Extract the local pair correlation at distance 15 metres, for each point
g15 <- localpcf(X, rvalue=15, stoyan=0.5)
g15[1:10]
Check that the value for point 7 agrees with the curve for point 7:
points(15, g15[7], col="red")

Inhomogeneous
gi <- localpcfinhom(X, stoyan=0.5)
a <- plot(gi, main=c("inhomogeneous local pair correlation functions",

"Ponderosa pines"),
legend=FALSE, col=colo, lty=1)

logLik.dppm Log Likelihood and AIC for Fitted Determinantal Point Process Model

Description

Extracts the log Palm likelihood, deviance, and AIC of a fitted determinantal point process model.

Usage

S3 method for class 'dppm'
logLik(object, ...)
S3 method for class 'dppm'
AIC(object, ..., k=2)
S3 method for class 'dppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'dppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "dppm".

... Ignored.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"dppm".

An object of class "dppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function dppm.

These methods apply only when the model was fitted by maximising the Palm likelihood (Tanaka
et al, 2008) by calling dppm with the argument method="palm".

468 logLik.dppm

The method logLik.dppm computes the maximised value of the log Palm likelihood for the fitted
model object.

The methods AIC.dppm and extractAIC.dppm compute the Akaike Information Criterion AIC for
the fitted model based on the Palm likelihood (Tanaka et al, 2008)

AIC = −2 log(PL) + k × edf

where PL is the maximised Palm likelihood of the fitted model, and edf is the effective degrees of
freedom of the model.

The method nobs.dppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods, but it does not work for determinantal models yet due to
a missing implementation of update.dppm.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

dppm, logLik.ppm

Examples

fit <- dppm(swedishpines ~ x, dppGauss(), method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)

logLik.kppm 469

logLik.kppm Log Likelihood and AIC for Fitted Cox or Cluster Point Process Model

Description

Extracts the log composite likelihood, deviance, and AIC of a fitted Cox or cluster point process
model.

Usage

S3 method for class 'kppm'
logLik(object, ...)
S3 method for class 'kppm'
AIC(object, ..., k=2)
S3 method for class 'kppm'
extractAIC(fit, scale=0, k=2, ...)
S3 method for class 'kppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "kppm".

... Ignored.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

Details

These functions are methods for the generic commands logLik, extractAIC and nobs for the class
"kppm".

An object of class "kppm" represents a fitted Cox or cluster point process model. It is obtained from
the model-fitting function kppm.

These methods apply only when the model was fitted by maximising a composite likelihood: either
the Palm likelihood (Tanaka et al, 2008) or the second order composite likelihood (Guan, 2006), by
calling kppm with the argument method="palm" or method="clik2" respectively.

The method logLik.kppm computes the maximised value of the log composite likelihood for the
fitted model object.

The methods AIC.kppm and extractAIC.kppm compute the Akaike Information Criterion AIC for
the fitted model based on the composite likelihood

AIC = −2 log(CL) + k × edf

whereCL is the maximised composite likelihood of the fitted model, and edf is the effective degrees
of freedom of the model.

470 logLik.kppm

The method nobs.kppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of log-likelihood and AIC returned by these functions are based on the composite like-
lihood of the cluster process or Cox process model. They are available only when the model was
fitted using method="palm" or method="clik2".

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "kppm" and were fitted using the same
method.

For method="palm" some theoretical justification was provided by Tanaka et al (2008).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal
of the American Statistical Association 101, 1502–1512.

Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for
Neyman-Scott point processes. Biometrical Journal 50, 43–57.

See Also

kppm, logLik.ppm

Examples

fit <- kppm(redwood ~ x, "Thomas", method="palm")
nobs(fit)
logLik(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.mppm 471

logLik.mppm Log Likelihood and AIC for Multiple Point Process Model

Description

For a point process model that has been fitted to multiple point patterns, these functions extract the
log likelihood and AIC, or analogous quantities based on the pseudolikelihood.

Usage

S3 method for class 'mppm'
logLik(object, ..., warn=TRUE)

S3 method for class 'mppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'mppm'
extractAIC(fit, scale = 0, k = 2, ..., takeuchi = TRUE)

S3 method for class 'mppm'
nobs(object, ...)

S3 method for class 'mppm'
getCall(x, ...)

S3 method for class 'mppm'
terms(x, ...)

Arguments

object,fit,x Fitted point process model (fitted to multiple point patterns). An object of class
"mppm".

... Ignored.

warn If TRUE, a warning is given when the pseudolikelihood is returned instead of the
likelihood.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)
or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

Details

These functions are methods for the generic commands logLik, AIC, extractAIC, terms and
getCall for the class "mppm".

472 logLik.mppm

An object of class "mppm" represents a fitted Poisson or Gibbs point process model fitted to several
point patterns. It is obtained from the model-fitting function mppm.

The method logLik.mppm extracts the maximised value of the log likelihood for the fitted model (as
approximated by quadrature using the Berman-Turner approximation). If object is not a Poisson
process, the maximised log pseudolikelihood is returned, with a warning.

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.mppm
returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood (if fit is a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.mppm returns the total number of points in the original data point patterns to
which the model was fitted.

The method getCall.mppm extracts the original call to mppm which caused the model to be fitted.

The method terms.mppm extracts the covariate terms in the model formula as a terms object. Note
that these terms do not include the interaction component of the model.

The R function step uses these methods.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
logLik(fit)
AIC(fit)
nobs(fit)
getCall(fit)

logLik.ppm 473

logLik.ppm Log Likelihood and AIC for Point Process Model

Description

Extracts the log likelihood, deviance, and AIC of a fitted Poisson point process model, or analo-
gous quantities based on the pseudolikelihood or logistic likelihood for a fitted Gibbs point process
model.

Usage

S3 method for class 'ppm'
logLik(object, ..., new.coef=NULL, warn=TRUE, absolute=FALSE)

S3 method for class 'ppm'
deviance(object, ...)

S3 method for class 'ppm'
AIC(object, ..., k=2, takeuchi=TRUE)

S3 method for class 'ppm'
extractAIC(fit, scale=0, k=2, ..., takeuchi=TRUE)

S3 method for class 'ppm'
nobs(object, ...)

Arguments

object,fit Fitted point process model. An object of class "ppm".

... Ignored.

warn If TRUE, a warning is given when the pseudolikelihood or logistic likelihood is
returned instead of the likelihood.

absolute Logical value indicating whether to include constant terms in the loglikelihood.

scale Ignored.

k Numeric value specifying the weight of the equivalent degrees of freedom in the
AIC. See Details.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

takeuchi Logical value specifying whether to use the Takeuchi penalty (takeuchi=TRUE)
or the number of fitted parameters (takeuchi=FALSE) in calculating AIC.

474 logLik.ppm

Details

These functions are methods for the generic commands logLik, deviance, extractAIC and nobs
for the class "ppm".

An object of class "ppm" represents a fitted Poisson or Gibbs point process model. It is obtained
from the model-fitting function ppm.

The method logLik.ppm computes the maximised value of the log likelihood for the fitted model
object (as approximated by quadrature using the Berman-Turner approximation) is extracted. If
object is not a Poisson process, the maximised log pseudolikelihood is returned, with a warning
(if warn=TRUE).

The Akaike Information Criterion AIC for a fitted model is defined as

AIC = −2 log(L) + k × penalty

whereL is the maximised likelihood of the fitted model, and penalty is a penalty for model complex-
ity, usually equal to the effective degrees of freedom of the model. The method extractAIC.ppm
returns the analogous quantity AIC∗ in which L is replaced by L∗, the quadrature approximation
to the likelihood (if fit is a Poisson model) or the pseudolikelihood or logistic likelihood (if fit is
a Gibbs model).

The penalty term is calculated as follows. If takeuchi=FALSE then penalty is the number of fitted
parameters. If takeuchi=TRUE then penalty = trace(JH−1) where J and H are the estimated
variance and hessian, respectively, of the composite score. These two choices are equivalent for a
Poisson process.

The method nobs.ppm returns the number of points in the original data point pattern to which the
model was fitted.

The R function step uses these methods.

Value

logLik returns a numerical value, belonging to the class "logLik", with an attribute "df" giving
the degrees of freedom.

AIC returns a numerical value.

extractAIC returns a numeric vector of length 2 containing the degrees of freedom and the AIC
value.

nobs returns an integer value.

Model comparison

The values of logLik and AIC returned by these functions are based on the pseudolikelihood of the
Gibbs point process model. If the model is a Poisson process, then the pseudolikelihood is the same
as the likelihood, but for other Gibbs models, the pseudolikelihood is different from the likelihood
(and the likelihood of a Gibbs model is hard to compute).

For model comparison and model selection, it is valid to compare the logLik values, or to compare
the AIC values, but only when all the models are of class "ppm".

logLik.slrm 475

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Varin, C. and Vidoni, P. (2005) A note on composite likelihood inference and model selection.
Biometrika 92, 519–528.

See Also

ppm, as.owin, anova.ppm, coef.ppm, fitted.ppm, formula.ppm, model.frame.ppm, model.matrix.ppm,
plot.ppm, predict.ppm, residuals.ppm, simulate.ppm, summary.ppm, terms.ppm, update.ppm,
vcov.ppm.

Examples

data(cells)
fit <- ppm(cells, ~x)
nobs(fit)
logLik(fit)
deviance(fit)
extractAIC(fit)
AIC(fit)
step(fit)

logLik.slrm Loglikelihood of Spatial Logistic Regression

Description

Computes the (maximised) loglikelihood of a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
logLik(object, ..., adjust = TRUE)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".

... Ignored.

adjust Logical value indicating whether to adjust the loglikelihood of the model to
make it comparable with a point process likelihood. See Details.

476 lohboot

Details

This is a method for logLik for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm). It computes the log-likelihood of a fitted spatial logistic
regression model.

If adjust=FALSE, the loglikelihood is computed using the standard formula for the loglikelihood of
a logistic regression model for a finite set of (pixel) observations.

If adjust=TRUE then the loglikelihood is adjusted so that it is approximately comparable with the
likelihood of a point process in continuous space, by subtracting the value n log(a) where n is the
number of points in the original point pattern dataset, and a is the area of one pixel.

Value

A numerical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
logLik(fit)
logLik(fit, adjust=FALSE)

lohboot Bootstrap Confidence Bands for Summary Function

Description

Computes a bootstrap confidence band for a summary function of a point process.

Usage

lohboot(X,
fun=c("pcf", "Kest", "Lest", "pcfinhom", "Kinhom", "Linhom",

"Kcross", "Lcross", "Kdot", "Ldot",
"Kcross.inhom", "Lcross.inhom"),

...,
block=FALSE, global=FALSE, basicboot=FALSE, Vcorrection=FALSE,
confidence=0.95, nx = 4, ny = nx, nsim=200, type=7)

lohboot 477

Arguments

X A point pattern (object of class "ppp").
fun Name of the summary function for which confidence intervals are desired: one

of the strings "pcf", "Kest", "Lest", "pcfinhom", "Kinhom" "Linhom", "Kcross",
"Lcross", "Kdot", "Ldot", "Kcross.inhom" or "Lcross.inhom". Alterna-
tively, the function itself; it must be one of the functions listed here.

... Arguments passed to the corresponding local version of the summary function
(see Details).

block Logical value indicating whether to use Loh’s block bootstrap as originally pro-
posed. Default is FALSE for consistency with older code. See Details.

global Logical. If FALSE (the default), pointwise confidence intervals are constructed.
If TRUE, a global (simultaneous) confidence band is constructed.

basicboot Logical value indicating whether to use the so-called basic bootstrap confidence
interval. See Details.

Vcorrection Logical value indicating whether to use a variance correction when fun="Kest"
or fun="Kinhom". See Details.

confidence Confidence level, as a fraction between 0 and 1.
nx,ny Integers. If block=TRUE, divide the window into nx*ny rectangles.
nsim Number of bootstrap simulations.
type Integer. Type of quantiles. Argument passed to quantile.default controlling

the way the quantiles are calculated.

Details

This algorithm computes confidence bands for the true value of the summary function fun using the
bootstrap method of Loh (2008) and a modification described in Baddeley, Rubak, Turner (2015).

If fun="pcf", for example, the algorithm computes a pointwise (100 * confidence)% confidence
interval for the true value of the pair correlation function for the point process, normally estimated
by pcf. It starts by computing the array of local pair correlation functions, localpcf, of the data
pattern X. This array consists of the contributions to the estimate of the pair correlation function
from each data point.

If block=FALSE, these contributions are resampled nsim times with replacement as described in
Baddeley, Rubak, Turner (2015); from each resampled dataset the total contribution is computed,
yielding nsim random pair correlation functions.

If block=TRUE, the calculation is performed as originally proposed by Loh (2008, 2010). The
(bounding box of the) window is divided into nx∗ny rectangles (blocks). The average contribution
of a block is obtained by averaging the contribution of each point included in the block. Then, the
average contributions on each block are resampled nsim times with replacement as described in Loh
(2008) and Loh (2010); from each resampled dataset the total contribution is computed, yielding
nsim random pair correlation functions. Notice that for non-rectangular windows any blocks not
fully contained in the window are discarded before doing the resampling, so the effective number
of blocks may be substantially smaller than nx ∗ ny in this case.

The pointwise alpha/2 and 1 - alpha/2 quantiles of these functions are computed, where alpha
= 1 - confidence. The average of the local functions is also computed as an estimate of the pair
correlation function.

478 lohboot

There are several ways to define a bootstrap confidence interval. If basicbootstrap=TRUE, the
so-called basic confidence bootstrap interval is used as described in Loh (2008).

It has been noticed in Loh (2010) that when the intensity of the point process is unknown, the
bootstrap error estimate is larger than it should be. When the K function is used, an adjustment
procedure has been proposed in Loh (2010) that is used if Vcorrection=TRUE. In this case, the
basic confidence bootstrap interval is implicitly used.

To control the estimation algorithm, use the arguments ..., which are passed to the local version
of the summary function, as shown below:

fun local version
pcf localpcf
Kest localK
Lest localL
pcfinhom localpcfinhom
Kinhom localKinhom
Linhom localLinhom
Kcross localKcross
Lcross localLcross
Kdot localKdot
Ldot localLdot
Kcross.inhom localKcross.inhom
Lcross.inhom localLcross.inhom

For fun="Lest", the calculations are first performed as if fun="Kest", and then the square-root
transformation is applied to obtain theL-function. Similarly for fun="Linhom", "Lcross", "Ldot",
"Lcross.inhom".

Note that the confidence bands computed by lohboot(fun="pcf") may not contain the estimate
of the pair correlation function computed by pcf, because of differences between the algorithm pa-
rameters (such as the choice of edge correction) in localpcf and pcf. If you are using lohboot, the
appropriate point estimate of the pair correlation itself is the pointwise mean of the local estimates,
which is provided in the result of lohboot and is shown in the default plot.

If the confidence bands seem unbelievably narrow, this may occur because the point pattern has a
hard core (the true pair correlation function is zero for certain values of distance) or because of an
optical illusion when the function is steeply sloping (remember the width of the confidence bands
should be measured vertically).

An alternative to lohboot is varblock.

Value

A function value table (object of class "fv") containing columns giving the estimate of the summary
function, the upper and lower limits of the bootstrap confidence interval, and the theoretical value
of the summary function for a Poisson process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Christophe Biscio.

lurking 479

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Loh, J.M. (2008) A valid and fast spatial bootstrap for correlation functions. The Astrophysical
Journal, 681, 726–734.

Loh, J.M. (2010) Bootstrapping an inhomogeneous point process. Journal of Statistical Planning
and Inference, 140, 734–749.

See Also

Summary functions Kest, pcf, Kinhom, pcfinhom, localK, localpcf, localKinhom, localpcfinhom,
localKcross, localKdot, localLcross, localLdot. localKcross.inhom, localLcross.inhom.

See varblock for an alternative bootstrap technique.

Examples

p <- lohboot(simdat, stoyan=0.5)
g <- lohboot(simdat, stoyan=0.5, block=TRUE)
g
plot(g)

lurking Lurking Variable Plot

Description

Plot spatial point process residuals against a covariate

Usage

lurking(object, ...)

S3 method for class 'ppm'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,

480 lurking

verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

S3 method for class 'ppp'
lurking(object, covariate,

type="eem",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=default.clipwindow(object),
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which diagnostics
should be produced. This object is usually obtained from ppm. Alternatively,
object may be a point pattern (object of class "ppp").

covariate The covariate against which residuals should be plotted. Either a numeric vector,
a pixel image, or an expression. See Details below.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

cumulative Logical flag indicating whether to plot a cumulative sum of marks (cumulative=TRUE)
or the derivative of this sum, a marginal density of the smoothed residual field
(cumulative=FALSE).

... Arguments passed to plot.default and lines to control the plot behaviour.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

plot.sd Logical value indicating whether error bounds should be added to plot. The
default is TRUE for Poisson models and FALSE for non-Poisson models. See
Details.

clipwindow If not NULL this argument indicates that residuals shall only be computed in-
side a subregion of the window containing the original point pattern data. Then
clipwindow should be a window object of class "owin".

lurking 481

rv Usually absent. If this argument is present, the point process residuals will not
be calculated from the fitted model object, but will instead be taken directly
from rv.

envelope Logical value indicating whether to compute simulation envelopes for the plot.
Alternatively envelope may be a list of point patterns to use for computing the
simulation envelopes, or an object of class "envelope" containing simulated
point patterns.

nsim Number of simulated point patterns to be generated to produce the simulation
envelope, if envelope=TRUE.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

typename Usually absent. If this argument is present, it should be a string, and will be used
(in the axis labels of plots) to describe the type of residuals.

covname A string name for the covariate, to be used in axis labels of plots.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

check Logical flag indicating whether the integrity of the data structure in object
should be checked.

verbose Logical value indicating whether to print progress reports during Monte Carlo
simulation.

nx Integer. Number of covariate values to be used in the plot.

splineargs A list of arguments passed to smooth.spline for the estimation of the deriva-
tives in the case cumulative=FALSE.

internal Internal use only.

Details

This function generates a ‘lurking variable’ plot for a fitted point process model. Residuals from the
model represented by object are plotted against the covariate specified by covariate. This plot
can be used to reveal departures from the fitted model, in particular, to reveal that the point pattern
depends on the covariate.

The function lurking is generic, with methods for ppm and ppp documented here, and possibly
other methods.

The argument object would usually be a fitted point process model (object of class "ppm") pro-
duced by the model-fitting algorithm ppm). If object is a point pattern (object of class "ppp") then
the model is taken to be the uniform Poisson process (Complete Spatial Randomness) fitted to this
point pattern.

First the residuals from the fitted model (Baddeley et al, 2004) are computed at each quadrature
point, or alternatively the ‘exponential energy marks’ (Stoyan and Grabarnik, 1991) are computed
at each data point. The argument type selects the type of residual or weight. See diagnose.ppm
for options and explanation.

A lurking variable plot for point processes (Baddeley et al, 2004) displays either the cumulative sum
of residuals/weights (if cumulative = TRUE) or a kernel-weighted average of the residuals/weights

482 lurking

(if cumulative = FALSE) plotted against the covariate. The empirical plot (solid lines) is shown
together with its expected value assuming the model is true (dashed lines) and optionally also the
pointwise two-standard-deviation limits (grey shading).

To be more precise, let Z(u) denote the value of the covariate at a spatial location u.

• If cumulative=TRUE then we plot H(z) against z, where H(z) is the sum of the residuals
over all quadrature points where the covariate takes a value less than or equal to z, or the sum
of the exponential energy weights over all data points where the covariate takes a value less
than or equal to z.

• If cumulative=FALSE then we plot h(z) against z, where h(z) is the derivative of H(z),
computed approximately by spline smoothing.

For the point process residualsE(H(z)) = 0, while for the exponential energy weightsE(H(z)) =
area of the subset of the window satisfying Z(u) <= z.

If the empirical and theoretical curves deviate substantially from one another, the interpretation is
that the fitted model does not correctly account for dependence on the covariate. The correct form
(of the spatial trend part of the model) may be suggested by the shape of the plot.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-
deviation error limits for H(x) calculated for the inhomogeneous Poisson process. The default is
plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if
oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an
over-estimate of the true variance of the residuals.

The argument covariate is either a numeric vector, a pixel image, or an R language expression. If
it is a numeric vector, it is assumed to contain the values of the covariate for each of the quadrature
points in the fitted model. The quadrature points can be extracted by quad.ppm(object).

If covariate is a pixel image, it is assumed to contain the values of the covariate at each location
in the window. The values of this image at the quadrature points will be extracted.

Alternatively, if covariate is an expression, it will be evaluated in the same environment as
the model formula used in fitting the model object. It must yield a vector of the same length as
the number of quadrature points. The expression may contain the terms x and y representing the
cartesian coordinates, and may also contain other variables that were available when the model was
fitted. Certain variable names are reserved words; see ppm.

Note that lurking variable plots for the x and y coordinates are also generated by diagnose.ppm,
amongst other types of diagnostic plots. This function is more general in that it enables the user to
plot the residuals against any chosen covariate that may have been present.

For advanced use, even the values of the residuals/weights can be altered. If the argument rv
is present, the residuals will not be calculated from the fitted model object but will instead be
taken directly from the object rv. If type = "eem" then rv should be similar to the return value of
eem, namely, a numeric vector with length equal to the number of data points in the original point
pattern. Otherwise, rv should be similar to the return value of residuals.ppm, that is, rv should
be an object of class "msr" (see msr) representing a signed measure.

lurking.mppm 483

Value

The (invisible) return value is an object belonging to the class "lurk", for which there are methods
for plot and print.

This object is a list containing two dataframes empirical and theoretical. The first dataframe
empirical contains columns covariate and value giving the coordinates of the lurking variable
plot. The second dataframe theoretical contains columns covariate, mean and sd giving the
coordinates of the plot of the theoretical mean and standard deviation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2006) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.ppm, diagnose.ppm, residuals.ppm, qqplot.ppm, eem, ppm

Examples

(a <- lurking(nztrees, expression(x), type="raw"))
fit <- ppm(nztrees ~x, Poisson(), nd=128)
(b <- lurking(fit, expression(x), type="raw"))
lurking(fit, expression(x), type="raw", cumulative=FALSE)

lurking.mppm Lurking Variable Plot for Multiple Point Patterns

Description

Generate a lurking variable plot of spatial point process residuals against a covariate, for a model
fitted to several point patterns.

Usage

S3 method for class 'mppm'
lurking(object, covariate, type="eem",

...,
separate = FALSE,
plot.it = TRUE,
covname, oldstyle = FALSE, nx = 512, main="")

484 lurking.mppm

Arguments

object The fitted model. An object of class "mppm" representing a point process model
fitted to several point patterns.

covariate The covariate to be used on the horizontal axis. Either an expression which
can be evaluated in the original data, or a list of pixel images, one image for
each point pattern in the original data.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson". See diagnose.ppm for all
possible choices.

... Additional arguments passed to lurking.ppm, including arguments controlling
the plot.

separate Logical value indicating whether to compute a separate lurking variable plot
for each of the original point patterns. If FALSE (the default), a single lurking-
variable plot is produced by combining residuals from all patterns.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

covname A string name for the covariate, to be used in axis labels of plots.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

nx Integer. Number of covariate values to be used in the plot.

main Character string giving a main title for the plot.

Details

This function generates a ‘lurking variable’ plot for a point process model fitted to several point
patterns. Residuals from the model represented by object are plotted against the covariate specified
by covariate. This plot can be used to reveal departures from the fitted model.

The function lurking is generic. This is the method for the class mppm. The argument object must
be a fitted point process model object of class "mppm") produced by the model-fitting algorithm
mppm.

Value

If separate=FALSE (the default), the return value is an object belonging to the class "lurk", for
which there are methods for plot and print. See lurking for details of the format.

If separate=TRUE, the result is a list of such objects, and also belongs to the class anylist so that
it can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, with thanks to Nicholas Read.

See Also

lurking.ppm

markconnect 485

Examples

fit <- mppm(Points ~ Image + Group, demohyper)
lurking(fit, expression(Image), type="P")
lurking(fit, expression(Image), type="P", separate=TRUE)

markconnect Mark Connection Function

Description

Estimate the marked connection function of a multitype point pattern.

Usage

markconnect(X, i, j, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured.

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured.

r numeric vector. The values of the argument r at which the mark connection
function pij(r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the pair connection function by dividing it by pipj , the esti-
mated probability that randomly-selected points will have marks i and j.

Details

The mark connection function pij(r) of a multitype point processX is a measure of the dependence
between the types of two points of the process a distance r apart.

Informally pij(r) is defined as the conditional probability, given that there is a point of the process
at a location u and another point of the process at a location v separated by a distance ||u− v|| = r,
that the first point is of type i and the second point is of type j. See Stoyan and Stoyan (1994).

486 markconnect

If the marks attached to the points of X are independent and identically distributed, then pij(r) ≡
pipj where pi denotes the probability that a point is of type i. Values larger than this, pij(r) >
pipj , indicate positive association between the two types, while smaller values indicate negative
association.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

The argument r is the vector of values for the distance r at which pij(r) is estimated. There is a
sensible default.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks) and is slow for
complicated polygons.

translate Translation correction (Ohser, 1983). Implemented for all window geometries.

none No edge correction.

The option correction="none" should only be used if the number of data points is extremely large
(otherwise an edge correction is needed to correct bias).

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can
choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark connection function pij(r) has
been estimated

theo the theoretical value of pij(r) when the marks attached to different points are
independent

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function pij(r) obtained by the edge correc-
tions named.

markcorr 487

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Multitype pair correlation pcfcross and multitype K-functions Kcross, Kdot.

Use alltypes to compute the mark connection functions between all pairs of types.

Mark correlation markcorr and mark variogram markvario for numeric-valued marks.

Examples

Hughes' amacrine data
Cells marked as 'on'/'off'
data(amacrine)
M <- markconnect(amacrine, "on", "off")
plot(M)

Compute for all pairs of types at once
plot(alltypes(amacrine, markconnect))

markcorr Mark Correlation Function

Description

Estimate the marked correlation function of a marked point pattern.

Usage

markcorr(X, f = function(m1, m2) { m1 * m2}, r=NULL,
correction=c("isotropic", "Ripley", "translate"),
method="density", ..., weights=NULL,
f1=NULL, normalise=TRUE, fargs=NULL, internal=NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

f Optional. Test function f used in the definition of the mark correlation function.
An R function with at least two arguments. There is a sensible default.

488 markcorr

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

weights Optional. Numeric weights for each data point in X. A numeric vector, a pixel
image, or a function(x,y). Alternatively, an expression to be evaluated to
yield the weights; the expression may involve the variables x,y,marks repre-
senting the coordinates and marks ofX.

f1 An alternative to f. If this argument is given, then f is assumed to take the form
f(u, v) = f1(u)f1(v).

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

fargs Optional. A list of extra arguments to be passed to the function f or f1.

internal Do not use this argument.

Details

By default, this command calculates an estimate of Stoyan’s mark correlation kmm(r) for the point
pattern.

Alternatively if the argument f or f1 is given, then it calculates Stoyan’s generalised mark correla-
tion kf (r) with test function f .

Theoretical definitions are as follows (see Stoyan and Stoyan (1994, p. 262)):

• For a point process X with numeric marks, Stoyan’s mark correlation function kmm(r), is

kmm(r) =
E0u[M(0)M(u)]

E[M,M ′]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r, and whereM(0),M(u) denote the marks attached
to these two points. On the denominator, M,M ′ are random marks drawn independently from
the marginal distribution of marks, and E is the usual expectation.

• For a multitype point process X , the mark correlation is

kmm(r) =
P0u[M(0)M(u)]

P [M = M ′]

where P and P0u denote the probability and conditional probability.

• The generalised mark correlation function kf (r) of a marked point process X , with test func-
tion f , is

kf (r) =
E0u[f(M(0),M(u))]

E[f(M,M ′)]

markcorr 489

The test function f is any function f(m1,m2) with two arguments which are possible marks of
the pattern, and which returns a nonnegative real value. Common choices of f are: for continuous
nonnegative real-valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

.

Note that kf (r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X
are independent and identically distributed, then kf (r) ≡ 1. The interpretation of values larger or
smaller than 1 depends on the choice of function f .

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The argument f determines the function to be applied to pairs of marks. It has a sensible default,
which depends on the kind of marks in X. If the marks are numeric values, then f <- function(m1,
m2) { m1 * m2} computes the product of two marks. If the marks are a factor (i.e. if X is a multitype
point pattern) then f <- function(m1, m2) { m1 == m2} yields the value 1 when the two marks are
equal, and 0 when they are unequal. These are the conventional definitions for numerical marks and
multitype points respectively.

The argument f may be specified by the user. It must be an R function, accepting two arguments
m1 and m2 which are vectors of equal length containing mark values (of the same type as the marks
of X). (It may also take additional arguments, passed through fargs). It must return a vector of
numeric values of the same length as m1 and m2. The values must be non-negative, and NA values
are not permitted.

Alternatively the user may specify the argument f1 instead of f. This indicates that the test function
f should take the form f(u, v) = f1(u)f1(v) where f1(u) is given by the argument f1. The
argument f1 should be an R function with at least one argument. (It may also take additional
arguments, passed through fargs).

The argument r is the vector of values for the distance r at which kf (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-
mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

490 markcorr

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are
estimated using density estimation techniques. The user can choose between

"density" which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess" which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep" which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

If normalise=FALSE then the algorithm will compute only the numerator

cf (r) = E0uf(M(0),M(u))

of the expression for the mark correlation function.

Value

A function value table (object of class "fv") or a list of function value tables, one for each column
of marks.

An object of class "fv" (see fv.object) is essentially a data frame containing numeric columns

r the values of the argument r at which the mark correlation function kf (r) has
been estimated

theo the theoretical value of kf (r) when the marks attached to different points are
independent, namely 1

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the mark correlation function kf (r) obtained by
the edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Mark cross-correlation function markcrosscorr for point patterns with several columns of marks.

Kmark to estimate a cumulative function related to the mark correlation function.

markcrosscorr 491

Examples

CONTINUOUS-VALUED MARKS:
(1) Spruces
marks represent tree diameter
mark correlation function
ms <- markcorr(spruces)
plot(ms)

(2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- markcorr(X)
plot(Xc)

MULTITYPE DATA:
Hughes' amacrine data
Cells marked as 'on'/'off'
X <- if(interactive()) amacrine else amacrine[c(FALSE, TRUE)]
(3) Kernel density estimate with Epanecnikov kernel
(as proposed by Stoyan & Stoyan)
M <- markcorr(X, function(m1,m2) {m1==m2},

correction="translate", method="density",
kernel="epanechnikov")

Note: kernel="epanechnikov" comes from help(density)

(4) Same again with explicit control over bandwidth
M <- markcorr(X,
correction="translate", method="density",
kernel="epanechnikov", bw=0.02)
see help(density) for correct interpretation of 'bw'

weighted mark correlation
X <- if(interactive()) betacells else betacells[c(TRUE,FALSE)]
Y <- subset(X, select=type)
a <- marks(X)$area
v <- markcorr(Y, weights=a)

markcrosscorr Mark Cross-Correlation Function

Description

Given a spatial point pattern with several columns of marks, this function computes the mark cor-
relation function between each pair of columns of marks.

Usage

markcrosscorr(X, r = NULL,

492 markcrosscorr

correction = c("isotropic", "Ripley", "translate"),
method = "density", ..., normalise = TRUE, Xname = NULL)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp.

r Optional. Numeric vector. The values of the argument r at which the mark
correlation function kf (r) should be evaluated. There is a sensible default.

correction A character vector containing any selection of the options "isotropic", "Ripley",
"translate", "translation", "none" or "best". It specifies the edge correc-
tion(s) to be applied. Alternatively correction="all" selects all options.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.

normalise If normalise=FALSE, compute only the numerator of the expression for the
mark correlation.

Xname Optional character string name for the dataset X.

Details

First, all columns of marks are converted to numerical values. A factor with m possible levels is
converted to m columns of dummy (indicator) values.

Next, each pair of columns is considered, and the mark cross-correlation is defined as

kmm(r) =
E0u[Mi(0)Mj(u)]

E[Mi,Mj]

where E0u denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance r. On the numerator, Mi(0) and Mj(u) are the marks
attached to locations 0 and u respectively in the ith and jth columns of marks respectively. On the
denominator, Mi and Mj are independent random values drawn from the ith and jth columns of
marks, respectively, and E is the usual expectation.

Note that kmm(r) is not a “correlation” in the usual statistical sense. It can take any nonnegative
real value. The value 1 suggests “lack of correlation”: if the marks attached to the points of X are
independent and identically distributed, then kmm(r) ≡ 1.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern.

The cross-correlations are estimated in the same manner as for markcorr.

Value

A function array (object of class "fasp") containing the mark cross-correlation functions for each
possible pair of columns of marks.

markmarkscatter 493

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

markcorr

Examples

The dataset 'betacells' has two columns of marks:
'type' (factor)
'area' (numeric)
if(interactive()) plot(betacells)
plot(markcrosscorr(betacells))

markmarkscatter Mark-Mark Scatter Plot

Description

Generates the mark-mark scatter plot of a point pattern.

Usage

markmarkscatter(X, rmax, ..., col = NULL, symap = NULL, transform=I, jit=FALSE)

Arguments

X A point pattern (object of class "ppp", "pp3", "lpp" or "ppx") with numeric
marks.

rmax Maximum distance between pairs of points which contribute to the plot.

... Additional arguments passed to plot.ppp to control the scatterplot.

transform Optional. A function which should be applied to the mark values.

jit Logical value indicating whether mark values should be randomly perturbed
using jitter.

col Optional. A vector of colour values, or a colourmap to be used to portray the
pairwise distance values. Ignored if symap is given.

symap Optional. A symbolmap to be used to portray the pairwise distance values. Over-
rides col.

494 marktable

Details

The mark-mark scatter plot (Ballani et al, 2019) is a scatterplot of the mark values of all pairs of
distinct points in X which are closer than the distance rmax. The dots in the scatterplot are coloured
according to the pairwise distance between the two spatial points. The plot is augmented by three
curves explained by Ballani et al (2019).

If the marks only take a few different values, then it is usually appropriate to apply random pertur-
bation (jitter) to the mark values, by setting jit=TRUE.

Value

Null.

Author(s)

Adrian Baddeley (coded from the description in Ballani et al.)

References

Ballani, F., Pommerening, A. and Stoyan, D. (2019) Mark-mark scatterplots improve pattern anal-
ysis in spatial plant ecology. Ecological Informatics 49, 13–21.

Examples

markmarkscatter(longleaf, 10)

markmarkscatter(spruces, 10, jit=TRUE)

marktable Tabulate Marks in Neighbourhood of Every Point in a Point Pattern

Description

Visit each point in a point pattern, find the neighbouring points, and compile a frequency table of
the marks of these neighbour points.

Usage

marktable(X, R, N, exclude=TRUE, collapse=FALSE)

Arguments

X A marked point pattern. An object of class "ppp".

R Neighbourhood radius. Incompatible with N.

N Number of neighbours of each point. Incompatible with R.

exclude Logical. If exclude=TRUE, the neighbours of a point do not include the point
itself. If exclude=FALSE, a point belongs to its own neighbourhood.

marktable 495

collapse Logical. If collapse=FALSE (the default) the results for each point are returned
as separate rows of a table. If collapse=TRUE, the results are aggregated ac-
cording to the type of point.

Details

This algorithm visits each point in the point pattern X, inspects all the neighbouring points within
a radius R of the current point (or the N nearest neighbours of the current point), and compiles a
frequency table of the marks attached to the neighbours.

The dataset X must be a multitype point pattern, that is, marks(X) must be a factor.

If collapse=FALSE (the default), the result is a two-dimensional contingency table with one row
for each point in the pattern, and one column for each possible mark value. The [i,j] entry in the
table gives the number of neighbours of point i that have mark j.

If collapse=TRUE, this contingency table is aggregated according to the type of point, so that the
result is a contingency table with one row and one column for each possible mark value. The [i,j]
entry in the table gives the number of neighbours of a point with mark i that have mark j.

To perform more complicated calculations on the neighbours of every point, use markstat or
applynbd.

Value

A contingency table (object of class "table"). If collapse=FALSE, the table has one row for each
point in X, and one column for each possible mark value. If collapse=TRUE, the table has one row
and one column for each possible mark value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

markstat, applynbd, Kcross, ppp.object, table

Examples

head(marktable(amacrine, 0.1))
head(marktable(amacrine, 0.1, exclude=FALSE))
marktable(amacrine, N=1, collapse=TRUE)

496 markvario

markvario Mark Variogram

Description

Estimate the mark variogram of a marked point pattern.

Usage

markvario(X, correction = c("isotropic", "Ripley", "translate"),
r = NULL, method = "density", ..., normalise=FALSE)

Arguments

X The observed point pattern. An object of class "ppp" or something acceptable
to as.ppp. It must have marks which are numeric.

correction A character vector containing any selection of the options "isotropic", "Ripley"
or "translate". It specifies the edge correction(s) to be applied.

r numeric vector. The values of the argument r at which the mark variogram γ(r)
should be evaluated. There is a sensible default.

method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density", "loess", "sm" and "smrep".

... Other arguments passed to markcorr, or passed to the density estimation routine
(density, loess or sm.density) selected by method.

normalise If TRUE, normalise the variogram by dividing it by the estimated mark variance.

Details

The mark variogram γ(r) of a marked point process X is a measure of the dependence between the
marks of two points of the process a distance r apart. It is informally defined as

γ(r) = E[
1

2
(M1 −M2)2]

where E[] denotes expectation and M1,M2 are the marks attached to two points of the process a
distance r apart.

The mark variogram of a marked point process is analogous, but not equivalent, to the variogram
of a random field in geostatistics. See Waelder and Stoyan (1996).

Value

An object of class "fv" (see fv.object).

Essentially a data frame containing numeric columns

r the values of the argument r at which the mark variogram γ(r) has been esti-
mated

matclust.estK 497

theo the theoretical value of γ(r) when the marks attached to different points are
independent; equal to the sample variance of the marks

together with a column or columns named "iso" and/or "trans", according to the selected edge
corrections. These columns contain estimates of the function γ(r) obtained by the edge corrections
named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Mase, S. (1996) The threshold method for estimating annual rainfall. Annals of the Institute of
Statistical Mathematics 48 (1996) 201-213.

Waelder, O. and Stoyan, D. (1996) On variograms in point process statistics. Biometrical Journal
38 (1996) 895-905.

See Also

Mark correlation function markcorr for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

Longleaf Pine data
marks represent tree diameter
data(longleaf)
Subset of this large pattern
swcorner <- owin(c(0,100),c(0,100))
sub <- longleaf[, swcorner]
mark correlation function
mv <- markvario(sub)
plot(mv)

matclust.estK Fit the Matern Cluster Point Process by Minimum Contrast

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast.

Usage

matclust.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

498 matclust.estK

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical K function of the Matérn Clus-
ter process and the observed K function. For a more detailed explanation of the Method of Mini-
mum Contrast, see mincontrast.

The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Matérn Cluster process is

K(r) = πr2 +
1

κ
h(

r

2R
)

where the radius R is the parameter scale and

h(z) = 2 +
1

π
[(8z2 − 4)arccos(z)− 2arcsin(z) + 4z

√
(1− z2)3 − 6z

√
1− z2]

for z <= 1, and h(z) = 1 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.

matclust.estK 499

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matérn Cluster process can be simulated, using rMatClust.

Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, thomas.estK, mincontrast, Kest, rMatClust to simulate the fitted model.

Examples

data(redwood)
u <- matclust.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

500 matclust.estpcf

matclust.estpcf Fit the Matérn Cluster Point Process by Minimum Contrast Using Pair
Correlation

Description

Fits the Matérn Cluster point process to a point pattern dataset by the Method of Minimum Contrast
using the pair correlation function.

Usage

matclust.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...,
pcfargs=list())

Arguments

X Data to which the Matérn Cluster model will be fitted. Either a point pattern or
a summary statistic. See Details.

startpar Vector of starting values for the parameters of the Matérn Cluster process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Matérn Cluster point process model to a point pattern dataset by the Method
of Minimum Contrast, using the pair correlation function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Matérn Cluster point process to X, by finding the parameters of the Matérn
Cluster model which give the closest match between the theoretical pair correlation function of the
Matérn Cluster process and the observed pair correlation function. For a more detailed explanation
of the Method of Minimum Contrast, see mincontrast.

matclust.estpcf 501

The Matérn Cluster point process is described in Møller and Waagepetersen (2003, p. 62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and uniformly distributed
inside a circle of radius R centred on the parent point, where R is equal to the parameter scale.
The named vector of stating values can use either R or scale as the name of the second component,
but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Matérn Cluster process is

g(r) = 1 +
1

4πRκr
h(

r

2R
)

where the radius R is the parameter scale and

h(z) =
16

π
[zarccos(z)− z2

√
1− z2]

for z <= 1, and h(z) = 0 for z > 1. The theoretical intensity of the Matérn Cluster process is
λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and R. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Matérn Cluster process can be simulated, using rMatClust.

Homogeneous or inhomogeneous Matérn Cluster models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

502 measureContinuous

References

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, matclust.estK, thomas.estpcf, thomas.estK, lgcp.estK, mincontrast, pcf, rMatClust
to simulate the fitted model.

Examples

data(redwood)
u <- matclust.estpcf(redwood, c(kappa=10, R=0.1))
u
plot(u, legendpos="topright")

measureContinuous Discrete and Continuous Components of a Measure

Description

Given a measure A (object of class "msr") these functions find the discrete and continuous parts of
A.

Usage

measureDiscrete(x)
measureContinuous(x)

Arguments

x A measure (object of class "msr").

Details

The functions measureDiscrete and measureContinuous return the discrete and continuous com-
ponents, respectively, of a measure.

If x is a measure, then measureDiscrete(x) is a measure consisting only of the discrete (atomic)
component of x, and measureContinuous(x) is a measure consisting only of the continuous (dif-
fuse) component of x.

Value

Another measure (object of class "msr") on the same spatial domain.

measureVariation 503

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

rp
measureDiscrete(rp)
measureContinuous(rp)

measureVariation Positive and Negative Parts, and Variation, of a Measure

Description

Given a measure A (object of class "msr") these functions find the positive part, negative part and
variation of A.

Usage

measurePositive(x)
measureNegative(x)
measureVariation(x)
totalVariation(x)

Arguments

x A measure (object of class "msr").

Details

The functions measurePositive and measureNegative return the positive and negative parts of
the measure, and measureVariation returns the variation (sum of positive and negative parts). The
function totalVariation returns the total variation norm.

If µ is a signed measure, it can be represented as

µ = µ+ − µ−

504 methods.dppm

where µ+ and µ− are nonnegative measures called the positive and negative parts of µ. In a nutshell,
the positive part of µ consists of all positive contributions or increments, and the negative part
consists of all negative contributions multiplied by -1.

The variation |µ| is defined by
µ = µ+ + µ−

and is also a nonnegative measure.

The total variation norm is the integral of the variation.

Value

The result of measurePositive, measureNegative and measureVariation is another measure
(object of class "msr") on the same spatial domain. The result of totalVariation is a non-negative
number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

msr, with.msr, split.msr, measureDiscrete

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

measurePositive(rp)
measureNegative(rp)
measureVariation(rp)

total variation norm
totalVariation(rp)

methods.dppm Methods for Determinantal Point Process Models

Description

These are methods for the class "dppm".

methods.dppm 505

Usage

S3 method for class 'dppm'
coef(object, ...)
S3 method for class 'dppm'
formula(x, ...)
S3 method for class 'dppm'
print(x, ...)
S3 method for class 'dppm'
terms(x, ...)
S3 method for class 'dppm'
labels(object, ...)

Arguments

x,object An object of class "dppm", representing a fitted determinantal point process
model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "dppm".

An object of class "dppm" represents a fitted determinantal point process model. It is obtained from
dppm.

The method coef.dppm returns the vector of regression coefficients of the fitted model. It does not
return the interaction parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

dppm, plot.dppm, predict.dppm, simulate.dppm, as.ppm.dppm.

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss, method="c")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

506 methods.fii

methods.fii Methods for Fitted Interactions

Description

These are methods specifically for the class "fii" of fitted interpoint interactions.

Usage

S3 method for class 'fii'
print(x, ...)

S3 method for class 'fii'
coef(object, ...)

S3 replacement method for class 'fii'
coef(object, ...) <- value

S3 method for class 'fii'
plot(x, ...)

S3 method for class 'fii'
summary(object,...)

S3 method for class 'summary.fii'
print(x, ...)

S3 method for class 'summary.fii'
coef(object, ...)

Arguments

x,object An object of class "fii" representing a fitted interpoint interaction.

... Arguments passed to other methods.

value Numeric vector containing new values for the fitted interaction coefficients.

Details

These are methods for the class "fii". An object of class "fii" represents a fitted interpoint
interaction. It is usually obtained by using the command fitin to extract the fitted interaction part
of a fitted point process model. See fitin for further explanation of this class.

The commands listed here are methods for the generic functions print, summary, plot, coef and
coef<- for objects of the class "fii".

Following the usual convention, summary.fii returns an object of class summary.fii, for which
there is a print method. The effect is that, when the user types summary(x), the summary is printed,
but when the user types y <- summary(x), the summary information is saved.

methods.influence.ppm 507

The method coef.fii extracts the canonical coefficients of the fitted interaction, and returns them
as a numeric vector. The method coef.summary.fii transforms these values into quantities that
are more easily interpretable, in a format that depends on the particular model.

There are also methods for the generic commands reach and as.interact, described elsewhere.

Value

The print and plot methods return NULL.

The summary method returns an object of class summary.fii.

coef.fii returns a numeric vector. coef.summary.fii returns data whose structure depends on
the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

fitin, reach.fii, as.interact.fii

Examples

mod <- ppm(cells, ~1, Strauss(0.1))
f <- fitin(mod)
f
summary(f)
plot(f)
coef(f)
coef(summary(f))

methods.influence.ppm Methods for Influence Objects

Description

Methods for the class "influence.ppm".

Usage

S3 method for class 'influence.ppm'
as.ppp(X, ...)

S3 method for class 'influence.ppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'influence.ppm'
domain(X, ...)

508 methods.influence.ppm

S3 method for class 'influence.ppm'
Smooth(X, ...)

S3 method for class 'influence.ppm'
Window(X, ...)

S3 method for class 'influence.ppm'
integral(f, domain, ...)

Arguments

X,W,f An object of class "influence.ppm".

domain Optional. Domain of integration: a window (class "owin") or a tessellation
(class "tess").

... Additional arguments. See Details.

fatal Logical value indicating what to do if the data cannot be converted to a window.
If fatal=TRUE (the default) an error occurs. If fatal=FALSE a value of NULL is
returned.

Details

These functions are methods for the class "influence.ppm". An object of this class represents the
influence measure of a fitted point process model (see influence.ppm).

For as.ppp, domain, integral and Window, additional arguments (...) are ignored. For as.owin
and Smooth, additional arguments are passed to the method for class "ppp".

Value

A window (object of class "owin") for as.owin, domain and Window. A point pattern (object of
class "ppp") for as.ppp. A numeric value or numeric vector for integral. A pixel image, or list
of pixel images, for Smooth.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

influence.ppm, plot.influence.ppm, [.influence.ppm

Examples

fit <- ppm(cells ~ x)
a <- influence(fit)
Window(a)

methods.kppm 509

methods.kppm Methods for Cluster Point Process Models

Description

These are methods for the class "kppm".

Usage

S3 method for class 'kppm'
coef(object, ...)
S3 method for class 'kppm'
formula(x, ...)
S3 method for class 'kppm'
print(x, ...)
S3 method for class 'kppm'
terms(x, ...)
S3 method for class 'kppm'
labels(object, ...)

Arguments

x,object An object of class "kppm", representing a fitted cluster point process model.

... Arguments passed to other methods.

Details

These functions are methods for the generic commands coef, formula, print, terms and labels
for the class "kppm".

An object of class "kppm" represents a fitted cluster point process model. It is obtained from kppm.

The method coef.kppm returns the vector of regression coefficients of the fitted model. It does not
return the clustering parameters.

Value

See the help files for the corresponding generic functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, update.kppm, vcov.kppm, as.ppm.kppm.

510 methods.leverage.ppm

Examples

data(redwood)
fit <- kppm(redwood ~ x, "MatClust")
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)

methods.leverage.ppm Methods for Leverage Objects

Description

Methods for the class "leverage.ppm".

Usage

S3 method for class 'leverage.ppm'
as.im(X, ..., what=c("smooth", "nearest"))

S3 method for class 'leverage.ppm'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'leverage.ppm'
domain(X, ...)

S3 method for class 'leverage.ppm'
integral(f, domain, ...)

S3 method for class 'leverage.ppm'
mean(x, ...)

S3 method for class 'leverage.ppm'
Smooth(X, ...)

S3 method for class 'leverage.ppm'
Window(X, ...)

Arguments

X,x,W,f An object of class "leverage.ppm".

domain Optional. Domain of integration: a window (class "owin") or a tessellation
(class "tess").

... Additional arguments. See Details.

methods.objsurf 511

fatal Logical value indicating what to do if the data cannot be converted to a window.
If fatal=TRUE (the default) an error occurs. If fatal=FALSE a value of NULL is
returned.

what Character string (partially matched) specifying which image data should be ex-
tracted. See plot.leverage.ppm for explanation.

Details

These functions are methods for the class "leverage.ppm". An object of this class represents the
leverage measure of a fitted point process model (see leverage.ppm).

For as.im, domain and Window, additional arguments (...) are ignored. For as.owin, integral,
mean and Smooth, additional arguments are passed to the method for class "im".

Value

A window (object of class "owin") for as.owin, domain and Window. A numeric value or numeric
vector for integral. A pixel image, or list of pixel images, for as.im and Smooth.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

leverage.ppm, plot.leverage.ppm, [.leverage.ppm, as.function.leverage.ppm.

Examples

fit <- ppm(cells ~ x)
a <- leverage(fit)
integral(a)

methods.objsurf Methods for Objective Function Surfaces

Description

Methods for printing and plotting an objective function surface.

Usage

S3 method for class 'objsurf'
print(x, ...)
S3 method for class 'objsurf'
plot(x, ...)
S3 method for class 'objsurf'
image(x, ...)

512 methods.objsurf

S3 method for class 'objsurf'
contour(x, ...)
S3 method for class 'objsurf'
persp(x, ...)
S3 method for class 'objsurf'
summary(object, ...)
S3 method for class 'summary.objsurf'
print(x, ...)

Arguments

x,object Object of class "objsurf" representing an objective function surface.

... Additional arguments passed to plot methods.

Details

These are methods for the generic functions print, plot, image, contour, persp and summary for
the class "objsurf".

Value

For print.objsurf, print.summary.objsurf, plot.objsurf and image.objsurf the value is
NULL.

For contour.objsurf and persp.objsurf the value is described in the help for contour.default
and persp.default respectively.

For summary.objsurf the result is a list, of class summary.objsurf, containing summary infor-
mation. This list is printed in sensible format by print.summary.objsurf.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

objsurf

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)
os
summary(os)
plot(os)
contour(os, add=TRUE)
persp(os)

methods.rho2hat 513

methods.rho2hat Methods for Intensity Functions of Two Spatial Covariates

Description

These are methods for the class "rho2hat".

Usage

S3 method for class 'rho2hat'
plot(x, ..., do.points=FALSE)

S3 method for class 'rho2hat'
print(x, ...)

S3 method for class 'rho2hat'
predict(object, ..., relative=FALSE)

Arguments

x,object An object of class "rho2hat".

... Arguments passed to other methods.

do.points Logical value indicating whether to plot the observed values of the covariates at
the data points.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

Details

These functions are methods for the generic commands print, predict and plot for the class
"rho2hat".

An object of class "rho2hat" is an estimate of the intensity of a point process, as a function of two
given spatial covariates. See rho2hat.

The method plot.rho2hat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate. In this plot the two axes represent possible values
of the two covariates.

The method predict.rho2hat computes a pixel image of the intensity ρ(Z1(u), Z2(u)) at each
spatial location u, where Z1(u) and Z2(u) are the two spatial covariates.

Value

For predict.rho2hat the value is a pixel image (object of class "im"). For other functions, the
value is NULL.

514 methods.rhohat

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rho2hat

Examples

r2 <- with(bei.extra, rho2hat(bei, elev, grad))
r2
plot(r2)
plot(predict(r2))

methods.rhohat Methods for Intensity Functions of Spatial Covariate

Description

These are methods for the class "rhohat".

Usage

S3 method for class 'rhohat'
print(x, ...)

S3 method for class 'rhohat'
plot(x, ..., do.rug=TRUE)

S3 method for class 'rhohat'
predict(object, ..., relative=FALSE,

what=c("rho", "lo", "hi", "se"))

S3 method for class 'rhohat'
simulate(object, nsim=1, ..., drop=TRUE)

Arguments

x,object An object of class "rhohat" representing a smoothed estimate of the intensity
function of a point process.

... Arguments passed to other methods.

do.rug Logical value indicating whether to plot the observed values of the covariate as
a rug plot along the horizontal axis.

relative Logical value indicating whether to compute the estimated point process inten-
sity (relative=FALSE) or the relative risk (relative=TRUE) in the case of a
relative risk estimate.

methods.rhohat 515

nsim Number of simulations to be generated.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
a point pattern is returned. If drop=FALSE, a list of length 1 containing a point
pattern is returned.

what Optional character string (partially matched) specifying which value should be
calculated: either the function estimate (what="rho", the default), the lower or
upper end of the confidence interval (what="lo" or what="hi") or the standard
error (what="se").

Details

These functions are methods for the generic commands print, plot, predict and simulate for
the class "rhohat".

An object of class "rhohat" is an estimate of the intensity of a point process, as a function of a
given spatial covariate. See rhohat.

The method plot.rhohat displays the estimated function ρ using plot.fv, and optionally adds a
rug plot of the observed values of the covariate.

The method predict.rhohat computes a pixel image of the intensity ρ(Z(u)) at each spatial
location u, where Z is the spatial covariate.

The method simulate.rhohat invokes predict.rhohat to determine the predicted intensity, and
then simulates a Poisson point process with this intensity.

Value

For predict.rhohat the value is a pixel image (object of class "im" or "linim"). For simulate.rhohat
the value is a point pattern (object of class "ppp" or "lpp"). For other functions, the value is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rhohat

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, function(x,y){x})
rho
plot(rho)
Y <- predict(rho)
plot(Y)
plot(simulate(rho), add=TRUE)
#
fit <- ppm(X, ~x)
rho <- rhohat(fit, "y")
opa <- par(mfrow=c(1,2))
plot(predict(rho))

516 methods.slrm

plot(predict(rho, relative=TRUE))
par(opa)
plot(predict(rho, what="se"))

methods.slrm Methods for Spatial Logistic Regression Models

Description

These are methods for the class "slrm".

Usage

S3 method for class 'slrm'
formula(x, ...)
S3 method for class 'slrm'
print(x, ...)
S3 method for class 'slrm'
summary(object, ...)
S3 method for class 'slrm'
terms(x, ...)
S3 method for class 'slrm'
labels(object, ...)
S3 method for class 'slrm'
deviance(object, ...)
S3 method for class 'slrm'
update(object, ..., evaluate = TRUE, env = parent.frame())

Arguments

x,object An object of class "slrm", representing a fitted spatial logistic regression model.

... Arguments passed to other methods.

evaluate Logical value. If TRUE, evaluate the updated call to slrm, so that the model is
refitted; if FALSE, simply return the updated call.

env Optional environment in which the model should be updated.

Details

These functions are methods for the generic commands formula, update, print, summary, terms,
labels and deviance for the class "slrm".

An object of class "slrm" represents a fitted spatial logistic regression model. It is obtained from
slrm.

Value

See the help files for the corresponding generic functions.

methods.ssf 517

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

slrm, plot.slrm, predict.slrm, simulate.slrm, vcov.slrm, coef.slrm.

Examples

fit <- slrm(redwood ~ x)
coef(fit)
formula(fit)
tf <- terms(fit)
labels(fit)
deviance(fit)

methods.ssf Methods for Spatially Sampled Functions

Description

Methods for various generic commands, for the class "ssf" of spatially sampled functions.

Usage

S3 method for class 'ssf'
marks(x, ...)

S3 replacement method for class 'ssf'
marks(x, ...) <- value

S3 method for class 'ssf'
unmark(X)

S3 method for class 'ssf'
as.im(X, ...)

S3 method for class 'ssf'
as.function(x, ...)

S3 method for class 'ssf'
as.ppp(X, ...)

S3 method for class 'ssf'
print(x, ..., brief=FALSE)

S3 method for class 'ssf'

518 methods.ssf

summary(object, ...)

S3 method for class 'ssf'
range(x, ...)

S3 method for class 'ssf'
min(x, ...)

S3 method for class 'ssf'
max(x, ...)

S3 method for class 'ssf'
integral(f, domain=NULL, ..., weights=attr(f, "weights"))

Arguments

x,X,f,object A spatially sampled function (object of class "ssf").
... Arguments passed to the default method.
brief Logical value controlling the amount of detail printed.
value Matrix of replacement values for the function.
domain Optional. Domain of integration. An object of class"owin" or "tess".
weights Optional. Numeric vector of quadrature weights associated with the sample

points.

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

The commands documented here are methods for this class, for the generic commands marks,
marks<-, unmark, as.im, as.function, as.ppp, print, summary, range, min, max and integral.

Value

marks returns a matrix.

marks(x) <- value returns an object of class "ssf".

as.owin returns a window (object of class "owin").

as.ppp and unmark return a point pattern (object of class "ppp").

as.function returns a function(x,y) of class "funxy".

print returns NULL.

summary returns an object of class "summary.ssf" which has a print method.

range returns a numeric vector of length 2. min and max return a single numeric value.

integral returns a numeric or complex value, vector, or matrix. integral(f) returns a numeric or
complex value (if f had numeric or complex values) or a numeric vector (if f had vector values). If
domain is a tessellation then integral(f, domain) returns a numeric or complex vector with one
entry for each tile (if f had numeric or complex values) or a numeric matrix with one row for each
tile (if f had vector values).

methods.zclustermodel 519

Author(s)

Adrian Baddeley

See Also

ssf

Examples

g <- distfun(cells[1:4])
X <- rsyst(Window(cells), 10)
f <- ssf(X, g(X))
f
summary(f)
marks(f)
as.ppp(f)
as.im(f)
integral(f)
integral(f, quadrats(Window(f), 3))

methods.zclustermodel Methods for Cluster Models

Description

Methods for the experimental class of cluster models.

Usage

S3 method for class 'zclustermodel'
pcfmodel(model, ...)

S3 method for class 'zclustermodel'
Kmodel(model, ...)

S3 method for class 'zclustermodel'
intensity(X, ...)

S3 method for class 'zclustermodel'
predict(object, ...,

locations, type = "intensity", ngrid = NULL)

S3 method for class 'zclustermodel'
print(x, ...)

S3 method for class 'zclustermodel'
clusterradius(model,...,thresh=NULL, precision=FALSE)

520 methods.zclustermodel

S3 method for class 'zclustermodel'
reach(x, ..., epsilon)

Arguments

model,object,x,X

Object of class "zclustermodel".

... Arguments passed to other methods.

locations Locations where prediction should be performed. A window or a point pattern.

type Currently must equal "intensity".

ngrid Pixel grid dimensions for prediction, if locations is a rectangle or polygon.

thresh,epsilon Tolerance thresholds

precision Logical value stipulating whether the precision should also be returned.

Details

Experimental.

Value

Same as for other methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zclustermodel

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)
m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7)
m
m2
g <- pcfmodel(m)
g(0.2)
g2 <- pcfmodel(m2)
g2(1)
Z <- predict(m, locations=square(2))
Z2 <- predict(m2, locations=square(1))
varcount(m, square(1))
varcount(m2, square(1))

methods.zgibbsmodel 521

methods.zgibbsmodel Methods for Gibbs Models

Description

Methods for the experimental class of Gibbs models

Usage

S3 method for class 'zgibbsmodel'
as.interact(object)
S3 method for class 'zgibbsmodel'
as.isf(object)
S3 method for class 'zgibbsmodel'
interactionorder(object)
S3 method for class 'zgibbsmodel'
is.poisson(x)
S3 method for class 'zgibbsmodel'
is.stationary(x)
S3 method for class 'zgibbsmodel'
print(x, ...)
S3 method for class 'zgibbsmodel'
intensity(X, ..., approx=c("Poisson", "DPP"))

Arguments

object,x,X Object of class "zgibbsmodel".

... Additional arguments.

approx Character string (partially matched) specifying the type of approximation.

Details

Experimental.

Value

Same as for other methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

zgibbsmodel

522 mincontrast

Examples

m <- zgibbsmodel(10, Strauss(0.1), -0.5)
m
is.poisson(m)
is.stationary(m)
interactionorder(m)
as.interact(m)
as.isf(m)
intensity(m)
intensity(m, approx="D")

mincontrast Method of Minimum Contrast

Description

A general low-level algorithm for fitting theoretical point process models to point pattern data by
the Method of Minimum Contrast.

Usage

mincontrast(observed, theoretical, startpar, ...,
ctrl=list(q = 1/4, p = 2, rmin=NULL, rmax=NULL),
fvlab=list(label=NULL, desc="minimum contrast fit"),
explain=list(dataname=NULL, modelname=NULL, fname=NULL),
action.bad.values=c("warn", "stop", "silent"),
control=list(), stabilize=TRUE,
pspace=NULL)

Arguments

observed Summary statistic, computed for the data. An object of class "fv".

theoretical An R language function that calculates the theoretical expected value of the
summary statistic, given the model parameters. See Details.

startpar Vector of initial values of the parameters of the point process model (passed to
theoretical).

... Additional arguments passed to the function theoretical and to the optimisa-
tion algorithm optim.

ctrl Optional. List of arguments controlling the optimisation. See Details.

fvlab Optional. List containing some labels for the return value. See Details.

explain Optional. List containing strings that give a human-readable description of the
model, the data and the summary statistic.

action.bad.values

String (partially matched) specifying what to do if values of the summary statis-
tic are NA, NaN or infinite. See Details.

mincontrast 523

control Optional. Argument passed to optim. A list of parameters which control the
behaviour of the optimization algorithm.

stabilize Logical value specifying whether to numerically stabilize the optimization algo-
rithm, by specifying suitable default values of control$fnscale and control$parscale.

pspace For internal use by the package only.

Details

This function is a general algorithm for fitting point process models by the Method of Minimum
Contrast. If you want to fit the Thomas process, see thomas.estK. If you want to fit a log-Gaussian
Cox process, see lgcp.estK. If you want to fit the Matérn cluster process, see matclust.estK.

The Method of Minimum Contrast (Pfanzagl, 1969; Diggle and Gratton, 1984) is a general tech-
nique for fitting a point process model to point pattern data. First a summary function (typically the
K function) is computed from the data point pattern. Second, the theoretical expected value of this
summary statistic under the point process model is derived (if possible, as an algebraic expression
involving the parameters of the model) or estimated from simulations of the model. Then the model
is fitted by finding the optimal parameter values for the model to give the closest match between the
theoretical and empirical curves.

The argument observed should be an object of class "fv" (see fv.object) containing the values
of a summary statistic computed from the data point pattern. Usually this is the function K(r)
computed by Kest or one of its relatives.

The argument theoretical should be a user-supplied function that computes the theoretical ex-
pected value of the summary statistic. It must have an argument named par that will be the vector
of parameter values for the model (the length and format of this vector are determined by the start-
ing values in startpar). The function theoretical should also expect a second argument (the
first argument other than par) containing values of the distance r for which the theoretical value of
the summary statistic K(r) should be computed. The value returned by theoretical should be a
vector of the same length as the given vector of r values.

The argument ctrl determines the contrast criterion (the objective function that will be minimised).
The algorithm minimises the criterion

D(θ) =

∫ rmax

rmin

|F̂ (r)q − Fθ(r)q|p dr

where θ is the vector of parameters of the model, F̂ (r) is the observed value of the summary statistic
computed from the data, Fθ(r) is the theoretical expected value of the summary statistic, and p, q
are two exponents. The default is q = 1/4, p=2 so that the contrast criterion is the integrated squared
difference between the fourth roots of the two functions (Waagepetersen, 2007).

The argument action.bad.values specifies what to do if some of the values of the summary
statistic are NA, NaN or infinite. If action.bad.values="stop", or if all of the values are bad,
then a fatal error occurs. Otherwise, the domain of the summary function is shortened to avoid
the bad values. The shortened domain is the longest interval on which the function values are fi-
nite (provided this interval is at least half the length of the original domain). A warning is issued if
action.bad.values="warn" (the default) and no warning is issued if action.bad.values="silent".

The other arguments just make things print nicely. The argument fvlab contains labels for the com-
ponent fit of the return value. The argument explain contains human-readable strings describing
the data, the model and the summary statistic.

524 miplot

The "..." argument of mincontrast can be used to pass extra arguments to the function theoretical
and/or to the optimisation function optim. In this case, the function theoretical should also have
a "..." argument and should ignore it (so that it ignores arguments intended for optim).

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

opt The object returned from the optimizer optim.

crtl List of parameters determining the contrast objective.

info List of explanatory strings.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk>, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Pfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimates. Metrika
14, 249–276.

Waagepetersen, R. (2007). An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, thomas.estK,

miplot Morisita Index Plot

Description

Displays the Morisita Index Plot of a spatial point pattern.

Usage

miplot(X, ...)

miplot 525

Arguments

X A point pattern (object of class "ppp") or something acceptable to as.ppp.

... Optional arguments to control the appearance of the plot.

Details

Morisita (1959) defined an index of spatial aggregation for a spatial point pattern based on quadrat
counts. The spatial domain of the point pattern is first divided into Q subsets (quadrats) of equal
size and shape. The numbers of points falling in each quadrat are counted. Then the Morisita Index
is computed as

MI = Q

∑Q
i=1 ni(ni − 1)

N(N − 1)

where ni is the number of points falling in the i-th quadrat, and N is the total number of points. If
the pattern is completely random, MI should be approximately equal to 1. Values of MI greater than
1 suggest clustering.

The Morisita Index plot is a plot of the Morisita Index MI against the linear dimension of the
quadrats. The point pattern dataset is divided into 2 × 2 quadrats, then 3 × 3 quadrats, etc, and
the Morisita Index is computed each time. This plot is an attempt to discern different scales of
dependence in the point pattern data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

M. Morisita (1959) Measuring of the dispersion of individuals and analysis of the distributional
patterns. Memoir of the Faculty of Science, Kyushu University, Series E: Biology. 2: 215–235.

See Also

quadratcount

Examples

data(longleaf)
miplot(longleaf)
opa <- par(mfrow=c(2,3))
data(cells)
data(japanesepines)
data(redwood)
plot(cells)
plot(japanesepines)

526 model.depends

plot(redwood)
miplot(cells)
miplot(japanesepines)
miplot(redwood)
par(opa)

model.depends Identify Covariates Involved in each Model Term

Description

Given a fitted model (of any kind), identify which of the covariates is involved in each term of the
model.

Usage

model.depends(object)
model.is.additive(object)
model.covariates(object, fitted=TRUE, offset=TRUE)
has.offset.term(object)
has.offset(object)

Arguments

object A fitted model of any kind.

fitted,offset Logical values determining which type of covariates to include.

Details

The object can be a fitted model of any kind, including models of the classes lm, glm and ppm.

To be precise, object must belong to a class for which there are methods for formula, terms and
model.matrix.

The command model.depends determines the relationship between the original covariates (the data
supplied when object was fitted) and the canonical covariates (the columns of the design matrix).
It returns a logical matrix, with one row for each canonical covariate, and one column for each of
the original covariates, with the i,j entry equal to TRUE if the ith canonical covariate depends on
the jth original covariate.

If the model formula of object includes offset terms (see offset), then the return value of model.depends
also has an attribute "offset". This is a logical value or matrix with one row for each offset term
and one column for each of the original covariates, with the i,j entry equal to TRUE if the ith offset
term depends on the jth original covariate.

The command model.covariates returns a character vector containing the names of all (original)
covariates that were actually used to fit the model. By default, this includes all covariates that appear
in the model formula, including offset terms as well as canonical covariate terms. To omit the offset
terms, set offset=FALSE. To omit the canonical covariate terms, set fitted=FALSE.

model.frame.ppm 527

The command model.is.additive determines whether the model is additive, in the sense that
there is no canonical covariate that depends on two or more original covariates. It returns a logical
value.

The command has.offset.term is a faster way to determine whether the model formula includes
an offset term.

The functions model.depends and has.offset.term only detect offset terms which are present
in the model formula. They do not detect numerical offsets in the model object, that were inserted
using the offset argument in lm, glm etc. To detect the presence of offsets of both kinds, use
has.offset.

Value

A logical value or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, model.matrix

Examples

x <- 1:10
y <- 3*x + 2
z <- rep(c(-1,1), 5)
fit <- lm(y ~ poly(x,2) + sin(z))
model.depends(fit)
model.covariates(fit)
model.is.additive(fit)

fitoff1 <- lm(y ~ x + offset(z))
fitoff2 <- lm(y ~ x, offset=z)
has.offset.term(fitoff1)
has.offset(fitoff1)
has.offset.term(fitoff2)
has.offset(fitoff2)

model.frame.ppm Extract the Variables in a Point Process Model

Description

Given a fitted point process model, this function returns a data frame containing all the variables
needed to fit the model using the Berman-Turner device.

528 model.frame.ppm

Usage

S3 method for class 'ppm'
model.frame(formula, ...)

S3 method for class 'kppm'
model.frame(formula, ...)

S3 method for class 'dppm'
model.frame(formula, ...)

S3 method for class 'slrm'
model.frame(formula, ...)

Arguments

formula A fitted point process model. An object of class "ppm", "kppm", "slrm", or
"dppm".

... Additional arguments passed to model.frame.glm.

Details

The function model.frame is generic. These functions are method for model.frame for fitted point
process models (objects of class "ppm", "kppm", "slrm", or "dppm"). The first argument should be
a fitted point process model; it has to be named formula for consistency with the generic function.

The result is a data frame containing all the variables used in fitting the model. The data frame has
one row for each quadrature point used in fitting the model. The quadrature scheme can be extracted
using quad.ppm.

Value

A data.frame containing all the variables used in the fitted model, plus additional variables speci-
fied in It has an additional attribute "terms" containing information about the model formula.
For details see model.frame.glm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

ppm, kppm, dppm, slrm, model.frame, model.matrix.ppm

model.images 529

Examples

fit <- ppm(cells ~ x)
mf <- model.frame(fit)
kfit <- kppm(redwood ~ x, "Thomas")
kmf <- model.frame(kfit)
sfit <- slrm(cells ~ x)
smf <- model.frame(sfit)

model.images Compute Images of Constructed Covariates

Description

For a point process model fitted to spatial point pattern data, this function computes pixel images of
the covariates in the design matrix.

Usage

model.images(object, ...)

S3 method for class 'ppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'kppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'dppm'
model.images(object, W = as.owin(object), ...)

S3 method for class 'slrm'
model.images(object, ...)

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "slrm"
or "dppm".

W A window (object of class "owin") in which the images should be computed.
Defaults to the window in which the model was fitted.

... Other arguments (such as na.action) passed to model.matrix.lm.

Details

This command is similar to model.matrix.ppm except that it computes pixel images of the covari-
ates, instead of computing the covariate values at certain points only.

530 model.images

The object must be a fitted spatial point process model object of class "ppm" (produced by the
model-fitting function ppm) or class "kppm" (produced by the fitting function kppm) or class "dppm"
(produced by the fitting function dppm) or class "slrm" (produced by slrm).

The spatial covariates required by the model-fitting procedure are computed at every pixel location
in the window W. For slrm objects, the covariates are computed on the pixels that were used to fit
the model.

Note that the spatial covariates computed here are not necessarily the original covariates that were
supplied when fitting the model. Rather, they are the canonical covariates, the covariates that appear
in the loglinear representation of the (conditional) intensity and in the columns of the design ma-
trix. For example, they might include dummy or indicator variables for different levels of a factor,
depending on the contrasts that are in force.

The pixel resolution is determined by W if W is a mask (that is W$type = "mask"). Otherwise, the
pixel resolution is determined by spatstat.options.

The format of the result depends on whether the original point pattern data were marked or un-
marked.

• If the original dataset was unmarked, the result is a named list of pixel images (objects of
class "im") containing the values of the spatial covariates. The names of the list elements
are the names of the covariates determined by model.matrix.lm. The result is also of class
"solist" so that it can be plotted immediately.

• If the original dataset was a multitype point pattern, the result is a hyperframe with one
column for each possible type of points. Each column is a named list of pixel images (objects
of class "im") containing the values of the spatial covariates. The row names of the hyperframe
are the names of the covariates determined by model.matrix.lm.

Value

A list (of class "solist") or array (of class "hyperframe") containing pixel images (objects of
class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix.ppm, model.matrix, ppm, ppm.object, dppm, kppm, slrm, im, im.object, plot.solist,
spatstat.options

Examples

fit <- ppm(cells ~ x)
model.images(fit)
B <- owin(c(0.2, 0.4), c(0.3, 0.8))
model.images(fit, B)
fit2 <- ppm(cells ~ cut(x,3))
model.images(fit2)
fit3 <- slrm(japanesepines ~ x)

model.matrix.mppm 531

model.images(fit3)
fit4 <- ppm(amacrine ~ marks + x)
model.images(fit4)

model.matrix.mppm Extract Design Matrix of Point Process Model for Several Point Pat-
terns

Description

Given a point process model fitted to a list of point patterns, this function extracts the design matrix.

Usage

S3 method for class 'mppm'
model.matrix(object, ..., keepNA=TRUE, separate=FALSE)

Arguments

object A point process model fitted to several point patterns. An object of class "mppm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

separate Logical value indicating whether to split the model matrix into sub-matrices
corresponding to each of the original point patterns.

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a point process model fitted to several point patterns.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

The result is a matrix with one column for every constructed covariate in the model, and one row
for every quadrature point.

If separate=TRUE this matrix will be split into sub-matrices corresponding to the original point
patterns, and the result will be a list containing these matrices.

Value

A matrix (or list of matrices). Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

532 model.matrix.ppm

See Also

model.matrix, mppm.

Examples

fit <- mppm(Points ~ Image + x, demohyper)
head(model.matrix(fit))
matrix with three columns: '(Intercept)', 'x' and 'Image'

model.matrix.ppm Extract Design Matrix from Point Process Model

Description

Given a point process model that has been fitted to spatial point pattern data, this function extracts
the design matrix of the model.

Usage

S3 method for class 'ppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'kppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'dppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE)

S3 method for class 'ippm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
Q=NULL, keepNA=TRUE,

irregular=FALSE)

model.matrix.ppm 533

Arguments

object The fitted point process model. An object of class "ppm" or "kppm" or "dppm"
or "ippm".

data A model frame, containing the data required for the Berman-Turner device.

Q A point pattern (class "ppp") or quadrature scheme (class "quad") specifying
new locations where the covariates should be computed.

keepNA Logical. Determines whether rows containing NA values will be deleted or
retained.

... Other arguments (such as na.action) passed to model.matrix.lm.

irregular Logical value indicating whether to include the irregular score components.

Details

These commands are methods for the generic function model.matrix. They extract the design
matrix of a spatial point process model (class "ppm" or "kppm" or "dppm").

More precisely, this command extracts the design matrix of the generalised linear model associated
with a spatial point process model.

The object must be a fitted point process model (object of class "ppm" or "kppm" or "dppm") fitted
to spatial point pattern data. Such objects are produced by the model-fitting functions ppm, kppm,
and dppm.

The methods model.matrix.ppm, model.matrix.kppm, and model.matrix.dppm extract the model
matrix for the GLM.

The result is a matrix, with one row for every quadrature point in the fitting procedure, and one
column for every constructed covariate in the design matrix.

If there are NA values in the covariates, the argument keepNA determines whether to retain or delete
the corresponding rows of the model matrix. The default keepNA=TRUE is to retain them. Note that
this differs from the default behaviour of many other methods for model.matrix, which typically
delete rows containing NA.

The quadrature points themselves can be extracted using quad.ppm.

Value

A matrix. Columns of the matrix are canonical covariates in the model. Rows of the matrix corre-
spond to quadrature points in the fitting procedure (provided keepNA=TRUE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, model.images, ppm, kppm, dppm, ippm, ppm.object, quad.ppm, residuals.ppm

534 model.matrix.slrm

Examples

fit <- ppm(cells ~ x)
head(model.matrix(fit))
model.matrix(fit, Q=runifpoint(5))
kfit <- kppm(redwood ~ x, "Thomas")
m <- model.matrix(kfit)

model.matrix.slrm Extract Design Matrix from Spatial Logistic Regression Model

Description

This function extracts the design matrix of a spatial logistic regression model.

Usage

S3 method for class 'slrm'
model.matrix(object, ..., keepNA=TRUE)

Arguments

object A fitted spatial logistic regression model. An object of class "slrm".

... Other arguments (such as na.action) passed to model.matrix.lm.

keepNA Logical. Determines whether rows containing NA values will be deleted or re-
tained.

Details

This command is a method for the generic function model.matrix. It extracts the design matrix of
a spatial logistic regression.

The object must be a fitted spatial logistic regression (object of class "slrm"). Such objects are
produced by the model-fitting function slrm.

Usually the result is a matrix with one column for every constructed covariate in the model, and one
row for every pixel in the grid used to fit the model.

If object was fitted using split pixels (by calling slrm using the argument splitby) then the matrix
has one row for every pixel or half-pixel.

Value

A matrix. Columns of the matrix are canonical covariates in the model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

mppm 535

See Also

model.matrix, model.images, slrm.

Examples

fit <- slrm(japanesepines ~x)
head(model.matrix(fit))
matrix with two columns: '(Intercept)' and 'x'

mppm Fit Point Process Model to Several Point Patterns

Description

Fits a Gibbs point process model to several point patterns simultaneously.

Usage

mppm(formula, data, interaction=Poisson(), ...,
iformula=NULL,
random=NULL,
weights=NULL,
use.gam = FALSE,
reltol.pql=1e-3,
gcontrol=list())

Arguments

formula A formula describing the systematic part of the model. Variables in the formula
are names of columns in data.

data A hyperframe (object of class "hyperframe", see hyperframe) containing the
point pattern responses and the explanatory variables.

interaction Interpoint interaction(s) appearing in the model. Either an object of class "interact"
describing the point process interaction structure, or a hyperframe (with the
same number of rows as data) whose entries are objects of class "interact".

... Arguments passed to ppm controlling the fitting procedure.

iformula Optional. A formula (with no left hand side) describing the interaction to be
applied to each case. Each variable name in the formula should either be the
name of a column in the hyperframe interaction, or the name of a column in
the hyperframe data that is a vector or factor.

random Optional. A formula (with no left hand side) describing a random effect. Vari-
able names in the formula may be any of the column names of data and interaction.
The formula must be recognisable to lme.

weights Optional. Numeric vector of case weights for each row of data.

use.gam Logical flag indicating whether to fit the model using gam or glm.

536 mppm

reltol.pql Relative tolerance for successive steps in the penalised quasi-likelihood algo-
rithm, used when the model includes random effects. The algorithm terminates
when the root mean square of the relative change in coefficients is less than
reltol.pql.

gcontrol List of arguments to control the fitting algorithm. Arguments are passed to
glm.control or gam.control or lmeControl depending on the kind of model
being fitted. If the model has random effects, the arguments are passed to
lmeControl. Otherwise, if use.gam=TRUE the arguments are passed to gam.control,
and if use.gam=FALSE (the default) they are passed to glm.control.

Details

This function fits a common point process model to a dataset containing several different point
patterns.

It extends the capabilities of the function ppm to deal with data such as

• replicated observations of spatial point patterns

• two groups of spatial point patterns

• a designed experiment in which the response from each unit is a point pattern.

The syntax of this function is similar to that of standard R model-fitting functions like lm and glm.
The first argument formula is an R formula describing the systematic part of the model. The second
argument data contains the responses and the explanatory variables. Other arguments determine
the stochastic structure of the model.

Schematically, the data are regarded as the results of a designed experiment involving n experi-
mental units. Each unit has a ‘response’, and optionally some ‘explanatory variables’ (covariates)
describing the experimental conditions for that unit. In this context, the response from each unit is
a point pattern. The value of a particular covariate for each unit can be either a single value (nu-
merical, logical or factor), or a spatial covariate. A ‘spatial’ covariate is a quantity that depends on
spatial location, for example, the soil acidity or altitude at each location. For the purposes of mppm,
a spatial covariate must be stored as a pixel image (object of class "im") which gives the values of
the covariate at a fine grid of locations.

The argument data is a hyperframe (a generalisation of a data frame, see hyperframe). This is like
a data frame except that the entries can be objects of any class. The hyperframe has one row for
each experimental unit, and one column for each variable (response or explanatory variable).

The formula should be an R formula. The left hand side of formula determines the ‘response’
variable. This should be a single name, which should correspond to a column in data.

The right hand side of formula determines the spatial trend of the model. It specifies the linear
predictor, and effectively represents the logarithm of the spatial trend. Variables in the formula
must be the names of columns of data, or one of the reserved names

x,y Cartesian coordinates of location

marks Mark attached to point

id which is a factor representing the serial number (1 to n) of the point pattern, i.e. the row number
in the data hyperframe.

mppm 537

The column of responses in data must consist of point patterns (objects of class "ppp"). The
individual point pattern responses can be defined in different spatial windows. If some of the point
patterns are marked, then they must all be marked, and must have the same type of marks.

The scope of models that can be fitted to each pattern is the same as the scope of ppm, that is,
Gibbs point processes with interaction terms that belong to a specified list, including for example
the Poisson process, Strauss process, Geyer’s saturation model, and piecewise constant pairwise
interaction models. Additionally, it is possible to include random effects as explained in the section
on Random Effects below.

The stochastic part of the model is determined by the arguments interaction and (optionally)
iformula.

• In the simplest case, interaction is an object of class "interact", determining the inter-
point interaction structure of the point process model, for all experimental units.

• Alternatively, interaction may be a hyperframe, whose entries are objects of class "interact".
It should have the same number of rows as data.

– If interaction consists of only one column, then the entry in row i is taken to be the
interpoint interaction for the ith experimental unit (corresponding to the ith row of data).

– If interaction has more than one column, then the argument iformula is also required.
Each row of interaction determines several interpoint interaction structures that might
be applied to the corresponding row of data. The choice of interaction is determined
by iformula; this should be an R formula, without a left hand side. For example if
interaction has two columns called A and B then iformula = ~B indicates that the in-
terpoint interactions are taken from the second column.

Variables in iformula typically refer to column names of interaction. They can also be names of
columns in data, but only for columns of numeric, logical or factor values. For example iformula
= ~B * group (where group is a column of data that contains a factor) causes the model with inter-
point interaction B to be fitted with different interaction parameters for each level of group.

Value

An object of class "mppm" representing the fitted model.

There are methods for print, summary, coef, AIC, anova, fitted, fixef, logLik, plot, predict,
ranef, residuals, summary, terms and vcov for this class.

The default methods for update and formula also work on this class.

Random Effects

It is also possible to include random effects in the trend term. The argument random is a formula,
with no left-hand side, that specifies the structure of the random effects. The formula should be
recognisable to lme (see the description of the argument random for lme).

The names in the formula random may be any of the covariates supplied by data. Additionally the
formula may involve the name id, which is a factor representing the serial number (1 to n) of the
point pattern in the list X.

538 msr

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

Bell, M. and Grunwald, G. (2004) Mixed models for the analysis of replicated spatial point patterns.
Biostatistics 5, 633–648.

See Also

ppm, print.mppm, summary.mppm, coef.mppm,

Examples

Waterstriders data
H <- hyperframe(Y = waterstriders)
mppm(Y ~ 1, data=H)
mppm(Y ~ 1, data=H, Strauss(7))
mppm(Y ~ id, data=H)
mppm(Y ~ x, data=H)

Synthetic data from known model
n <- 10
H <- hyperframe(V=1:n,

U=runif(n, min=-1, max=1),
M=factor(letters[1 + (1:n) %% 3]))

H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

msr Signed or Vector-Valued Measure

Description

Defines an object representing a signed measure or vector-valued measure on a spatial domain.

msr 539

Usage

msr(qscheme, discrete, density, check=TRUE)

Arguments

qscheme A quadrature scheme (object of class "quad" usually extracted from a fitted
point process model).

discrete Vector or matrix containing the values (masses) of the discrete component of the
measure, for each of the data points in qscheme.

density Vector or matrix containing values of the density of the diffuse component of
the measure, for each of the quadrature points in qscheme.

check Logical. Whether to check validity of the arguments.

Details

This function creates an object that represents a signed or vector valued measure on the two-
dimensional plane. It is not normally called directly by the user.

A signed measure is a classical mathematical object (Diestel and Uhl, 1977) which can be visualised
as a collection of electric charges, positive and/or negative, spread over the plane. Electric charges
may be concentrated at specific points (atoms), or spread diffusely over a region.

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package.

Spatial residuals for point process models (Baddeley et al, 2005, 2008) take the form of a real-valued
or vector-valued measure. The function residuals.ppm returns an object of class "msr" represent-
ing the residual measure. Various other diagnostic tools such as dfbetas.ppm and dffit.ppm also
return an object of class "msr".

The function msr would not normally be called directly by the user. It is the low-level creator
function that makes an object of class "msr" from raw data.

The first argument qscheme is a quadrature scheme (object of class "quad"). It is typically cre-
ated by quadscheme or extracted from a fitted point process model using quad.ppm. A quadrature
scheme contains both data points and dummy points. The data points of qscheme are used as the
locations of the atoms of the measure. All quadrature points (i.e. both data points and dummy
points) of qscheme are used as sampling points for the density of the continuous component of the
measure.

The argument discrete gives the values of the atomic component of the measure for each data
point in qscheme. It should be either a numeric vector with one entry for each data point, or a
numeric matrix with one row for each data point.

The argument density gives the values of the density of the diffuse component of the measure, at
each quadrature point in qscheme. It should be either a numeric vector with one entry for each
quadrature point, or a numeric matrix with one row for each quadrature point.

If both discrete and density are vectors (or one-column matrices) then the result is a signed (real-
valued) measure. Otherwise, the result is a vector-valued measure, with the dimension of the vector
space being determined by the number of columns in the matrices discrete and/or density. (If
one of these is a k-column matrix and the other is a 1-column matrix, then the latter is replicated to
k columns).

540 msr

The class "msr" has methods for print, plot and [. There is also a function Smooth.msr for
smoothing a measure.

Value

An object of class "msr".

Guide to using measures

Objects of class "msr", representing measures, are returned by the functions residuals.ppm,
dfbetas.ppm, dffit.ppm and possibly by other functions.

There are methods for printing and plotting a measure, along with many other operations, which
can be listed by typing methods(class="msr").

The print and summary methods report basic information about a measure, such as the total value
of the measure, and the spatial domain on which it is defined.

The plot method displays the measure. It is documented separately in plot.msr.

A measure can be smoothed using Smooth.msr, yielding a pixel image which is sometimes easier
to interpret than the plot of the measure itself.

The subset operator [can be used to restrict the measure to a subregion of space, or to extract one
of the scalar components of a vector-valued measure. It is documented separately in [.msr.

The total value of a measure, or the value on a subregion, can be obtained using integral.msr. The
value of a measure m on a subregion B can be obtained by integral(m, domain=B) or integral(m[B]).
The values of a measure m on each tile of a tessellation A can be obtained by integral(m, domain=A).

Some mathematical operations on measures are supported, such as multiplying a measure by a
single number, or adding two measures.

Measures can be separated into components in different ways using as.layered.msr, unstack.msr
and split.msr.

Internal components of the data structure of an "msr" object can be extracted using with.msr.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Diestel, J. and Uhl, J.J. Jr (1977) Vector measures. Providence, RI, USA: American Mathematical
Society.

Halmos, P.R. (1950) Measure Theory. Van Nostrand.

See Also

plot.msr, Smooth.msr, [.msr, with.msr, split.msr, Ops.msr, measureVariation, measureContinuous.

MultiHard 541

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)

rp <- residuals(fit, type="pearson")
rp

rs <- residuals(fit, type="score")
rs
colnames(rs)

An equivalent way to construct the Pearson residual measure by hand
Q <- quad.ppm(fit)
lambda <- fitted(fit)
slam <- sqrt(lambda)
Z <- is.data(Q)
m <- msr(Q, discrete=1/slam[Z], density = -slam)
m

MultiHard The Multitype Hard Core Point Process Model

Description

Creates an instance of the multitype hard core point process model which can then be fitted to point
pattern data.

Usage

MultiHard(hradii, types=NULL)

Arguments

hradii Matrix of hard core radii
types Optional; vector of all possible types (i.e. the possible levels of the marks vari-

able in the data)

Details

This is a multitype version of the hard core process. A pair of points of types i and j must not lie
closer than hij units apart.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix hradii.

The matrix hradii must be symmetric, with entries which are either positive numbers or NA. A
value of NA indicates that no distance constraint should be applied for this combination of types.

Note that only the hardcore radii are specified in MultiHard. The canonical parameters log(βj) are
estimated by ppm(), not fixed in MultiHard().

542 MultiStrauss

Value

An object of class "interact" describing the interpoint interaction structure of the multitype hard
core process with hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype hard core model correctly to a point pattern X, this pattern
must be marked, with markformat equal to vector and the mark vector marks(X) must be a factor.
If the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiHard(types=NULL,
hradii). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiStraussHard, Strauss.

See ragsMultiHard and rmh for simulation.

Examples

h <- matrix(c(1,2,2,1), nrow=2,ncol=2)

prints a sensible description of itself
MultiHard(h)

Fit the stationary multitype hardcore process to `amacrine'
with hard core operating only between cells of the same type.
h <- 0.02 * matrix(c(1, NA, NA, 1), nrow=2,ncol=2)
ppm(amacrine ~1, MultiHard(h))

MultiStrauss The Multitype Strauss Point Process Model

Description

Creates an instance of the multitype Strauss point process model which can then be fitted to point
pattern data.

Usage

MultiStrauss(radii, types=NULL)

MultiStrauss 543

Arguments

radii Matrix of interaction radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

Details

The (stationary) multitype Strauss process with m types, with interaction radii rij and parameters
βj and γij is the pairwise interaction point process in which each point of type j contributes a factor
βj to the probability density of the point pattern, and a pair of points of types i and j closer than rij
units apart contributes a factor γij to the density.

The nonstationary multitype Strauss process is similar except that the contribution of each individual
point xi is a function β(xi) of location and type, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the multitype Strauss process pairwise interaction is yielded by the function
MultiStrauss(). See the examples below.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStrauss interaction is applied, when the user calls ppm.
However, the user should be confident that the ordering of types in the dataset corresponds to the
ordering of rows and columns in the matrix radii.

The matrix radii must be symmetric, with entries which are either positive numbers or NA. A value
of NA indicates that no interaction term should be included for this combination of types.

Note that only the interaction radii are specified in MultiStrauss. The canonical parameters
log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStrauss().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype
Strauss process with interaction radii radii[i, j].

Warnings

In order that ppm can fit the multitype Strauss model correctly to a point pattern X, this pattern must
be marked, with markformat equal to vector and the mark vector marks(X) must be a factor. If
the argument types is specified it is interpreted as a set of factor levels and this set must equal
levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStrauss(types=NULL,
radii). The new code attempts to handle the old syntax as well.

544 MultiStraussHard

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, pairwise.family, ppm.object, Strauss, MultiHard

Examples

r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStrauss(r)
prints a sensible description of itself
r <- 0.03 * matrix(c(1,2,2,1), nrow=2,ncol=2)
X <- amacrine

ppm(X ~1, MultiStrauss(r))
fit the stationary multitype Strauss process to `amacrine'

ppm(X ~polynom(x,y,3), MultiStrauss(r, c("off","on")))
fit a nonstationary multitype Strauss process with log-cubic trend

MultiStraussHard The Multitype/Hard Core Strauss Point Process Model

Description

Creates an instance of the multitype/hard core Strauss point process model which can then be fitted
to point pattern data.

Usage

MultiStraussHard(iradii, hradii, types=NULL)

Arguments

iradii Matrix of interaction radii

hradii Matrix of hard core radii

types Optional; vector of all possible types (i.e. the possible levels of the marks vari-
able in the data)

MultiStraussHard 545

Details

This is a hybrid of the multitype Strauss process (see MultiStrauss) and the hard core process
(case γ = 0 of the Strauss process). A pair of points of types i and j must not lie closer than hij
units apart; if the pair lies more than hij and less than rij units apart, it contributes a factor γij to
the probability density.

The argument types need not be specified in normal use. It will be determined automatically from
the point pattern data set to which the MultiStraussHard interaction is applied, when the user calls
ppm. However, the user should be confident that the ordering of types in the dataset corresponds to
the ordering of rows and columns in the matrices iradii and hradii.

The matrices iradii and hradii must be symmetric, with entries which are either positive numbers
or NA. A value of NA indicates that no interaction term should be included for this combination of
types.

Note that only the interaction radii and hardcore radii are specified in MultiStraussHard. The
canonical parameters log(βj) and log(γij) are estimated by ppm(), not fixed in MultiStraussHard().

Value

An object of class "interact" describing the interpoint interaction structure of the multitype/hard
core Strauss process with interaction radii iradii[i, j] and hard core radii hradii[i, j].

Warnings

In order that ppm can fit the multitype/hard core Strauss model correctly to a point pattern X, this
pattern must be marked, with markformat equal to vector and the mark vector marks(X) must be
a factor. If the argument types is specified it is interpreted as a set of factor levels and this set must
equal levels(marks(X)).

Changed Syntax

Before spatstat version 1.37-0, the syntax of this function was different: MultiStraussHard(types=NULL,
iradii, hradii). The new code attempts to handle the old syntax as well.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, pairwise.family, ppm.object, MultiStrauss, MultiHard, Strauss

Examples

r <- matrix(3, nrow=2,ncol=2)
h <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStraussHard(r,h)
prints a sensible description of itself

546 nnclean

r <- 0.04 * matrix(c(1,2,2,1), nrow=2,ncol=2)
h <- 0.02 * matrix(c(1,NA,NA,1), nrow=2,ncol=2)
X <- amacrine

fit <- ppm(X ~1, MultiStraussHard(r,h))
fit stationary multitype hardcore Strauss process to `amacrine'

nnclean Nearest Neighbour Clutter Removal

Description

Detect features in a 2D or 3D spatial point pattern using nearest neighbour clutter removal.

Usage

nnclean(X, k, ...)

S3 method for class 'ppp'
nnclean(X, k, ...,

edge.correct = FALSE, wrap = 0.1,
convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

S3 method for class 'pp3'
nnclean(X, k, ...,

convergence = 0.001, plothist = FALSE,
verbose = TRUE, maxit = 50)

Arguments

X A two-dimensional spatial point pattern (object of class "ppp") or a three-dimensional
point pattern (object of class "pp3").

k Degree of neighbour: k=1 means nearest neighbour, k=2 means second nearest,
etc.

... Arguments passed to hist.default to control the appearance of the histogram,
if plothist=TRUE.

edge.correct Logical flag specifying whether periodic edge correction should be performed
(only implemented in 2 dimensions).

wrap Numeric value specifying the relative size of the margin in which data will be
replicated for the periodic edge correction (if edge.correct=TRUE). A fraction
of window width and window height.

convergence Relative tolerance threshold for testing convergence of EM algorithm.
maxit Maximum number of iterations for EM algorithm.
plothist Logical flag specifying whether to plot a diagnostic histogram of the nearest

neighbour distances and the fitted distribution.
verbose Logical flag specifying whether to print progress reports.

nnclean 547

Details

Byers and Raftery (1998) developed a technique for recognising features in a spatial point pattern
in the presence of random clutter.

For each point in the pattern, the distance to the kth nearest neighbour is computed. Then the E-M
algorithm is used to fit a mixture distribution to the kth nearest neighbour distances. The mixture
components represent the feature and the clutter. The mixture model can be used to classify each
point as belong to one or other component.

The function nnclean is generic, with methods for two-dimensional point patterns (class "ppp")
and three-dimensional point patterns (class "pp3") currently implemented.

The result is a point pattern (2D or 3D) with two additional columns of marks:

class A factor, with levels "noise" and "feature", indicating the maximum likelihood classifica-
tion of each point.

prob Numeric vector giving the estimated probabilities that each point belongs to a feature.

The object also has extra information stored in attributes: "theta" contains the fitted parameters of
the mixture model, "info" contains information about the fitting procedure, and "hist" contains
the histogram structure returned from hist.default if plothist = TRUE.

Value

An object of the same kind as X, obtained by attaching marks to the points of X.

The object also has attributes, as described under Details.

Author(s)

Original by Simon Byers and Adrian Raftery. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Byers, S. and Raftery, A.E. (1998) Nearest-neighbour clutter removal for estimating features in
spatial point processes. Journal of the American Statistical Association 93, 577–584.

See Also

nndist, split.ppp, cut.ppp

Examples

shapley galaxy cluster
X <- nnclean(shapley, k=17, plothist=TRUE)
plot(X, which.marks=1, chars=c(".", "+"), cols=1:2,

main="Shapley data, cluster and noise")
plot(X, which.marks=2, cols=function(x)hsv(0.2+0.8*(1-x),1,1),

main="Shapley data, probability of cluster")
Y <- split(X, un=TRUE)
plot(Y, chars="+", cex=0.5)
marks(X) <- marks(X)$prob
plot(cut(X, breaks=3), chars=c(".", "+", "+"), cols=1:3)

548 nncorr

nncorr Nearest-Neighbour Correlation Indices of Marked Point Pattern

Description

Computes nearest-neighbour correlation indices of a marked point pattern, including the nearest-
neighbour mark product index (default case of nncorr), the nearest-neighbour mark index (nnmean),
and the nearest-neighbour variogram index (nnvario).

Usage

nncorr(X,
f = function(m1, m2) { m1 * m2 },
k = 1,
...,
use = "all.obs", method = c("pearson", "kendall", "spearman"),
denominator=NULL, na.action="warn")

nnmean(X, k=1, na.action="warn")

nnvario(X, k=1, na.action="warn")

Arguments

X The observed point pattern. An object of class "ppp".

f Function f used in the definition of the nearest neighbour correlation. There is
a sensible default that depends on the type of marks of X.

k Integer. The k-th nearest neighbour of each point will be used.

... Extra arguments passed to f.

use,method Arguments passed to the standard correlation function cor.

denominator Internal use only.

na.action Character string (passed to is.marked.ppp) specifying what to do if the marks
contain NA values.

Details

The nearest neighbour correlation index n̄f of a marked point process X is a number measuring the
dependence between the mark of a typical point and the mark of its nearest neighbour.

The command nncorr computes the nearest neighbour correlation index based on any test function
f provided by the user. The default behaviour of nncorr is to compute the nearest neighbour mark
product index. The commands nnmean and nnvario are convenient abbreviations for other special
choices of f.

In the default case, nncorr(X) computes three different versions of the nearest-neighbour correla-
tion index: the unnormalised, normalised, and classical correlations.

nncorr 549

unnormalised: The unnormalised nearest neighbour correlation (Stoyan and Stoyan, 1994, sec-
tion 14.7) is defined as

n̄f = E[f(M,M∗)]

where E[] denotes mean value, M is the mark attached to a typical point of the point process,
and M∗ is the mark attached to its nearest neighbour (i.e. the nearest other point of the point
process).
Here f is any function f(m1,m2) with two arguments which are possible marks of the pattern,
and which returns a nonnegative real value. Common choices of f are: for continuous real-
valued marks,

f(m1,m2) = m1m2

for discrete marks (multitype point patterns),

f(m1,m2) = 1(m1 = m2)

and for marks taking values in [0, 2π),

f(m1,m2) = sin(m1 −m2)

For example, in the second case, the unnormalised nearest neighbour correlation n̄f equals
the proportion of points in the pattern which have the same mark as their nearest neighbour.
Note that n̄f is not a “correlation” in the usual statistical sense. It can take values greater than
1.

normalised: We can define a normalised nearest neighbour correlation by

m̄f =
E[f(M,M∗)]

E[f(M,M ′)]

where again M is the mark attached to a typical point, M∗ is the mark attached to its nearest
neighbour, and M ′ is an independent copy of M with the same distribution. This normalisa-
tion is also not a “correlation” in the usual statistical sense, but is normalised so that the value
1 suggests “lack of correlation”: if the marks attached to the points of X are independent and
identically distributed, then m̄f = 1. The interpretation of values larger or smaller than 1
depends on the choice of function f .

classical: Finally if the marks of X are real numbers, we can also compute the classical correlation,
that is, the correlation coefficient of the two random variables M and M∗. The classical
correlation has a value between−1 and 1. Values close to−1 or 1 indicate strong dependence
between the marks.

In the default case where f is not given, nncorr(X) computes

• If the marks of X are real numbers, the unnormalised and normalised versions of the nearest-
neighbour product index E[MM∗], and the classical correlation between M and M∗.

• If the marks of X are factor valued, the unnormalised and normalised versions of the nearest-
neighbour equality index P [M = M∗].

The wrapper functions nnmean and nnvario compute the correlation indices for two special choices
of the function f(m1,m2). They are defined only when the marks are numeric.

550 nncorr

• nnmean computes the correlation indices for f(m1,m2) = m1. The unnormalised index is
simply the mean value of the mark of the neighbour of a typical point, E[M∗], while the
normalised index is E[M∗]/E[M], the ratio of the mean mark of the neighbour of a typical
point to the mean mark of a typical point.

• nnvario computes the correlation indices for f(m1,m2) = (1/2)(m1 −m2)2.

The argument X must be a point pattern (object of class "ppp") and must be a marked point pattern.
(The marks may be a data frame, containing several columns of mark variables; each column is
treated separately.)

If the argument f is given, it must be a function, accepting two arguments m1 and m2 which are
vectors of equal length containing mark values (of the same type as the marks of X). It must return
a vector of numeric values of the same length as m1 and m2. The values must be non-negative.

The arguments use and method control the calculation of the classical correlation using cor, as
explained in the help file for cor.

Other arguments may be passed to f through the ... argument.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape. Biases due to edge effects are treated
using the ‘border method’ edge correction.

Value

Labelled vector of length 2 or 3 containing the unnormalised and normalised nearest neighbour
correlations, and the classical correlation if appropriate. Alternatively a matrix with 2 or 3 rows,
containing this information for each mark variable.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

Examples

nnmean(finpines)
nnvario(finpines)
nncorr(finpines)
heights of neighbouring trees are slightly negatively correlated

nncorr(amacrine)
neighbouring cells are usually of different type

nndensity.ppp 551

nndensity.ppp Estimate Intensity of Point Pattern Using Nearest Neighbour Dis-
tances

Description

Estimates the intensity of a point pattern using the distance from each spatial location to the kth
nearest data point.

Usage

nndensity(x, ...)

S3 method for class 'ppp'
nndensity(x, k, ..., verbose = TRUE)

Arguments

x A point pattern (object of class "ppp") or some other spatial object.

k Integer. The distance to the kth nearest data point will be computed. There is a
sensible default.

... Arguments passed to nnmap and as.mask controlling the pixel resolution.

verbose Logical. If TRUE, print the value of k when it is automatically selected. If FALSE,
remain silent.

Details

This function computes a quick estimate of the intensity of the point process that generated the
point pattern x.

For each spatial location s, let d(s) be the distance from s to the k-th nearest point in the dataset x.
If the data came from a homogeneous Poisson process with intensity λ, then πd(s)2 would follow a
negative exponential distribution with mean 1/λ, and the maximum likelihood estimate of λ would
be 1/(πd(s)2). This is the estimate computed by nndensity, apart from an edge effect correction.

This estimator of intensity is relatively fast to compute, and is spatially adaptive (so that it can handle
wide variation in the intensity function). However, it implicitly assumes the points are independent,
so it does not perform well if the pattern is strongly clustered or strongly inhibited.

The value of k should be greater than 1 in order to avoid infinite peaks in the intensity estimate
around each data point. The default value of k is the square root of the number of points in x, which
seems to work well in many cases.

The window of x is digitised using as.mask and the values d(s) are computed using nnmap. To
control the pixel resolution, see as.mask.

Value

A pixel image (object of class "im") giving the estimated intensity of the point process at each
spatial location. Pixel values are intensities (number of points per unit area).

552 nnorient

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

NEED REFERENCES. TRY CRESSIE

See Also

density.ppp, intensity for alternative estimates of point process intensity.

Examples

plot(nndensity(swedishpines))

nnorient Nearest Neighbour Orientation Distribution

Description

Computes the distribution of the orientation of the vectors from each point to its nearest neighbour.

Usage

nnorient(X, ..., cumulative = FALSE, correction, k = 1,
unit = c("degree", "radian"),
domain = NULL, ratio = FALSE)

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,
the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none",
"bord.modif", "good" and "best". Alternatively correction="all" selects
all options.

k Integer. The kth nearest neighbour will be used.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

nnorient 553

Details

This algorithm considers each point in the pattern X and finds its nearest neighbour (or kth nearest
neighour). The direction of the arrow joining the data point to its neighbour is measured, as an
angle in degrees or radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the angles is
calculated using circdensity. This is the function ϑ(φ) defined in Illian et al (2008), equation
(4.5.3), page 253.

If cumulative=TRUE, then the cumulative distribution function of these angles is calculated.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

The algorithm gives each observed direction a weight, determined by an edge correction, to adjust
for the fact that some interpoint distances are more likely to be observed than others. The choice of
edge correction or corrections is determined by the argument correction.

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

See Also

pairorient

Examples

rose(nnorient(redwood, adjust=0.6), col="grey")
plot(CDF <- nnorient(redwood, cumulative=TRUE))

554 npfun

npfun Dummy Function Returns Number of Points

Description

Returns a summary function which is constant with value equal to the number of points in the point
pattern.

Usage

npfun(X, ..., r)

Arguments

X Point pattern.

... Ignored.

r Vector of values of the distance argument r.

Details

This function is normally not called by the user. Instead it is passed as an argument to the function
psst.

Value

Object of class "fv" representing a constant function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

See Also

psst

Examples

fit0 <- ppm(cells, ~1, nd=10)
v <- psst(fit0, npfun)

objsurf 555

objsurf Objective Function Surface

Description

For a model that was fitted by optimisation, compute the values of the objective function in a
neighbourhood of the optimal value.

Usage

objsurf(x, ...)

S3 method for class 'dppm'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

ratio = 1.5, verbose = TRUE)

S3 method for class 'kppm'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

ratio = 1.5, verbose = TRUE)

S3 method for class 'minconfit'
objsurf(x, ..., ngrid = 32, xlim=NULL, ylim=NULL,

ratio = 1.5, verbose = TRUE)

Arguments

x Some kind of model that was fitted by finding the optimal value of an objective
function. An object of class "dppm", "kppm" or "minconfit".

... Extra arguments are usually ignored.

ngrid Number of grid points to evaluate along each axis. Either a single integer, or a
pair of integers. For example ngrid=32 would mean a 32 * 32 grid.

xlim,ylim Optional. Numeric vectors of length 2, specifying the limits for the two param-
eters to be considered.

ratio Number greater than 1 determining the range of parameter values to be consid-
ered. If the optimal parameter value is opt then the objective function will be
evaluated for values between opt/ratio and opt * ratio.

verbose Logical value indicating whether to print progress reports.

Details

The object x should be some kind of model that was fitted by maximising or minimising the value
of an objective function. The objective function will be evaluated on a grid of values of the model
parameters.

Currently the following types of objects are accepted:

• an object of class "dppm" representing a determinantal point process. See dppm.

556 Ops.msr

• an object of class "kppm" representing a cluster point process or Cox point process. See kppm.

• an object of class "minconfit" representing a minimum-contrast fit between a summary func-
tion and its theoretical counterpart. See mincontrast.

The result is an object of class "objsurf" which can be printed and plotted: see methods.objsurf.

Value

An object of class "objsurf" which can be printed and plotted. Essentially a list containing entries
x, y, z giving the parameter values and objective function values.

There are methods for plot, print, summary, image, contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ege Rubak <rubak@math.aau.dk>.

See Also

methods.objsurf, kppm, mincontrast

Examples

fit <- kppm(redwood ~ 1, "Thomas")
os <- objsurf(fit)

if(interactive()) {
plot(os)
contour(os, add=TRUE)
persp(os)

}

Ops.msr Arithmetic Operations on Measures

Description

These group generic methods for the class "msr" allow the arithmetic operators +, -, * and / to be
applied directly to measures.

Usage

S3 methods for group generics have prototypes:
Ops(e1, e2)

Arguments

e1, e2 objects of class "msr".

Ord 557

Details

Arithmetic operators on a measure A are only defined in some cases. The arithmetic operator is
effectively applied to the value of A(W) for every spatial domain W. If the result is a measure, then
this operation is valid.

If A is a measure (object of class "msr") then the operations -A and +A are defined.

If A and B are measures with the same dimension (i.e. both are scalar-valued, or both are k-
dimensional vector-valued) then A + B and A - B are defined.

If A is a measure and z is a numeric value, then A * z and A / z are defined, and z * A is defined.

Value

Another measure (object of class "msr").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

with.msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rp

-rp
2 * rp
rp /2

rp - rp

rr <- residuals(fit, type="raw")
rp - rr

Ord Generic Ord Interaction model

Description

Creates an instance of an Ord-type interaction point process model which can then be fitted to point
pattern data.

558 Ord

Usage

Ord(pot, name)

Arguments

pot An S language function giving the user-supplied interaction potential.

name Character string.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in
the point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated
with xi in the Dirichlet tessellation of x.

Ord (1977) proposed fitting this model to forestry data when g(a) has a simple “threshold” form.
That model is implemented in our function OrdThresh. The present function Ord implements the
case of a completely general Ord potential g(a) specified as an S language function pot.

This is experimental.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object, OrdThresh

ord.family 559

ord.family Ord Interaction Process Family

Description

An object describing the family of all Ord interaction point processes

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the family of point process
models introduced by Ord (1977).

If you need to create a specific Ord-type model for use in analysis, use the function OrdThresh or
Ord.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pairwise.family, pairsat.family, Ord, OrdThresh

560 OrdThresh

OrdThresh Ord’s Interaction model

Description

Creates an instance of Ord’s point process model which can then be fitted to point pattern data.

Usage

OrdThresh(r)

Arguments

r Positive number giving the threshold value for Ord’s model.

Details

Ord’s point process model (Ord, 1977) is a Gibbs point process of infinite order. Each point xi in the
point pattern x contributes a factor g(ai) where ai = a(xi, x) is the area of the tile associated with
xi in the Dirichlet tessellation of x. The function g is simply g(a) = 1 if a ≥ r and g(a) = γ < 1
if a < r, where r is called the threshold value.

This function creates an instance of Ord’s model with a given value of r. It can then be fitted to
point process data using ppm.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ord, J.K. (1977) Contribution to the discussion of Ripley (1977).

Ord, J.K. (1978) How many trees in a forest? Mathematical Scientist 3, 23–33.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

ppm, ppm.object

pairMean 561

pairMean Mean of a Function of Interpoint Distance

Description

Computes the mean value, or the double integral, of a specified function of the distance between
two independent random points in a given window or windows.

Usage

pairMean(fun, W, V = NULL, ..., normalise = TRUE)

Arguments

fun A function in the R language which takes one argument.

W A window (object of class "owin") containing the first random point.

V Optional. Another window containing the second random point. Defaults to W.

... Further optional arguments passed to distcdf to determine the pixel resolution
for the calculation and the probability distributions of the random points.

normalise Logical value specifying whether to calculate the mean value (normalise=TRUE,
the default) or the double integral (normalise=FALSE).

Details

This command computes the mean value of fun(T) where T is the Euclidean distance T = ‖X1 −
X2‖ between two independent random points X1 and X2.

In the simplest case, the command pairMean(fun, W), the random points are assumed to be uni-
formly distributed in the same window W. Alternatively the two random points may be uniformly
distributed in two different windows W and V. Other options are described in distcdf.

The algorithm uses distcdf to compute the cumulative distribution function of T, and stieltjes
to compute the mean value of fun(T).

If normalise=TRUE (the default) the result is the mean value of fun(T). If normalise=FALSE the
result is the double integral.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

distcdf

562 pairorient

Examples

pairMean(function(d) { d^2 }, disc())

pairorient Point Pair Orientation Distribution

Description

Computes the distribution of the orientation of vectors joining pairs of points at a particular range
of distances.

Usage

pairorient(X, r1, r2, ..., cumulative=FALSE,
correction, ratio = FALSE,
unit=c("degree", "radian"), domain=NULL)

Arguments

X Point pattern (object of class "ppp").

r1,r2 Minimum and maximum values of distance to be considered.

... Arguments passed to circdensity to control the kernel smoothing, if cumulative=FALSE.

cumulative Logical value specifying whether to estimate the probability density (cumulative=FALSE,
the default) or the cumulative distribution function (cumulative=TRUE).

correction Character vector specifying edge correction or corrections. Options are "none",
"isotropic", "translate", "border", "bord.modif", "good" and "best".
Alternatively correction="all" selects all options. The default is to compute
all edge corrections except "none".

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

unit Unit in which the angles should be expressed. Either "degree" or "radian".

domain Optional window. The first point xi of each pair of points will be constrained to
lie in domain.

Details

This algorithm considers all pairs of points in the pattern X that lie more than r1 and less than r2
units apart. The direction of the arrow joining the points is measured, as an angle in degrees or
radians, anticlockwise from the x axis.

If cumulative=FALSE (the default), a kernel estimate of the probability density of the orientations
is calculated using circdensity.

If cumulative=TRUE, then the cumulative distribution function of these directions is calculated.
This is the function Or1,r2(φ) defined in Stoyan and Stoyan (1994), equation (14.53), page 271.

In either case the result can be plotted as a rose diagram by rose, or as a function plot by plot.fv.

PairPiece 563

The algorithm gives each observed direction a weight, determined by an edge correction, to ad-
just for the fact that some interpoint distances are more likely to be observed than others. The
choice of edge correction or corrections is determined by the argument correction. See the help
for Kest for details of edge corrections, and explanation of the options available. The choice
correction="none" is not recommended; it is included for demonstration purposes only. The
default is to compute all corrections except "none".

It is also possible to calculate an estimate of the probability density from the cumulative distribution
function, by numerical differentiation. Use deriv.fv with the argument Dperiodic=TRUE.

Value

A function value table (object of class "fv") containing the estimates of the probability density
or the cumulative distribution function of angles, in degrees (if unit="degree") or radians (if
unit="radian").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Stoyan, H. (1994) Fractals, Random Shapes and Point Fields: Methods of Geomet-
rical Statistics. John Wiley and Sons.

See Also

Kest, Ksector, nnorient

Examples

rose(pairorient(redwood, 0.05, 0.15, sigma=8), col="grey")
plot(CDF <- pairorient(redwood, 0.05, 0.15, cumulative=TRUE))
plot(f <- deriv(CDF, spar=0.6, Dperiodic=TRUE))

PairPiece The Piecewise Constant Pairwise Interaction Point Process Model

Description

Creates an instance of a pairwise interaction point process model with piecewise constant potential
function. The model can then be fitted to point pattern data.

Usage

PairPiece(r)

564 PairPiece

Arguments

r vector of jump points for the potential function

Details

A pairwise interaction point process in a bounded region is a stochastic point process with proba-
bility density of the form

f(x1, . . . , xn) = α
∏
i

b(xi)
∏
i<j

h(xi, xj)

where x1, . . . , xn represent the points of the pattern. The first product on the right hand side is over
all points of the pattern; the second product is over all unordered pairs of points of the pattern.

Thus each point xi of the pattern contributes a factor b(xi) to the probability density, and each pair
of points xi, xj contributes a factor h(xi, xj) to the density.

The pairwise interaction term h(u, v) is called piecewise constant if it depends only on the distance
between u and v, say h(u, v) = H(||u − v||), and H is a piecewise constant function (a function
which is constant except for jumps at a finite number of places). The use of piecewise constant
interaction terms was first suggested by Takacs (1986).

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the piecewise constant pairwise interaction is yielded by the function
PairPiece(). See the examples below.

The entries of r must be strictly increasing, positive numbers. They are interpreted as the points of
discontinuity of H . It is assumed that H(s) = 1 for all s > rmax where rmax is the maximum
value in r. Thus the model has as many regular parameters (see ppm) as there are entries in r. The
i-th regular parameter θi is the logarithm of the value of the interaction function H on the interval
[ri−1, ri).

If r is a single number, this model is similar to the Strauss process, see Strauss. The difference
is that in PairPiece the interaction function is continuous on the right, while in Strauss it is
continuous on the left.

The analogue of this model for multitype point processes has not yet been implemented.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.
The process is a pairwise interaction process, whose interaction potential is piecewise constant,
with jumps at the distances given in the vector r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Takacs, R. (1986) Estimator for the pair potential of a Gibbsian point process. Statistics 17, 429–
433.

pairs.im 565

See Also

ppm, pairwise.family, ppm.object, Strauss rmh.ppm

Examples

PairPiece(c(0.1,0.2))
prints a sensible description of itself
data(cells)

ppm(cells ~1, PairPiece(r = c(0.05, 0.1, 0.2)))
fit a stationary piecewise constant pairwise interaction process

ppm(cells ~polynom(x,y,3), PairPiece(c(0.05, 0.1)))
nonstationary process with log-cubic polynomial trend

pairs.im Scatterplot Matrix for Pixel Images

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images.

Usage

S3 method for class 'im'
pairs(..., plot=TRUE, drop=TRUE)

Arguments

... Any number of arguments, each of which is either a pixel image (object of class
"im") or a named argument to be passed to pairs.default. Alternatively, a
single argument which is a list of pixel images.

plot Logical. If TRUE, the scatterplot matrix is plotted.

drop Logical value specifying whether pixel values that are NA should be removed
from the data frame that is returned by the function. This does not affect the
plot.

Details

This is a method for the generic function pairs for the class of pixel images.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values
of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be pixel images (objects of class "im"). Their spatial
domains must overlap, but need not have the same pixel dimensions.

First the pixel image domains are intersected, and converted to a common pixel resolution. Then
the corresponding pixel values of each image are extracted. Then pairs.default is called to plot
the scatterplot matrix.

566 pairs.im

Any arguments in ... which are not pixel images will be passed to pairs.default to control the
plot.

The return value of pairs.im is a data frame, returned invisibly. The data frame has one column for
each image. Each row contains the pixel values of the different images for one pixel in the raster. If
drop=TRUE (the default), any row which contains NA is deleted. The plot is not affected by the value
of drop.

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

Image or Contour Plots

Since the scatterplots may show very dense concentrations of points, it may be useful to set panel=panel.image
or panel=panel.contour to draw a colour image or contour plot of the kernel-smoothed density
of the scatterplot in each panel. The argument panel is passed to pairs.default. See the help for
panel.image and panel.contour.

Low Level Control of Graphics

To control the appearance of the individual scatterplot panels, see pairs.default, points or par.
To control the plotting symbol for the points in the scatterplot, use the arguments pch, col, bg as
described under points (because the default panel plotter is the function points). To suppress the
tick marks on the plot axes, type par(xaxt="n", yaxt="n") before calling pairs.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs, pairs.default, panel.contour, panel.image, plot.im, cov.im, im, par

Examples

X <- density(rpoispp(30))
Y <- density(rpoispp(40))
Z <- density(rpoispp(30))
p <- pairs(X,Y,Z)
p
plot(p)

pairsat.family 567

pairsat.family Saturated Pairwise Interaction Point Process Family

Description

An object describing the Saturated Pairwise Interaction family of point process models

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the “saturated pairwise
interaction” family of point process models.

If you need to create a specific interaction model for use in spatial pattern analysis, use the func-
tion Saturated() or the two existing implementations of models in this family, Geyer() and
SatPiece().

Geyer (1999) introduced the “saturation process”, a modification of the Strauss process in which
the total contribution to the potential from each point (from its pairwise interaction with all other
points) is trimmed to a maximum value c. This model is implemented in the function Geyer().

The present class pairsat.family is the extension of this saturation idea to all pairwise inter-
actions. Note that the resulting models are no longer pairwise interaction processes - they have
interactions of infinite order.

pairsat.family is an object of class "isf" containing a function pairwise$eval for evaluat-
ing the sufficient statistics of any saturated pairwise interaction point process model in which the
original pair potentials take an exponential family form.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

568 Pairwise

See Also

Geyer to create the Geyer saturation process.

SatPiece to create a saturated process with piecewise constant pair potential.

Saturated to create a more general saturation model.

Other families: inforder.family, ord.family, pairwise.family.

Pairwise Generic Pairwise Interaction model

Description

Creates an instance of a pairwise interaction point process model which can then be fitted to point
pattern data.

Usage

Pairwise(pot, name, par, parnames, printfun)

Arguments

pot An R language function giving the user-supplied pairwise interaction potential.
name Character string.
par List of numerical values for irregular parameters
parnames Vector of names of irregular parameters
printfun Do not specify this argument: for internal use only.

Details

This code constructs a member of the pairwise interaction family pairwise.family with arbitrary
pairwise interaction potential given by the user.

Each pair of points in the point pattern contributes a factor h(d) to the probability density, where d
is the distance between the two points. The factor term h(d) is

h(d) = exp(−θpot(d))

provided pot(d) is finite, where θ is the coefficient vector in the model.

The function pot must take as its first argument a matrix of interpoint distances, and evaluate the
potential for each of these distances. The result must be either a matrix with the same dimensions as
its input, or an array with its first two dimensions the same as its input (the latter case corresponds
to a vector-valued potential).

If irregular parameters are present, then the second argument to pot should be a vector of the same
type as par giving those parameter values.

The values returned by pot may be finite numeric values, or -Inf indicating a hard core (that is,
the corresponding interpoint distance is forbidden). We define h(d) = 0 if pot(d) = −∞. Thus, a
potential value of minus infinity is always interpreted as corresponding to h(d) = 0, regardless of
the sign and magnitude of θ.

Pairwise 569

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, pairwise.family, ppm.object

Examples

#This is the same as StraussHard(r=0.7,h=0.05)
strpot <- function(d,par) {

r <- par$r
h <- par$h
value <- (d <= r)
value[d < h] <- -Inf
value

}
mySH <- Pairwise(strpot, "StraussHard process", list(r=0.7,h=0.05),

c("interaction distance r", "hard core distance h"))
data(cells)
ppm(cells, ~ 1, mySH, correction="isotropic")

Fiksel (1984) double exponential interaction
see Stoyan, Kendall, Mecke 1987 p 161

fikspot <- function(d, par) {
r <- par$r
h <- par$h
zeta <- par$zeta
value <- exp(-zeta * d)
value[d < h] <- -Inf
value[d > r] <- 0
value

}
Fiksel <- Pairwise(fikspot, "Fiksel double exponential process",

list(r=3.5, h=1, zeta=1),
c("interaction distance r",

"hard core distance h",
"exponential coefficient zeta"))

data(spruces)
fit <- ppm(unmark(spruces), ~1, Fiksel, rbord=3.5)
fit
plot(fitin(fit), xlim=c(0,4))
coef(fit)
corresponding values obtained by Fiksel (1984) were -1.9 and -6.0

570 panel.contour

pairwise.family Pairwise Interaction Process Family

Description

An object describing the family of all pairwise interaction Gibbs point processes.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the pairwise interaction
family of point process models.

If you need to create a specific pairwise interaction model for use in modelling, use the function
Pairwise or one of the existing functions listed below.

Anyway, pairwise.family is an object of class "isf" containing a function pairwise.family$eval
for evaluating the sufficient statistics of any pairwise interaction point process model taking an ex-
ponential family form.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Other families: pairsat.family, ord.family, inforder.family.

Pairwise interactions: Poisson, Pairwise, PairPiece, Fiksel, Hardcore, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, Strauss, StraussHard, Softcore.

Other interactions: AreaInter, Geyer, Saturated, Ord, OrdThresh.

panel.contour Panel Plots using Colour Image or Contour Lines

Description

These functions can be passed to pairs or coplot to determine what kind of plotting is done in
each panel of a multi-panel graphical display.

panel.contour 571

Usage

panel.contour(x, y, ..., sigma = NULL)

panel.image(x, y, ..., sigma = NULL)

panel.histogram(x, ...)

Arguments

x,y Coordinates of points in a scatterplot.
... Extra graphics arguments, passed to contour.im, plot.im or rect, respec-

tively, to control the appearance of the panel.
sigma Bandwidth of kernel smoother, on a scale where x and y range between 0 and 1.

Details

These functions can serve as one of the arguments panel, lower.panel, upper.panel, diag.panel
passed to graphics commands like pairs or coplot, to determine what kind of plotting is done in
each panel of a multi-panel graphical display. In particular they work with pairs.im.

The functions panel.contour and panel.contour are suitable for the off-diagonal plots which
involve two datasets x and y. They first rescale x and y to the unit square, then apply kernel
smoothing with bandwidth sigma using density.ppp. Then panel.contour draws a contour plot
while panel.image draws a colour image.

The function panel.histogram is suitable for the diagonal plots which involve a single dataset x.
It displays a histogram of the data.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pairs.im, pairs.default, panel.smooth

Examples

pairs(bei.extra,
panel = panel.contour,
diag.panel = panel.histogram)

with(bei.extra,
pairs(grad, elev,

panel = panel.image,
diag.panel = panel.histogram))

pairs(marks(finpines), panel=panel.contour, diag.panel=panel.histogram)

572 parameters

parameters Extract Model Parameters in Understandable Form

Description

Given a fitted model of some kind, this function extracts all the parameters needed to specify the
model, and returns them as a list.

Usage

parameters(model, ...)

S3 method for class 'dppm'
parameters(model, ...)

S3 method for class 'kppm'
parameters(model, ...)

S3 method for class 'slrm'
parameters(model, ...)

S3 method for class 'ppm'
parameters(model, ...)

S3 method for class 'profilepl'
parameters(model, ...)

S3 method for class 'fii'
parameters(model, ...)

S3 method for class 'interact'
parameters(model, ...)

Arguments

model A fitted model of some kind.

... Arguments passed to methods.

Details

The argument model should be a fitted model of some kind. This function extracts all the parameters
that would be needed to specify the model, and returns them as a list.

The function parameters is generic, with methods for class "ppm", "kppm", "dppm" and "profilepl"
and other classes.

parres 573

Value

A named list, whose format depends on the fitted model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

coef

Examples

parameters(Strauss(0.1))
fit1 <- ppm(cells ~ x, Strauss(0.1))
parameters(fit1)
fit2 <- kppm(redwood ~ x, "Thomas")
parameters(fit2)

parres Partial Residuals for Point Process Model

Description

Computes the smoothed partial residuals, a diagnostic for transformation of a covariate in a Poisson
point process model.

Usage

parres(model, covariate, ...,
smooth.effect=FALSE, subregion=NULL,
bw = "nrd0", adjust=1, from = NULL, to = NULL, n = 512,
bw.input = c("points", "quad"), bw.restrict=FALSE, covname)

Arguments

model Fitted point process model (object of class "ppm").

covariate The covariate of interest. Either a character string matching the name of one of
the canonical covariates in the model, or one of the names "x" or "y" referring
to the Cartesian coordinates, or one of the names of the covariates given when
model was fitted, or a pixel image (object of class "im") or function(x,y)
supplying the values of a covariate at any location. If the model depends on
only one covariate, then this covariate is the default; otherwise a covariate must
be specified.

smooth.effect Logical. Determines the choice of algorithm. See Details.

574 parres

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

Details

This command computes the smoothed partial residual diagnostic (Baddeley, Chang, Song and
Turner, 2012) for the transformation of a covariate in a Poisson point process model.

The argument model must be a fitted Poisson point process model.

The diagnostic works in two different ways:

Canonical covariate: The argument covariate may be a character string which is the name of
one of the canonical covariates in the model. The canonical covariates are the functions Zj
that appear in the expression for the Poisson point process intensity

λ(u) = exp(β1Z1(u) + . . .+ βpZp(u))

at spatial location u. Type names(coef(model)) to see the names of the canonical covariates
in model. If the selected covariate is Zj , then the diagnostic plot concerns the model term
βjZj(u). The plot shows a smooth estimate of a function h(z) that should replace this linear
term, that is, βjZj(u) should be replaced by h(Zj(u)). The linear function is also plotted as
a dotted line.

New covariate: If the argument covariate is a pixel image (object of class "im") or a function(x,y),
it is assumed to provide the values of a covariate that is not present in the model. Alternatively
covariate can be the name of a covariate that was supplied when the model was fitted (i.e.
in the call to ppm) but which does not feature in the model formula. In either case we speak
of a new covariate Z(u). If the fitted model intensity is λ(u) then we consider modifying this
to λ(u) exp(h(Z(u))) where h(z) is some function. The diagnostic plot shows an estimate
of h(z). Warning: in this case the diagnostic is not theoretically justified. This option is
provided for research purposes.

Alternatively covariate can be one of the character strings "x" or "y" signifying the Cartesian
coordinates. The behaviour here depends on whether the coordinate was one of the canonical co-
variates in the model.

If there is more than one canonical covariate in the model that depends on the specified covariate,
then the covariate effect is computed using all these canonical covariates. For example in a log-
quadratic model which includes the terms x and I(x^2), the quadratic effect involving both these
terms will be computed.

parres 575

There are two choices for the algorithm. If smooth.effect=TRUE, the fitted covariate effect (ac-
cording to model) is added to the point process residuals, then smoothing is applied to these values.
If smooth.effect=FALSE, the point process residuals are smoothed first, and then the fitted covari-
ate effect is added to the result.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

A function value table (object of class "fv") containing the values of the smoothed partial residual,
the estimated variance, and the fitted effect of the covariate. Also belongs to the class "parres"
which has methods for print and plot.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for parres.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

See Also

addvar, rhohat, rho2hat

Examples

X <- rpoispp(function(x,y){exp(3+x+2*x^2)})
model <- ppm(X ~x+y)
tra <- parres(model, "x")
plot(tra)
tra

576 pcf

plot(parres(model, "x", subregion=square(0.5)))
model2 <- ppm(X ~x+I(x^2)+y)
plot(parres(model2, "x"))
Z <- setcov(owin())
plot(parres(model2, Z))

#' when the model involves only one covariate
modelb <- ppm(bei ~ elev + I(elev^2), data=bei.extra)
plot(parres(modelb))

pcf Pair Correlation Function

Description

Estimate the pair correlation function.

Usage

pcf(X, ...)

Arguments

X Either the observed data point pattern, or an estimate of its K function, or an
array of multitype K functions (see Details).

... Other arguments passed to the appropriate method.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) either directly from a point pattern, or indirectly from an
estimate of K(r) or one of its variants.

This function is generic, with methods for the classes "ppp", "fv" and "fasp".

If X is a point pattern (object of class "ppp") then the pair correlation function is estimated using a
traditional kernel smoothing method (Stoyan and Stoyan, 1994). See pcf.ppp for details.

pcf 577

If X is a function value table (object of class "fv"), then it is assumed to contain estimates of the K
function or one of its variants (typically obtained from Kest or Kinhom). This routine computes an
estimate of g(r) using smoothing splines to approximate the derivative. See pcf.fv for details.

If X is a function value array (object of class "fasp"), then it is assumed to contain estimates of
several K functions (typically obtained from Kmulti or alltypes). This routine computes an
estimate of g(r) for each cell in the array, using smoothing splines to approximate the derivatives.
See pcf.fasp for details.

Value

Either a function value table (object of class "fv", see fv.object) representing a pair correlation
function, or a function array (object of class "fasp", see fasp.object) representing an array of
pair correlation functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf.ppp, pcf.fv, pcf.fasp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes

Examples

ppp object
X <- simdat

p <- pcf(X)
plot(p)

fv object
K <- Kest(X)
p2 <- pcf(K, spar=0.8, method="b")
plot(p2)

multitype pattern; fasp object
amaK <- alltypes(amacrine, "K")
amap <- pcf(amaK, spar=1, method="b")
plot(amap)

578 pcf.fasp

pcf.fasp Pair Correlation Function obtained from array of K functions

Description

Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K
functions.

Usage

S3 method for class 'fasp'
pcf(X, ..., method="c")

Arguments

X An array of multitype K functions (object of class "fasp").

... Arguments controlling the smoothing spline function smooth.spline.

method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-
tion function from the K function.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an array of estimates of K(r) or its variants, using
smoothing splines to approximate the derivatives. It is a method for the generic function pcf.

The argument X should be a function array (object of class "fasp", see fasp.object) containing
several estimates ofK functions. This should have been obtained from alltypes with the argument
fun="K".

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;

pcf.fasp 579

• "c" apply smoothing to Z(r) = K(r)
πr2 constraining Z(0) = 1, estimate its derivative, and

solve.

• "d" apply smoothing to V (r) =
√
K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function array (object of class "fasp", see fasp.object) representing an array of pair correlation
functions. This can be thought of as a matrix Y each of whose entries Y[i,j] is a function value
table (class "fv") representing the pair correlation function between points of type i and points of
type j.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
strong inhibition between points of the same type

580 pcf.fv

pcf.fv Pair Correlation Function obtained from K Function

Description

Estimates the pair correlation function of a point pattern, given an estimate of the K function.

Usage

S3 method for class 'fv'
pcf(X, ..., method="c")

Arguments

X An estimate of the K function or one of its variants. An object of class "fv".

... Arguments controlling the smoothing spline function smooth.spline.

method Letter "a", "b", "c" or "d" indicating the method for deriving the pair correla-
tion function from the K function.

Details

The pair correlation function of a stationary point process is

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r). For a stationary Poisson
process, the pair correlation function is identically equal to 1. Values g(r) < 1 suggest inhibition
between points; values greater than 1 suggest clustering.

We also apply the same definition to other variants of the classicalK function, such as the multitype
K functions (see Kcross, Kdot) and the inhomogeneous K function (see Kinhom). For all these
variants, the benchmark value of K(r) = πr2 corresponds to g(r) = 1.

This routine computes an estimate of g(r) from an estimate ofK(r) or its variants, using smoothing
splines to approximate the derivative. It is a method for the generic function pcf for the class "fv".

The argument X should be an estimated K function, given as a function value table (object of
class "fv", see fv.object). This object should be the value returned by Kest, Kcross, Kmulti or
Kinhom.

The smoothing spline operations are performed by smooth.spline and predict.smooth.spline
from the modreg library. Four numerical methods are available:

• "a" apply smoothing to K(r), estimate its derivative, and plug in to the formula above;

• "b" apply smoothing to Y (r) = K(r)
2πr constraining Y (0) = 0, estimate the derivative of Y ,

and solve;

• "c" apply smoothing to Z(r) = K(r)
πr2 constraining Z(0) = 1, estimate its derivative, and

solve.

pcf.fv 581

• "d" apply smoothing to V (r) =
√
K(r), estimate its derivative, and solve.

Method "c" seems to be the best at suppressing variability for small values of r. However it effec-
tively constrains g(0) = 1. If the point pattern seems to have inhibition at small distances, you may
wish to experiment with method "b" which effectively constrains g(0) = 0. Method "a" seems
comparatively unreliable.

Useful arguments to control the splines include the smoothing tradeoff parameter spar and the
degrees of freedom df. See smooth.spline for details.

Value

A function value table (object of class "fv", see fv.object) representing a pair correlation func-
tion.

Essentially a data frame containing (at least) the variables

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

pcf vector of values of g(r)

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd
edition. Springer Verlag.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, pcf.ppp, Kest, Kinhom, Kcross, Kdot, Kmulti, alltypes, smooth.spline, predict.smooth.spline

Examples

univariate point pattern
X <- simdat

K <- Kest(X)
p <- pcf.fv(K, spar=0.5, method="b")
plot(p, main="pair correlation function for simdat")
indicates inhibition at distances r < 0.3

582 pcf.ppp

pcf.ppp Pair Correlation Function of Point Pattern

Description

Estimates the pair correlation function of a point pattern using kernel methods.

Usage

S3 method for class 'ppp'
pcf(X, ..., r = NULL, kernel="epanechnikov", bw=NULL,

stoyan=0.15,
correction=c("translate", "Ripley"),
divisor = c("r", "d"),
var.approx = FALSE,
domain=NULL,
ratio=FALSE, close=NULL)

Arguments

X A point pattern (object of class "ppp").

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default. Either a single
numeric value giving the standard deviation of the kernel, or a character string
specifying a bandwidth selection rule recognised by density.default. If bw
is missing or NULL, the default value is computed using Stoyan’s rule of thumb:
see Details.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see Details.

correction Edge correction. A character vector specifying the choice (or choices) of edge
correction. See Details.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

var.approx Logical value indicating whether to compute an analytic approximation to the
variance of the estimated pair correlation.

domain Optional. Calculations will be restricted to this subset of the window. See De-
tails.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

close Advanced use only. Precomputed data. See section on Advanced Use.

pcf.ppp 583

Details

The pair correlation function g(r) is a summary of the dependence between points in a spatial point
process. The best intuitive interpretation is the following: the probability p(r) of finding two points
at locations x and y separated by a distance r is equal to

p(r) = λ2g(r) dxdy

where λ is the intensity of the point process. For a completely random (uniform Poisson) process,
p(r) = λ2 dxdy so g(r) = 1. Formally, the pair correlation function of a stationary point process
is defined by

g(r) =
K ′(r)

2πr

where K ′(r) is the derivative of K(r), the reduced second moment function (aka “Ripley’s K
function”) of the point process. See Kest for information about K(r).

For a stationary Poisson process, the pair correlation function is identically equal to 1. Values
g(r) < 1 suggest inhibition between points; values greater than 1 suggest clustering.

This routine computes an estimate of g(r) by kernel smoothing.

• If divisor="r" (the default), then the standard kernel estimator (Stoyan and Stoyan, 1994,
pages 284–285) is used. By default, the recommendations of Stoyan and Stoyan (1994) are
followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window):

• If correction="translate" or correction="translation" then the translation correction
is used. For divisor="r" the translation-corrected estimate is given in equation (15.15), page
284 of Stoyan and Stoyan (1994).

• If correction="Ripley" or correction="isotropic" then Ripley’s isotropic edge correc-
tion is used. For divisor="r" the isotropic-corrected estimate is given in equation (15.18),
page 285 of Stoyan and Stoyan (1994).

• If correction="none" then no edge correction is used, that is, an uncorrected estimate is
computed.

Multiple corrections can be selected. The default is correction=c("translate", "Ripley").

Alternatively correction="all" selects all options; correction="best" selects the option which
has the best statistical performance; correction="good" selects the option which is the best com-
promise between statistical performance and speed of computation.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.default.
The default is the Epanechnikov kernel, recommended by Stoyan and Stoyan (1994, page 285).

The bandwidth of the smoothing kernel can be controlled by the argument bw. Bandwidth is defined
as the standard deviation of the kernel; see the documentation for density.default. For the
Epanechnikov kernel with half-width h, the argument bw is equivalent to h/

√
5.

584 pcf.ppp

Stoyan and Stoyan (1994, page 285) recommend using the Epanechnikov kernel with support
[−h, h] chosen by the rule of thumn h = c/

√
λ, where λ is the (estimated) intensity of the point

process, and c is a constant in the range from 0.1 to 0.2. See equation (15.16). If bw is missing or
NULL, then this rule of thumb will be applied. The argument stoyan determines the value of c. The
smoothing bandwidth that was used in the calculation is returned as an attribute of the final result.

The argument r is the vector of values for the distance r at which g(r) should be evaluated. There
is a sensible default. If it is specified, r must be a vector of increasing numbers starting from r[1]
= 0, and max(r) must not exceed half the diameter of the window.

If the argument domain is given, estimation will be restricted to this region. That is, the estimate of
g(r) will be based on pairs of points in which the first point lies inside domain and the second point
is unrestricted. The argument domain should be a window (object of class "owin") or something
acceptable to as.owin. It must be a subset of the window of the point pattern X.

To compute a confidence band for the true value of the pair correlation function, use lohboot.

If var.approx = TRUE, the variance of the estimate of the pair correlation will also be calculated
using an analytic approximation (Illian et al, 2008, page 234) which is valid for stationary point
processes which are not too clustered. This calculation is not yet implemented when the argument
domain is given.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the pair correlation function g(r)
has been estimated

theo vector of values equal to 1, the theoretical value of g(r) for the Poisson process

trans vector of values of g(r) estimated by translation correction

iso vector of values of g(r) estimated by Ripley isotropic correction

v vector of approximate values of the variance of the estimate of g(r)

as required.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

The return value also has an attribute "bw" giving the smoothing bandwidth that was used.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X, rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk> and Martin Hazelton.

pcf3est 585

References

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical Analysis and Modelling of
Spatial Point Patterns. Wiley.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

Kest, pcf, density.default, bw.stoyan, bw.pcf, lohboot.

Examples

X <- simdat

p <- pcf(X)
plot(p, main="pair correlation function for X")
indicates inhibition at distances r < 0.3

pd <- pcf(X, divisor="d")

compare estimates
plot(p, cbind(iso, theo) ~ r, col=c("blue", "red"),

ylim.covers=0, main="", lwd=c(2,1), lty=c(1,3), legend=FALSE)
plot(pd, iso ~ r, col="green", lwd=2, add=TRUE)
legend("center", col=c("blue", "green"), lty=1, lwd=2,

legend=c("divisor=r","divisor=d"))

calculate approximate variance and show POINTWISE confidence bands
pv <- pcf(X, var.approx=TRUE)
plot(pv, cbind(iso, iso+2*sqrt(v), iso-2*sqrt(v)) ~ r)

pcf3est Pair Correlation Function of a Three-Dimensional Point Pattern

Description

Estimates the pair correlation function from a three-dimensional point pattern.

Usage

pcf3est(X, ..., rmax = NULL, nrval = 128,
correction = c("translation", "isotropic"),
delta=NULL, adjust=1, biascorrect=TRUE)

586 pcf3est

Arguments

X Three-dimensional point pattern (object of class "pp3").

... Ignored.

rmax Optional. Maximum value of argument r for which g3(r) will be estimated.

nrval Optional. Number of values of r for which g3(r) will be estimated.

correction Optional. Character vector specifying the edge correction(s) to be applied. See
Details.

delta Optional. Half-width of the Epanechnikov smoothing kernel.

adjust Optional. Adjustment factor for the default value of delta.

biascorrect Logical value. Whether to correct for underestimation due to truncation of the
kernel near r = 0.

Details

For a stationary point process Φ in three-dimensional space, the pair correlation function is

g3(r) =
K ′3(r)

4πr2

where K ′3 is the derivative of the three-dimensional K-function (see K3est).

The three-dimensional point pattern X is assumed to be a partial realisation of a stationary point pro-
cess Φ. The distance between each pair of distinct points is computed. Kernel smoothing is applied
to these distance values (weighted by an edge correction factor) and the result is renormalised to
give the estimate of g3(r).

The available edge corrections are:

"translation": the Ohser translation correction estimator (Ohser, 1983; Baddeley et al, 1993)

"isotropic": the three-dimensional counterpart of Ripley’s isotropic edge correction (Ripley,
1977; Baddeley et al, 1993).

Kernel smoothing is performed using the Epanechnikov kernel with half-width delta. If delta is
missing, the default is to use the rule-of-thumb δ = 0.26/λ1/3 where λ = n/v is the estimated
intensity, computed from the number n of data points and the volume v of the enclosing box. This
default value of delta is multiplied by the factor adjust.

The smoothing estimate of the pair correlation g3(r) is typically an underestimate when r is small,
due to truncation of the kernel at r = 0. If biascorrect=TRUE, the smoothed estimate is approx-
imately adjusted for this bias. This is advisable whenever the dataset contains a sufficiently large
number of points.

Value

A function value table (object of class "fv") that can be plotted, printed or coerced to a data frame
containing the function values.

Additionally the value of delta is returned as an attribute of this object.

pcfcross 587

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rana Moyeed.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 – 71.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 – 212.

See Also

pp3 to create a three-dimensional point pattern (object of class "pp3").

F3est, G3est, K3est for other summary functions of a three-dimensional point pattern.

pcf to estimate the pair correlation function of point patterns in two dimensions or other spaces.

Examples

X <- rpoispp3(250)
Z <- pcf3est(X)
Zbias <- pcf3est(X, biascorrect=FALSE)
if(interactive()) {

opa <- par(mfrow=c(1,2))
plot(Z, ylim.covers=c(0, 1.2))
plot(Zbias, ylim.covers=c(0, 1.2))
par(opa)

}
attr(Z, "delta")

pcfcross Multitype pair correlation function (cross-type)

Description

Calculates an estimate of the cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross(X, i, j, ...,
r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"))

588 pcfcross

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

Details

The cross-type pair correlation function is a generalisation of the pair correlation function pcf to
multitype point patterns.

For two locations x and y separated by a distance r, the probability p(r) of finding a point of type i
at location x and a point of type j at location y is

p(r) = λiλjgi,j(r) dx dy

where λi is the intensity of the points of type i. For a completely random Poisson marked point
process, p(r) = λiλj so gi,j(r) = 1. Indeed for any marked point pattern in which the points of
type i are independent of the points of type j, the theoretical value of the cross-type pair correlation
is gi,j(r) = 1.

For a stationary multitype point process, the cross-type pair correlation function between marks i
and j is formally defined as

gi,j(r) =
K ′i,j(r)

2πr

where K ′i,j is the derivative of the cross-type K function Ki,j(r). of the point process. See Kest
for information about K(r).

The command pcfcross computes a kernel estimate of the cross-type pair correlation function
between marks i and j.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

pcfcross 589

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

The companion function pcfdot computes the corresponding analogue of Kdot.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi,j has been esti-
mated

theo the theoretical value gi,j(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Mark connection function markconnect.

Multitype pair correlation pcfdot, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kcross

590 pcfcross.inhom

Examples

data(amacrine)
p <- pcfcross(amacrine, "off", "on")
p <- pcfcross(amacrine, "off", "on", stoyan=0.1)
plot(p)

pcfcross.inhom Inhomogeneous Multitype Pair Correlation Function (Cross-Type)

Description

Estimates the inhomogeneous cross-type pair correlation function for a multitype point pattern.

Usage

pcfcross.inhom(X, i, j, lambdaI = NULL, lambdaJ = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, varcov = NULL)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous cross-
type pair correlation function gij(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

j The type (mark value) of the points in X to which distances are measured. A
character string (or something that will be converted to a character string). De-
faults to the second level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdaJ Optional. Values of the estimated intensity function of the points of type j. A
numeric vector, pixel image or function(x,y).

r Vector of values for the argument r at which gij(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

... Other arguments passed to the kernel density estimation function density.default.

pcfcross.inhom 591

stoyan Bandwidth coefficient; see Details.

correction Choice of edge correction.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambdaI or lambdaJ is estimated by kernel smoothing.

Details

The inhomogeneous cross-type pair correlation function gij(r) is a summary of the dependence
between two types of points in a multitype spatial point process that does not have a uniform density
of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points, of types
i and j respectively, at locations x and y separated by a distance r is equal to

p(r) = λi(x)lambdaj(y)g(r) dxdy

where λi is the intensity function of the process of points of type i. For a multitype Poisson point
process, this probability is p(r) = λi(x)λj(y) so gij(r) = 1.

The command pcfcross.inhom estimates the inhomogeneous pair correlation using a modified
version of the algorithm in pcf.ppp.

If the arguments lambdaI and lambdaJ are missing or null, they are estimated from X by kernel
smoothing using a leave-one-out estimator.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous cross-type
pair correlation function gij(r) has been estimated

theo vector of values equal to 1, the theoretical value of gij(r) for the Poisson process

trans vector of values of gij(r) estimated by translation correction

iso vector of values of gij(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pcf.ppp, pcfinhom, pcfcross, pcfdot.inhom

Examples

data(amacrine)
plot(pcfcross.inhom(amacrine, "on", "off", stoyan=0.1),

legendpos="bottom")

592 pcfdot

pcfdot Multitype pair correlation function (i-to-any)

Description

Calculates an estimate of the multitype pair correlation function (from points of type i to points of
any type) for a multitype point pattern.

Usage

pcfdot(X, i, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("isotropic", "Ripley", "translate"),
divisor = c("r", "d"))

Arguments

X The observed point pattern, from which an estimate of the dot-type pair corre-
lation function gi•(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule; see Details.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
Details.

Details

This is a generalisation of the pair correlation function pcf to multitype point patterns.

For two locations x and y separated by a nonzero distance r, the probability p(r) of finding a point
of type i at location x and a point of any type at location y is

p(r) = λiλgi•(r) dx dy

where λ is the intensity of all points, and λi is the intensity of the points of type i. For a completely
random Poisson marked point process, p(r) = λiλ so gi•(r) = 1.

pcfdot 593

For a stationary multitype point process, the type-i-to-any-type pair correlation function between
marks i and j is formally defined as

gi•(r) =
K ′i•(r)

2πr

where K ′i• is the derivative of the type-i-to-any-type K function Ki•(r). of the point process. See
Kdot for information about Ki•(r).

The command pcfdot computes a kernel estimate of the multitype pair correlation function from
points of type i to points of any type.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285). That is, h = c/

√
λ, where λ is the (estimated) intensity of the unmarked

point process, and c is a constant in the range from 0.1 to 0.2. The argument stoyan determines the
value of c.

The companion function pcfcross computes the corresponding analogue of Kcross.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Essentially a data frame containing columns

r the vector of values of the argument r at which the function gi• has been esti-
mated

theo the theoretical value gi•(r) = 1 for independent marks.

together with columns named "border", "bord.modif", "iso" and/or "trans", according to the
selected edge corrections. These columns contain estimates of the function gi,j obtained by the
edge corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

594 pcfdot.inhom

See Also

Mark connection function markconnect.

Multitype pair correlation pcfcross, pcfmulti.

Pair correlation pcf,pcf.ppp.

Kdot

Examples

data(amacrine)
p <- pcfdot(amacrine, "on")
p <- pcfdot(amacrine, "on", stoyan=0.1)
plot(p)

pcfdot.inhom Inhomogeneous Multitype Pair Correlation Function (Type-i-To-Any-
Type)

Description

Estimates the inhomogeneous multitype pair correlation function (from type i to any type) for a
multitype point pattern.

Usage

pcfdot.inhom(X, i, lambdaI = NULL, lambdadot = NULL, ...,
r = NULL, breaks = NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma = NULL, varcov = NULL)

Arguments

X The observed point pattern, from which an estimate of the inhomogeneous mul-
titype pair correlation function gi•(r) will be computed. It must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i The type (mark value) of the points in X from which distances are measured.
A character string (or something that will be converted to a character string).
Defaults to the first level of marks(X).

lambdaI Optional. Values of the estimated intensity function of the points of type i. Ei-
ther a vector giving the intensity values at the points of type i, a pixel image (ob-
ject of class "im") giving the intensity values at all locations, or a function(x,y)
which can be evaluated to give the intensity value at any location.

lambdadot Optional. Values of the estimated intensity function of the point pattern X. A
numeric vector, pixel image or function(x,y).

pcfdot.inhom 595

r Vector of values for the argument r at which gi•(r) should be evaluated. There
is a sensible default.

breaks This argument is for internal use only.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Bandwidth coefficient; see Details.

correction Choice of edge correction.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambdaI or lambdadot is estimated by kernel smoothing.

Details

The inhomogeneous multitype (type i to any type) pair correlation function gi•(r) is a summary of
the dependence between different types of points in a multitype spatial point process that does not
have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding a point of type i at
location x and another point of any type at location y, where x and y are separated by a distance r,
is equal to

p(r) = λi(x)lambda(y)g(r) dxdy

where λi is the intensity function of the process of points of type i, and where λ is the intensity
function of the points of all types. For a multitype Poisson point process, this probability is p(r) =
λi(x)λ(y) so gi•(r) = 1.

The command pcfdot.inhom estimates the inhomogeneous multitype pair correlation using a mod-
ified version of the algorithm in pcf.ppp.

If the arguments lambdaI and lambdadot are missing or null, they are estimated from X by kernel
smoothing using a leave-one-out estimator.

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous multitype
pair correlation function gi•(r) has been estimated

theo vector of values equal to 1, the theoretical value of gi•(r) for the Poisson process

trans vector of values of gi•(r) estimated by translation correction

iso vector of values of gi•(r) estimated by Ripley isotropic correction

as required.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

596 pcfinhom

See Also

pcf.ppp, pcfinhom, pcfdot, pcfcross.inhom

Examples

data(amacrine)
plot(pcfdot.inhom(amacrine, "on", stoyan=0.1), legendpos="bottom")

pcfinhom Inhomogeneous Pair Correlation Function

Description

Estimates the inhomogeneous pair correlation function of a point pattern using kernel methods.

Usage

pcfinhom(X, lambda = NULL, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
renormalise = TRUE, normpower=1,
update = TRUE, leaveoneout = TRUE,
reciplambda = NULL,
sigma = NULL, varcov = NULL, close=NULL)

Arguments

X A point pattern (object of class "ppp").

lambda Optional. Values of the estimated intensity function. Either a vector giving the
intensity values at the points of the pattern X, a pixel image (object of class "im")
giving the intensity values at all locations, a fitted point process model (object
of class "ppm", "kppm" or "dppm") or a function(x,y) which can be evaluated
to give the intensity value at any location.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default. Either a sin-
gle numeric value, or a character string specifying a bandwidth selection rule
recognised by density.default. If bw is missing or NULL, the default value is
computed using Stoyan’s rule of thumb: see bw.stoyan.

... Other arguments passed to the kernel density estimation function density.default.

stoyan Coefficient for Stoyan’s bandwidth selection rule; see bw.stoyan.

correction Character string or character vector specifying the choice of edge correction.
See Kest for explanation and options.

pcfinhom 597

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf.ppp.

renormalise Logical. Whether to renormalise the estimate. See Details.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical. If lambda is a fitted model (class "ppm", "kppm" or "dppm") and
update=TRUE (the default), the model will first be refitted to the data X (us-
ing update.ppm or update.kppm) before the fitted intensity is computed. If
update=FALSE, the fitted intensity of the model will be computed without re-
fitting it to X.

leaveoneout Logical value (passed to density.ppp or fitted.ppm) specifying whether to
use a leave-one-out rule when calculating the intensity.

reciplambda Alternative to lambda. Values of the estimated reciprocal 1/λ of the intensity
function. Either a vector giving the reciprocal intensity values at the points of
the pattern X, a pixel image (object of class "im") giving the reciprocal intensity
values at all locations, or a function(x,y) which can be evaluated to give the
reciprocal intensity value at any location.

sigma,varcov Optional arguments passed to density.ppp to control the smoothing band-
width, when lambda is estimated by kernel smoothing.

close Advanced use only. Precomputed data. See section on Advanced Use.

Details

The inhomogeneous pair correlation function ginhom(r) is a summary of the dependence between
points in a spatial point process that does not have a uniform density of points.

The best intuitive interpretation is the following: the probability p(r) of finding two points at loca-
tions x and y separated by a distance r is equal to

p(r) = λ(x)lambda(y)g(r) dxdy

where λ is the intensity function of the point process. For a Poisson point process with intensity
function λ, this probability is p(r) = λ(x)λ(y) so ginhom(r) = 1.

The inhomogeneous pair correlation function is related to the inhomogeneous K function through

ginhom(r) =
K ′inhom(r)

2πr

where K ′inhom(r) is the derivative of Kinhom(r), the inhomogeneous K function. See Kinhom for
information about Kinhom(r).

The command pcfinhom estimates the inhomogeneous pair correlation using a modified version of
the algorithm in pcf.ppp.

If renormalise=TRUE (the default), then the estimates are multiplied by cnormpower where c =
area(W)/

∑
(1/λ(xi)). This rescaling reduces the variability and bias of the estimate in small sam-

ples and in cases of very strong inhomogeneity. The default value of normpower is 1 but the most
sensible value is 2, which would correspond to rescaling the lambda values so that

∑
(1/λ(xi)) =

area(W).

598 pcfmulti

Value

A function value table (object of class "fv"). Essentially a data frame containing the variables

r the vector of values of the argument r at which the inhomogeneous pair correla-
tion function ginhom(r) has been estimated

theo vector of values equal to 1, the theoretical value of ginhom(r) for the Poisson
process

trans vector of values of ginhom(r) estimated by translation correction
iso vector of values of ginhom(r) estimated by Ripley isotropic correction

as required.

Advanced Use

To perform the same computation using several different bandwidths bw, it is efficient to use the
argument close. This should be the result of closepairs(X, rmax) for a suitably large value of
rmax, namely rmax >= max(r) + 3 * bw.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pcf, pcf.ppp, bw.stoyan, bw.pcf, Kinhom

Examples

data(residualspaper)
X <- residualspaper$Fig4b
plot(pcfinhom(X, stoyan=0.2, sigma=0.1))
fit <- ppm(X, ~polynom(x,y,2))
plot(pcfinhom(X, lambda=fit, normpower=2))

pcfmulti Marked pair correlation function

Description

For a marked point pattern, estimate the multitype pair correlation function using kernel methods.

Usage

pcfmulti(X, I, J, ..., r = NULL,
kernel = "epanechnikov", bw = NULL, stoyan = 0.15,
correction = c("translate", "Ripley"),
divisor = c("r", "d"),
Iname = "points satisfying condition I",
Jname = "points satisfying condition J")

pcfmulti 599

Arguments

X The observed point pattern, from which an estimate of the cross-type pair corre-
lation function gij(r) will be computed. It must be a multitype point pattern (a
marked point pattern whose marks are a factor).

I Subset index specifying the points of X from which distances are measured.

J Subset index specifying the points in X to which distances are measured.

... Ignored.

r Vector of values for the argument r at which g(r) should be evaluated. There is
a sensible default.

kernel Choice of smoothing kernel, passed to density.default.

bw Bandwidth for smoothing kernel, passed to density.default.

stoyan Coefficient for default bandwidth rule.

correction Choice of edge correction.

divisor Choice of divisor in the estimation formula: either "r" (the default) or "d".

Iname,Jname Optional. Character strings describing the members of the subsets I and J.

Details

This is a generalisation of pcfcross to arbitrary collections of points.

The algorithm measures the distance from each data point in subset I to each data point in subset J,
excluding identical pairs of points. The distances are kernel-smoothed and renormalised to form a
pair correlation function.

• If divisor="r" (the default), then the multitype counterpart of the standard kernel estima-
tor (Stoyan and Stoyan, 1994, pages 284–285) is used. By default, the recommendations of
Stoyan and Stoyan (1994) are followed exactly.

• If divisor="d" then a modified estimator is used: the contribution from an interpoint distance
dij to the estimate of g(r) is divided by dij instead of dividing by r. This usually improves
the bias of the estimator when r is close to zero.

There is also a choice of spatial edge corrections (which are needed to avoid bias due to edge effects
associated with the boundary of the spatial window): correction="translate" is the Ohser-
Stoyan translation correction, and correction="isotropic" or "Ripley" is Ripley’s isotropic
correction.

The arguments I and J specify two subsets of the point pattern X. They may be any type of subset
indices, for example, logical vectors of length equal to npoints(X), or integer vectors with entries
in the range 1 to npoints(X), or negative integer vectors.

Alternatively, I and J may be functions that will be applied to the point pattern X to obtain index
vectors. If I is a function, then evaluating I(X) should yield a valid subset index. This option is
useful when generating simulation envelopes using envelope.

The choice of smoothing kernel is controlled by the argument kernel which is passed to density.
The default is the Epanechnikov kernel.

600 Penttinen

The bandwidth of the smoothing kernel can be controlled by the argument bw. Its precise interpre-
tation is explained in the documentation for density.default. For the Epanechnikov kernel with
support [−h, h], the argument bw is equivalent to h/

√
5.

If bw is not specified, the default bandwidth is determined by Stoyan’s rule of thumb (Stoyan and
Stoyan, 1994, page 285) applied to the points of type j. That is, h = c/

√
λ, where λ is the

(estimated) intensity of the point process of type j, and c is a constant in the range from 0.1 to 0.2.
The argument stoyan determines the value of c.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pcfcross, pcfdot, pcf.ppp.

Examples

adult <- (marks(longleaf) >= 30)
juvenile <- !adult
p <- pcfmulti(longleaf, adult, juvenile)

Penttinen Penttinen Interaction

Description

Creates an instance of the Penttinen pairwise interaction point process model, which can then be
fitted to point pattern data.

Usage

Penttinen(r)

Arguments

r circle radius

Penttinen 601

Details

Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction
point process with interaction factor

h(d) = eθA(d) = γA(d)

between each pair of points separated by a distance d. Here A(d) is the area of intersection
between two discs of radius r separated by a distance d, normalised so that A(0) = 1.

The scale of interaction is controlled by the disc radius r: two points interact if they are closer than
2r apart. The strength of interaction is controlled by the canonical parameter θ, which must be less
than or equal to zero, or equivalently by the parameter γ = eθ, which must lie between 0 and 1.

The potential is inhibitory, i.e.\ this model is only appropriate for regular point patterns. For γ = 0
the model is a hard core process with hard core diameter 2r. For γ = 1 the model is a Poisson
process.

The irregular parameter r must be given in the call to Penttinen, while the regular parameter θ
will be estimated.

This model can be considered as a pairwise approximation to the area-interaction model AreaInter.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Cormack, R.M. (1979) Spatial aspects of competition between individuals. Pages 151–212 in Spa-
tial and Temporal Analysis in Ecology, eds. R.M. Cormack and J.K. Ord, International Co-operative
Publishing House, Fairland, MD, USA.

Penttinen, A. (1984) Modelling Interaction in Spatial Point Patterns: Parameter Estimation by the
Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics 7,
University of Jyväskylä, Finland.

See Also

ppm, ppm.object, Pairwise, AreaInter.

Examples

fit <- ppm(cells ~ 1, Penttinen(0.07))
fit
reach(fit) # interaction range is circle DIAMETER

602 plot.bermantest

plot.bermantest Plot Result of Berman Test

Description

Plot the result of Berman’s test of goodness-of-fit

Usage

S3 method for class 'bermantest'
plot(x, ...,

lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2)

Arguments

x Object to be plotted. An object of class "bermantest" produced by berman.test.

... extra arguments that will be passed to the plotting function plot.ecdf.

col,lwd,lty The width, colour and type of lines used to plot the empirical distribution curve.

col0,lwd0,lty0 The width, colour and type of lines used to plot the predicted (null) distribution
curve.

Details

This is the plot method for the class "bermantest". An object of this class represents the out-
come of Berman’s test of goodness-of-fit of a spatial Poisson point process model, computed by
berman.test.

For the Z1 test (i.e. if x was computed using berman.test(,which="Z1")), the plot displays
the two cumulative distribution functions that are compared by the test: namely the empirical cu-
mulative distribution function of the covariate at the data points, F̂ , and the predicted cumulative
distribution function of the covariate under the model, F0, both plotted against the value of the co-
variate. Two vertical lines show the mean values of these two distributions. If the model is correct,
the two curves should be close; the test is based on comparing the two vertical lines.

For the Z2 test (i.e. if x was computed using berman.test(,which="Z2")), the plot displays the
empirical cumulative distribution function of the values Ui = F0(Yi) where Yi is the value of the
covariate at the i-th data point. The diagonal line with equation y = x is also shown. Two vertical
lines show the mean of the values Ui and the value 1/2. If the model is correct, the two curves
should be close. The test is based on comparing the two vertical lines.

Value

NULL.

plot.cdftest 603

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

berman.test

Examples

synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(-x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X, ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- berman.test(fit0, xcoord, "Z1")

plot result of test
plot(k, col="red", col0="green")

Z2 test
k2 <- berman.test(fit0, xcoord, "Z2")
plot(k2, col="red", col0="green")

plot.cdftest Plot a Spatial Distribution Test

Description

Plot the result of a spatial distribution test computed by cdf.test.

Usage

S3 method for class 'cdftest'
plot(x, ...,

style=c("cdf", "PP", "QQ"),
lwd=par("lwd"), col=par("col"), lty=par("lty"),
lwd0=lwd, col0=2, lty0=2,
do.legend)

604 plot.cdftest

Arguments

x Object to be plotted. An object of class "cdftest" produced by a method for
cdf.test.

... extra arguments that will be passed to the plotting function plot.default.

style Style of plot. See Details.

col,lwd,lty The width, colour and type of lines used to plot the empirical curve (the empiri-
cal distribution, or PP plot or QQ plot).

col0,lwd0,lty0 The width, colour and type of lines used to plot the reference curve (the predicted
distribution, or the diagonal).

do.legend Logical value indicating whether to add an explanatory legend. Applies only
when style="cdf".

Details

This is the plot method for the class "cdftest". An object of this class represents the outcome of
a spatial distribution test, computed by cdf.test, and based on either the Kolmogorov-Smirnov,
Cramér-von Mises or Anderson-Darling test.

If style="cdf" (the default), the plot displays the two cumulative distribution functions that are
compared by the test: namely the empirical cumulative distribution function of the covariate at
the data points, and the predicted cumulative distribution function of the covariate under the model,
both plotted against the value of the covariate. The Kolmogorov-Smirnov test statistic (for example)
is the maximum vertical separation between the two curves.

If style="PP" then the P-P plot is drawn. The x coordinates of the plot are cumulative probabilities
for the covariate under the model. The y coordinates are cumulative probabilities for the covariate
at the data points. The diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov
test statistic is the maximum vertical separation between the P-P plot and the diagonal reference
line.

If style="QQ" then the Q-Q plot is drawn. The x coordinates of the plot are quantiles of the
covariate under the model. The y coordinates are quantiles of the covariate at the data points. The
diagonal line y = x is also drawn for reference. The Kolmogorov-Smirnov test statistic cannot be
read off the Q-Q plot.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

cdf.test

plot.dppm 605

Examples

op <- options(useFancyQuotes=FALSE)

synthetic data: nonuniform Poisson process
X <- rpoispp(function(x,y) { 100 * exp(x) }, win=square(1))

fit uniform Poisson process
fit0 <- ppm(X, ~1)

test covariate = x coordinate
xcoord <- function(x,y) { x }

test wrong model
k <- cdf.test(fit0, xcoord)

plot result of test
plot(k, lwd0=3)

plot(k, style="PP")

plot(k, style="QQ")

options(op)

plot.dppm Plot a fitted determinantal point process

Description

Plots a fitted determinantal point process model, displaying the fitted intensity and the fitted sum-
mary function.

Usage

S3 method for class 'dppm'
plot(x, ..., what=c("intensity", "statistic"))

Arguments

x Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to plot.ppm and plot.fv to control the plot.

what Character vector determining what will be plotted.

Details

This is a method for the generic function plot for the class "dppm" of fitted determinantal point
process models.

606 plot.envelope

The argument x should be a determinantal point process model (object of class "dppm") obtained
using the function dppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity" and "statistic".

This command is capable of producing two different plots:

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dppm, plot.ppm,

Examples

fit <- dppm(swedishpines ~ x + y, dppGauss, method="c")
plot(fit)

plot.envelope Plot a Simulation Envelope

Description

Plot method for the class "envelope".

Usage

S3 method for class 'envelope'
plot(x, ..., main)

Arguments

x An object of class "envelope", containing the variables to be plotted or vari-
ables from which the plotting coordinates can be computed.

main Main title for plot.

... Extra arguments passed to plot.fv.

plot.fasp 607

Details

This is the plot method for the class "envelope" of simulation envelopes. Objects of this class are
created by the command envelope.

This plot method is currently identical to plot.fv.

Its default behaviour is to shade the region between the upper and lower envelopes in a light grey
colour. To suppress the shading and plot the upper and lower envelopes as curves, set shade=NULL.
To change the colour of the shading, use the argument shadecol which is passed to plot.fv.

See plot.fv for further information on how to control the plot.

Value

Either NULL, or a data frame giving the meaning of the different line types and colours.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope, plot.fv

Examples

data(cells)
E <- envelope(cells, Kest, nsim=19)
plot(E)
plot(E, sqrt(./pi) ~ r)

plot.fasp Plot a Function Array

Description

Plots an array of summary functions, usually associated with a point pattern, stored in an object of
class "fasp". A method for plot.

Usage

S3 method for class 'fasp'
plot(x,formule=NULL, ...,

subset=NULL, title=NULL, banner=TRUE,
transpose=FALSE,
samex=FALSE, samey=FALSE,
mar.panel=NULL,
outerlabels=TRUE, cex.outerlabels=1.25,
legend=FALSE)

608 plot.fasp

Arguments

x An object of class "fasp" representing a function array.
formule A formula or list of formulae indicating what variables are to be plotted against

what variable. Each formula is either an R language formula object, or a string
that can be parsed as a formula. If formule is a list, its kth component should
be applicable to the (i, j)th plot where x$which[i,j]=k. If the formula is left
as NULL, then plot.fasp attempts to use the component default.formula of
x. If that component is NULL as well, it gives up.

... Arguments passed to plot.fv to control the individual plot panels.
subset A logical vector, or a vector of indices, or an expression or a character string,

or a list of such, indicating a subset of the data to be included in each plot. If
subset is a list, its kth component should be applicable to the (i, j)th plot where
x$which[i,j]=k.

title Overall title for the plot.
banner Logical. If TRUE, the overall title is plotted. If FALSE, the overall title is not

plotted and no space is allocated for it.
transpose Logical. If TRUE, rows and columns will be exchanged.
samex,samey Logical values indicating whether all individual plot panels should have the

same x axis limits and the same y axis limits, respectively. This makes it easier
to compare the plots.

mar.panel Vector of length 4 giving the value of the graphics parameter mar controlling the
size of plot margins for each individual plot panel. See par.

outerlabels Logical. If TRUE, the row and column names of the array of functions are plotted
in the margins of the array of plot panels. If FALSE, each individual plot panel is
labelled by its row and column name.

cex.outerlabels

Character expansion factor for row and column labels of array.
legend Logical flag determining whether to plot a legend in each panel.

Details

An object of class "fasp" represents an array of summary functions, usually associated with a point
pattern. See fasp.object for details. Such an object is created, for example, by alltypes.

The function plot.fasp is a method for plot. It calls plot.fv to plot the individual panels.

For information about the interpretation of the arguments formule and subset, see plot.fv.

Arguments that are often passed through ... include col to control the colours of the different lines
in a panel, and lty and lwd to control the line type and line width of the different lines in a panel.
The argument shade can also be used to display confidence intervals or significance bands as filled
grey shading. See plot.fv.

The argument title, if present, will determine the overall title of the plot. If it is absent, it defaults
to x$title. Titles for the individual plot panels will be taken from x$titles.

Value

None.

plot.fv 609

Warnings

(Each component of) the subset argument may be a logical vector (of the same length as the
vectors of data which are extracted from x), or a vector of indices, or an expression such as
expression(r<=0.2), or a text string, such as "r<=0.2".

Attempting a syntax such as subset = r<=0.2 (without wrapping r<=0.2 either in quote marks or
in expression()) will cause this function to fall over.

Variables referred to in any formula must exist in the data frames stored in x. What the names of
these variables are will of course depend upon the nature of x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

alltypes, plot.fv, fasp.object

Examples

if(interactive()) {
X.G <- alltypes(amacrine,"G")
plot(X.G)
plot(X.G,subset="r<=0.2")
plot(X.G,formule=asin(sqrt(cbind(km,theo))) ~ asin(sqrt(theo)))
plot(X.G,fo=cbind(km,theo) - theo~r, subset="theo<=0.9")
}

plot.fv Plot Function Values

Description

Plot method for the class "fv".

Usage

S3 method for class 'fv'
plot(x, fmla, ..., subset=NULL, lty=NULL, col=NULL, lwd=NULL,

xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, ylim.covers=NULL,
legend=!add, legendpos="topleft", legendavoid=missing(legendpos),
legendmath=TRUE, legendargs=list(),
shade=fvnames(x, ".s"), shadecol="grey",
add=FALSE, log="",
mathfont=c("italic", "plain", "bold", "bolditalic"),
limitsonly=FALSE)

610 plot.fv

Arguments

x An object of class "fv", containing the variables to be plotted or variables from
which the plotting coordinates can be computed.

fmla an R language formula determining which variables or expressions are plotted.
Either a formula object, or a string that can be parsed as a formula. See Details.

subset (optional) subset of rows of the data frame that will be plotted.

lty (optional) numeric vector of values of the graphical parameter lty controlling
the line style of each plot.

col (optional) numeric vector of values of the graphical parameter col controlling
the colour of each plot.

lwd (optional) numeric vector of values of the graphical parameter lwd controlling
the line width of each plot.

xlim (optional) range of x axis

ylim (optional) range of y axis

xlab (optional) label for x axis

ylab (optional) label for y axis

... Extra arguments passed to plot.default.

ylim.covers Optional vector of y values that must be included in the y axis. For example
ylim.covers=0 will ensure that the y axis includes the origin.

legend Logical flag or NULL. If legend=TRUE, the algorithm plots a legend in the top left
corner of the plot, explaining the meaning of the different line types and colours.

legendpos The position of the legend. Either a character string keyword (see legend for
keyword options) or a pair of coordinates in the format list(x,y). Alterna-
tively if legendpos="float", a location will be selected inside the plot region,
avoiding the graphics.

legendavoid Whether to avoid collisions between the legend and the graphics. Logical value.
If TRUE, the code will check for collisions between the legend box and the graph-
ics, and will override legendpos if a collision occurs. If FALSE, the value of
legendpos is always respected.

legendmath Logical. If TRUE, the legend will display the mathematical notation for each
curve. If FALSE, the legend text is the identifier (column name) for each curve.

legendargs Named list containing additional arguments to be passed to legend controlling
the appearance of the legend.

shade A character vector giving the names of two columns of x, or another type of
index that identifies two columns. When the corresponding curves are plotted,
the region between the curves will be shaded in light grey. The object x may or
may not contain two columns which are designated as boundaries for shading;
they are identified by fvnames(x, ".s"). The default is to shade between these
two curves if they exist. To suppress this behaviour, set shade=NULL.

shadecol The colour to be used in the shade plot. A character string or an integer speci-
fying a colour.

add Logical. Whether the plot should be added to an existing plot

plot.fv 611

log A character string which contains "x" if the x axis is to be logarithmic, "y" if the
y axis is to be logarithmic and "xy" or "yx" if both axes are to be logarithmic.

mathfont Character string. The font to be used for mathematical expressions in the axis
labels and the legend.

limitsonly Logical. If FALSE, plotting is performed normally. If TRUE, no plotting is per-
formed at all; just the x and y limits of the plot are computed and returned.

Details

This is the plot method for the class "fv".

The use of the argument fmla is like plot.formula, but offers some extra functionality.

The left and right hand sides of fmla are evaluated, and the results are plotted against each other
(the left side on the y axis against the right side on the x axis).

The left and right hand sides of fmla may be the names of columns of the data frame x, or expres-
sions involving these names. If a variable in fmla is not the name of a column of x, the algorithm
will search for an object of this name in the environment where plot.fv was called, and then in the
enclosing environment, and so on.

Multiple curves may be specified by a single formula of the form cbind(y1,y2,...,yn) ~ x, where
x,y1,y2,...,yn are expressions involving the variables in the data frame. Each of the variables
y1,y2,...,yn in turn will be plotted against x. See the examples.

Convenient abbreviations which can be used in the formula are

• the symbol . which represents all the columns in the data frame that will be plotted by default;

• the symbol .x which represents the function argument;

• the symbol .y which represents the recommended value of the function.

For further information, see fvnames.

The value returned by this plot function indicates the meaning of the line types and colours in the
plot. It can be used to make a suitable legend for the plot if you want to do this by hand. See the
examples.

The argument shade can be used to display critical bands or confidence intervals. If it is not NULL,
then it should be a subset index for the columns of x, that identifies exactly 2 columns. When the
corresponding curves are plotted, the region between the curves will be shaded in light grey. See
the Examples.

The default values of lty, col and lwd can be changed using spatstat.options("plot.fv").

Use type = "n" to create the plot region and draw the axes without plotting any data.

Use limitsonly=TRUE to suppress all plotting and just compute the x and y limits. This can be
used to calculate common x and y scales for several plots.

To change the kind of parenthesis enclosing the explanatory text about the unit of length, use
spatstat.options('units.paren')

Value

Invisible: either NULL, or a data frame giving the meaning of the different line types and colours.

612 plot.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fv.object, Kest

Examples

K <- Kest(cells)
K is an object of class "fv"

plot(K, iso ~ r) # plots iso against r

plot(K, sqrt(iso/pi) ~ r) # plots sqrt(iso/r) against r

plot(K, cbind(iso,theo) ~ r) # plots iso against r AND theo against r

plot(K, . ~ r) # plots all available estimates of K against r

plot(K, sqrt(./pi) ~ r) # plots all estimates of L-function
L(r) = sqrt(K(r)/pi)

plot(K, cbind(iso,theo) ~ r, col=c(2,3))
plots iso against r in colour 2
and theo against r in colour 3

plot(K, iso ~ r, subset=quote(r < 0.2))
plots iso against r for r < 10

Can't remember the names of the columns? No problem..
plot(K, sqrt(./pi) ~ .x)

making a legend by hand
v <- plot(K, . ~ r, legend=FALSE)
legend("topleft", legend=v$meaning, lty=v$lty, col=v$col)

significance bands
KE <- envelope(cells, Kest, nsim=19)
plot(KE, shade=c("hi", "lo"))

how to display two functions on a common scale
Kr <- Kest(redwood)
a <- plot(K, limitsonly=TRUE)
b <- plot(Kr, limitsonly=TRUE)
xlim <- range(a$xlim, b$xlim)
ylim <- range(a$ylim, b$ylim)
opa <- par(mfrow=c(1,2))
plot(K, xlim=xlim, ylim=ylim)
plot(Kr, xlim=xlim, ylim=ylim)
par(opa)

plot.influence.ppm 613

plot.influence.ppm Plot Influence Measure

Description

Plots an influence measure that has been computed by influence.ppm.

Usage

S3 method for class 'influence.ppm'
plot(x, ..., multiplot=TRUE)

Arguments

x Influence measure (object of class "influence.ppm") computed by influence.ppm.

... Arguments passed to plot.ppp to control the plotting.

multiplot Logical value indicating whether it is permissible to plot more than one panel.
This happens if the original point process model is multitype.

Details

This is the plot method for objects of class "influence.ppm". These objects are computed by the
command influence.ppm.

For a point process model fitted by maximum likelihood or maximum pseudolikelihood (the de-
fault), influence values are associated with the data points. The display shows circles centred at the
data points with radii proportional to the influence values. If the original data were a multitype point
pattern, then if multiplot=TRUE (the default), there is one such display for each possible type of
point, while if multiplot=FALSE there is a single plot combining all data points regardless of type.

For a model fitted by logistic composite likelihood (method="logi" in ppm) influence values are
associated with the data points and also with the dummy points used to fit the model. The display
consist of two panels, for the data points and dummy points respectively, showing circles with radii
proportional to the influence values. If the original data were a multitype point pattern, then if
multiplot=TRUE (the default), there is one pair of panels for each possible type of point, while if
multiplot=FALSE there is a single plot combining all data and dummy points regardless of type.

Use the argument clipwin to restrict the plot to a subset of the full data.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

614 plot.kppm

References

Baddeley, A. and Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial
point process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

influence.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
plot(influence(fit))

plot.kppm Plot a fitted cluster point process

Description

Plots a fitted cluster point process model, displaying the fitted intensity and the fitted K-function.

Usage

S3 method for class 'kppm'
plot(x, ...,

what=c("intensity", "statistic", "cluster"),
pause=interactive(),
xname)

Arguments

x Fitted cluster point process model. An object of class "kppm".
... Arguments passed to plot.ppm and plot.fv to control the plot.
what Character vector determining what will be plotted.
pause Logical value specifying whether to pause between plots.
xname Optional. Character string. The name of the object x for use in the title of the

plot.

Details

This is a method for the generic function plot for the class "kppm" of fitted cluster point process
models.

The argument x should be a cluster point process model (object of class "kppm") obtained using the
function kppm.

The choice of plots (and the order in which they are displayed) is controlled by the argument what.
The options (partially matched) are "intensity", "statistic" and "cluster".

This command is capable of producing three different plots:

plot.laslett 615

what="intensity" specifies the fitted intensity of the model, which is plotted using plot.ppm. By
default this plot is not produced for stationary models.

what="statistic" specifies the empirical and fitted summary statistics, which are plotted using
plot.fv. This is only meaningful if the model has been fitted using the Method of Minimum
Contrast, and it is turned off otherwise.

what="cluster" specifies a fitted cluster, which is computed by clusterfield and plotted by
plot.im. It is only meaningful for Poisson cluster (incl. Neyman-Scott) processes, and it is
turned off for log-Gaussian Cox processes (LGCP). If the model is stationary (and non-LGCP)
this option is turned on by default and shows a fitted cluster positioned at the centroid of the
observation window. For non-stationary (and non-LGCP) models this option is only invoked
if explicitly told so, and in that case an additional argument locations (see clusterfield)
must be given to specify where to position the parent point(s) .

Alternatively what="all" selects all available options.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, plot.ppm,

Examples

data(redwood)
fit <- kppm(redwood~1, "Thomas")
plot(fit)

plot.laslett Plot Laslett Transform

Description

Plot the result of Laslett’s Transform.

Usage

S3 method for class 'laslett'
plot(x, ...,

Xpars = list(box = TRUE, col = "grey"),
pointpars = list(pch = 3, cols = "blue"),
rectpars = list(lty = 3, border = "green"))

616 plot.leverage.ppm

Arguments

x Object of class "laslett" produced by laslett representing the result of Laslett’s
transform.

... Additional plot arguments passed to plot.solist.

Xpars A list of plot arguments passed to plot.owin or plot.im to display the original
region X before transformation.

pointpars A list of plot arguments passed to plot.ppp to display the tangent points.

rectpars A list of plot arguments passed to plot.owin to display the maximal rectangle.

Details

This is the plot method for the class "laslett".

The function laslett applies Laslett’s Transform to a spatial region X and returns an object of class
"laslett" representing the result of the transformation. The result is plotted by this method.

The plot function plot.solist is used to align the before-and-after pictures. See plot.solist for
further options to control the plot.

Value

None.

Author(s)

Kassel Hingee and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

laslett

Examples

b <- laslett(heather$coarse, plotit=FALSE)
plot(b, main="Heather Data")

plot.leverage.ppm Plot Leverage Function

Description

Generate a pixel image plot, or a contour plot, or a perspective plot, of a leverage function that has
been computed by leverage.ppm.

plot.leverage.ppm 617

Usage

S3 method for class 'leverage.ppm'
plot(x, ...,

what=c("smooth", "nearest", "exact"),
showcut=TRUE,
args.cut=list(drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
contour(x, ...,

what=c("smooth", "nearest"),
showcut=TRUE,
args.cut=list(col=3, lwd=3, drawlabels=FALSE),
multiplot=TRUE)

S3 method for class 'leverage.ppm'
persp(x, ...,

what=c("smooth", "nearest"),
main, zlab="leverage")

Arguments

x Leverage function (object of class "leverage.ppm") computed by leverage.ppm.
... Arguments passed to plot.im or contour.im or persp.im controlling the plot.
what Character string (partially matched) specifying the values to be plotted. See

Details.
showcut Logical. If TRUE, a contour line is plotted at the level equal to the theoretical

mean of the leverage.
args.cut Optional list of arguments passed to contour.default to control the plotting

of the contour line for the mean leverage.
multiplot Logical value indicating whether it is permissible to display several plot panels.
main Optional main title. A character string or character vector.
zlab Label for the z axis. A character string.

Details

These functions are the plot, contour and persp methods for objects of class "leverage.ppm".
Such objects are computed by the command leverage.ppm.

The plot method displays the leverage function as a colour pixel image using plot.im, and draws a
single contour line at the mean leverage value using contour.default. Use the argument clipwin
to restrict the plot to a subset of the full data.

The contour method displays the leverage function as a contour plot, and also draws a single
contour line at the mean leverage value, using contour.im.

The persp method displays the leverage function as a surface in perspective view, using persp.im.

Since the exact values of leverage are computed only at a finite set of quadrature locations, there
are several options for these plots:

618 plot.leverage.ppm

what="smooth": (the default) an image plot showing a smooth function, obtained by applying
kernel smoothing to the exact leverage values;

what="nearest": an image plot showing a piecewise-constant function, obtained by taking the
exact leverage value at the nearest quadrature point;

what="exact": a symbol plot showing the exact values of leverage as circles, centred at the quadra-
ture points, with diameters proportional to leverage.

The pixel images are already contained in the object x and were computed by leverage.ppm; the
resolution of these images is controlled by arguments to leverage.ppm.

Value

Same as for plot.im, contour.im and persp.im respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Chang, Y.M. and Song, Y. (2013) Leverage and influence diagnostics for spatial point
process models. Scandinavian Journal of Statistics 40, 86–104.

See Also

leverage.ppm.

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32, ndummy.min=16)

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~x+y)
lef <- leverage(fit)
plot(lef)
contour(lef)
persp(lef)

if(offline) spatstat.options(op)

plot.mppm 619

plot.mppm plot a Fitted Multiple Point Process Model

Description

Given a point process model fitted to multiple point patterns by mppm, compute spatial trend or
conditional intensity surface of the model, in a form suitable for plotting, and (optionally) plot this
surface.

Usage

S3 method for class 'mppm'
plot(x, ...,

trend=TRUE, cif=FALSE, se=FALSE,
how=c("image", "contour", "persp"))

Arguments

x A point process model fitted to multiple point patterns, typically obtained from
the model-fitting algorithm mppm. An object of class "mppm".

... Arguments passed to plot.ppm or plot.anylist controlling the plot.

trend Logical value indicating whether to plot the fitted trend.

cif Logical value indicating whether to plot the fitted conditional intensity.

se Logical value indicating whether to plot the standard error of the fitted trend.

how Single character string indicating the style of plot to be performed.

Details

This is the plot method for the class "mppm" of point process models fitted to multiple point patterns
(see mppm).

It invokes subfits to compute the fitted model for each individual point pattern dataset, then calls
plot.ppm to plot these individual models. These individual plots are displayed using plot.anylist,
which generates either a series of separate plot frames or an array of plot panels on a single page.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

620 plot.msr

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

plot.ppm, mppm, plot.listof

Examples

Synthetic data from known model
n <- 9
H <- hyperframe(V=1:n,

U=runif(n, min=-1, max=1))
H$Z <- setcov(square(1))
H$U <- with(H, as.im(U, as.rectangle(Z)))
H$Y <- with(H, rpoispp(eval.im(exp(2+3*Z))))

fit <- mppm(Y ~Z + U + V, data=H)

plot(fit)

plot.msr Plot a Signed or Vector-Valued Measure

Description

Plot a signed measure or vector-valued measure.

Usage

S3 method for class 'msr'
plot(x, ...,

add = FALSE,
how = c("image", "contour", "imagecontour"),
main = NULL,
do.plot = TRUE,
multiplot = TRUE,
massthresh = 0,
equal.markscale = FALSE,
equal.ribbon = FALSE)

Arguments

x The signed or vector measure to be plotted. An object of class "msr" (see msr).

... Extra arguments passed to Smooth.ppp to control the interpolation of the con-
tinuous density component of x, or passed to plot.im or plot.ppp to control
the appearance of the plot.

plot.msr 621

add Logical flag; if TRUE, the graphics are added to the existing plot. If FALSE (the
default) a new plot is initialised.

how String indicating how to display the continuous density component.

main String. Main title for the plot.

do.plot Logical value determining whether to actually perform the plotting.

multiplot Logical value indicating whether it is permissible to display a plot with mul-
tiple panels (representing different components of a vector-valued measure, or
different types of points in a multitype measure.)

massthresh Threshold for plotting atoms. A single numeric value or NULL. If massthresh=0
(the default) then only atoms with nonzero mass will be plotted. If massthresh
> 0 then only atoms whose absolute mass exceeds massthresh will be plotted.
If massthresh=NULL, then all atoms of the measure will be plotted.

equal.markscale

Logical value indicating whether different panels should use the same symbol
map (to represent the masses of atoms of the measure).

equal.ribbon Logical value indicating whether different panels should use the same colour
map (to represent the density values in the diffuse component of the measure).

Details

This is the plot method for the class "msr".

The continuous density component of x is interpolated from the existing data by Smooth.ppp, and
then displayed as a colour image by plot.im.

The discrete atomic component of x is then superimposed on this image by plotting the atoms as
circles (for positive mass) or squares (for negative mass) by plot.ppp. By default, atoms with zero
mass are not plotted at all.

To smooth both the discrete and continuous components, use Smooth.msr.

Use the argument clipwin to restrict the plot to a subset of the full data.

To remove atoms with tiny masses, use the argument massthresh.

Value

(Invisible) colour map (object of class "colourmap") for the colour image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, Smooth.ppp, Smooth.msr, plot.im, plot.ppp

622 plot.plotppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(rp)
plot(rs)
plot(rs, how="contour")

plot.plotppm Plot a plotppm Object Created by plot.ppm

Description

The function plot.ppm produces objects which specify plots of fitted point process models. The
function plot.plotppm carries out the actual plotting of these objects.

Usage

S3 method for class 'plotppm'
plot(x, data = NULL, trend = TRUE, cif = TRUE,

se = TRUE, pause = interactive(),
how = c("persp", "image", "contour"),
..., pppargs)

Arguments

x An object of class plotppm produced by plot.ppm() .

data The point pattern (an object of class ppp) to which the point process model was
fitted (by ppm).

trend Logical scalar; should the trend component of the fitted model be plotted?

cif Logical scalar; should the complete conditional intensity of the fitted model be
plotted?

se Logical scalar; should the estimated standard error of the fitted intensity be plot-
ted?

pause Logical scalar indicating whether to pause with a prompt after each plot. Set
pause=FALSE if plotting to a file.

how Character string or character vector indicating the style or styles of plots to be
performed.

... Extra arguments to the plotting functions persp, image and contour.

pppargs List of extra arguments passed to plot.ppp when displaying the original point
pattern data.

plot.plotppm 623

Details

If argument data is supplied then the point pattern will be superimposed on the image and contour
plots.

Sometimes a fitted model does not have a trend component, or the trend component may constitute
all of the conditional intensity (if the model is Poisson). In such cases the object x will not contain
a trend component, or will contain only a trend component. This will also be the case if one of
the arguments trend and cif was set equal to FALSE in the call to plot.ppm() which produced x.
If this is so then only the item which is present will be plotted. Explicitly setting trend=TRUE, or
cif=TRUE, respectively, will then give an error.

Value

None.

Warning

Arguments which are passed to persp, image, and contour via the . . . argument get passed to any
of the other functions listed in the how argument, and won’t be recognized by them. This leads
to a lot of annoying but harmless warning messages. Arguments to persp may be supplied via
spatstat.options() which alleviates the warning messages in this instance.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.ppm()

Examples

if(interactive()) {
m <- ppm(cells ~ 1, Strauss(0.05))
mpic <- plot(m)
Perspective plot only, with altered parameters:
plot(mpic,how="persp", theta=-30,phi=40,d=4)
All plots, with altered parameters for perspective plot:
op <- spatstat.options(par.persp=list(theta=-30,phi=40,d=4))
plot(mpic)
Revert
spatstat.options(op)
}

624 plot.ppm

plot.ppm plot a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, create spatial trend and conditional intensity
surfaces of the model, in a form suitable for plotting, and (optionally) plot these surfaces.

Usage

S3 method for class 'ppm'
plot(x, ngrid = c(40,40), superimpose = TRUE,

trend = TRUE, cif = TRUE, se = TRUE, pause = interactive(),
how=c("persp","image", "contour"), plot.it = TRUE,
locations = NULL, covariates=NULL, ...)

Arguments

x A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm".

ngrid The dimensions for a grid on which to evaluate, for plotting, the spatial trend
and conditional intensity. A vector of 1 or 2 integers. If it is of length 1, ngrid
is replaced by c(ngrid,ngrid).

superimpose logical flag; if TRUE (and if plot=TRUE) the original data point pattern will be
superimposed on the plots.

trend logical flag; if TRUE, the spatial trend surface will be produced.

cif logical flag; if TRUE, the conditional intensity surface will be produced.

se logical flag; if TRUE, the estimated standard error of the spatial trend surface will
be produced.

pause logical flag indicating whether to pause with a prompt after each plot. Set
pause=FALSE if plotting to a file. (This flag is ignored if plot=FALSE).

how character string or character vector indicating the style or styles of plots to be
performed. Ignored if plot=FALSE.

plot.it logical scalar; should a plot be produced immediately?

locations If present, this determines the locations of the pixels at which predictions are
computed. It must be a binary pixel image (an object of class "owin" with type
"mask"). (Incompatible with ngrid).

covariates Values of external covariates required by the fitted model. Passed to predict.ppm.

... extra arguments to the plotting functions persp, image and contour.

plot.ppm 625

Details

This is the plot method for the class "ppm" (see ppm.object for details of this class).

It invokes predict.ppm to compute the spatial trend and conditional intensity of the fitted point
process model. See predict.ppm for more explanation about spatial trend and conditional intensity.

The default action is to create a rectangular grid of points in (the bounding box of) the observation
window of the data point pattern, and evaluate the spatial trend and conditional intensity of the fitted
spatial point process model x at these locations. If the argument locations= is supplied, then the
spatial trend and conditional intensity are calculated at the grid of points specified by this argument.

The argument locations, if present, should be a binary image mask (an object of class "owin" and
type "mask"). This determines a rectangular grid of locations, or a subset of such a grid, at which
predictions will be computed. Binary image masks are conveniently created using as.mask.

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required.

The argument covariates has the same format and interpretation as in predict.ppm. It may be
either a data frame (the number of whose rows must match the number of pixels in locations
multiplied by the number of possible marks in the point pattern), or a list of images. If argument
locations is not supplied, and covariates is supplied, then it must be a list of images.

If the fitted model was a marked (multitype) point process, then predictions are made for each
possible mark value in turn.

If the fitted model had no spatial trend, then the default is to omit calculating this (flat) surface,
unless trend=TRUE is set explicitly.

If the fitted model was Poisson, so that there were no spatial interactions, then the conditional
intensity and spatial trend are identical, and the default is to omit the conditional intensity, unless
cif=TRUE is set explicitly.

If plot.it=TRUE then plot.plotppm() is called upon to plot the class plotppm object which is
produced. (That object is also returned, silently.)

Plots are produced successively using persp, image and contour (or only a selection of these three,
if how is given). Extra graphical parameters controlling the display may be passed directly via the
arguments ... or indirectly reset using spatstat.options.

Value

An object of class plotppm. Such objects may be plotted by plot.plotppm().

This is a list with components named trend and cif, either of which may be missing. They will be
missing if the corresponding component does not make sense for the model, or if the corresponding
argument was set equal to FALSE.

Both trend and cif are lists of images. If the model is an unmarked point process, then they are
lists of length 1, so that trend[[1]] is an image of the spatial trend and cif[[1]] is an image of
the conditional intensity.

If the model is a marked point process, then trend[[i]] is an image of the spatial trend for the
mark m[i], and cif[[1]] is an image of the conditional intensity for the mark m[i], where m is the
vector of levels of the marks.

626 plot.profilepl

Warnings

See warnings in predict.ppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

plot.plotppm, ppm, ppm.object, predict.ppm, print.ppm, persp, image, contour, plot, spatstat.options

Examples

m <- ppm(cells ~1, Strauss(0.05))
pm <- plot(m) # The object ``pm'' will be plotted as well as saved

for future plotting.
pm

plot.profilepl Plot Profile Likelihood

Description

Plot the profile (pseudo) likelihood against the irregular parameters, for a model that was fitted by
maximum profile (pseudo)likelihood.

Usage

S3 method for class 'profilepl'
plot(x, ..., add = FALSE, main = NULL, tag = TRUE,

coeff = NULL, xvariable = NULL,
col = 1, lty = 1, lwd = 1,
col.opt = "green", lty.opt = 3, lwd.opt = 1)

Arguments

x A point process model fitted by maximum profile (pseudo)likelihood. Object of
class "profilepl", obtained from profilepl.

... Additional plot arguments passed to plot.default and lines.

add Logical. If TRUE, the plot is drawn over the existing plot.

main Optional. Main title for the plot. A character string or character vector.

tag Logical value. If TRUE (the default), when the plot contains multiple curves
corresponding to different values of a parameter, each curve will be labelled
with the values of the irregular parameter.

plot.profilepl 627

coeff Optional. If this is given, it should be a character string matching the name of
one of the fitted model coefficients. This coefficient will then be plotted on the
vertical axis.

xvariable Optional. The name of the irregular parameter that should be plotted along the
horizontal axis. The default is the first irregular parameter.

col,lty,lwd Graphical parameters (colour, line type, line width) for the curves on the plot.
col.opt, lty.opt, lwd.opt

Graphical parameters for indicating the optimal parameter value.

Details

This is the plot method for the class "profilepl" of fitted point process models obtained by
maximising the profile likelihood or profile pseudolikelihood.

The default behaviour is to plot the profile likelihood or profile pseudolikelihood on the vertical
axis, against the value of the irregular parameter on the horizontal axis.

If there are several irregular parameters, then one of them is plotted on the horizontal axis, and the
plot consists of many different curves, corresponding to different values of the other parameters.
The parameter to be plotted on the horizontal axis is specified by the argument xvariable; the
default is to use the parameter that was listed first in the original call to profilepl.

If coeff is given, it should be the name of one of the fitted model coefficients names(coef(as.ppm(x))).
The fitted value of that coefficient is plotted on the vertical axis.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

profilepl

Examples

live <- interactive()
nr <- if(live) 20 else 3

one irregular parameter

628 plot.quadrattest

rr <- data.frame(r=seq(0.05,0.15, length=nr))
ps <- profilepl(rr, Strauss, cells)
plot(ps) # profile pseudolikelihood
plot(ps, coeff="Interaction") # fitted interaction coefficient log(gamma)

two irregular parameters
smax <- if(live) 3 else 2
rs <- expand.grid(r=seq(0.05,0.15, length=nr), sat=1:smax)
pg <- profilepl(rs, Geyer, cells)
plot(pg) # profile pseudolikelihood against r for each value of 'sat'
plot(pg, coeff="Interaction")
plot(pg, xvariable="sat", col=ifelse(r < 0.1, "red", "green"))

plot.quadrattest Display the result of a quadrat counting test.

Description

Given the result of a quadrat counting test, graphically display the quadrats that were used, the
observed and expected counts, and the residual in each quadrat.

Usage

S3 method for class 'quadrattest'
plot(x, ..., textargs=list())

Arguments

x Object of class "quadrattest" containing the result of quadrat.test.
... Additional arguments passed to plot.tess to control the display of the quadrats.
textargs List of additional arguments passed to text.default to control the appearance

of the text.

Details

This is the plot method for objects of class "quadrattest". Such an object is produced by
quadrat.test and represents the result of a χ2 test for a spatial point pattern.

The quadrats are first plotted using plot.tess. Then in each quadrat, the observed and expected
counts and the Pearson residual are displayed as text using text.default. Observed count is
displayed at top left; expected count at top right; and Pearson residual at bottom.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

plot.rppm 629

See Also

quadrat.test, plot.tess, text.default, plot.quadratcount

Examples

plot(quadrat.test(swedishpines, 3))

plot.rppm Plot a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, plot the partition
tree or the fitted intensity.

Usage

S3 method for class 'rppm'
plot(x, ..., what = c("tree", "spatial"), treeplot=NULL)

Arguments

x Fitted point process model of class "rppm" produced by the function rppm.

what Character string (partially matched) specifying whether to plot the partition tree
or the fitted intensity.

... Arguments passed to plot.rpart and text.rpart (if what="tree") or passed
to plot.im (if what="spatial") controlling the appearance of the plot.

treeplot Optional. A function to be used to plot and label the partition tree, replacing the
two functions plot.rpart and text.rpart.

Details

If what="tree" (the default), the partition tree will be plotted using plot.rpart, and labelled using
text.rpart.

If the argument treeplot is given, then plotting and labelling will be performed by treeplot
instead. A good choice is the function prp in package rpart.plot.

If what="spatial", the predicted intensity will be computed using predict.rppm, and this inten-
sity will be plotted as an image using plot.im.

Value

If what="tree", a list containing x and y coordinates of the plotted nodes of the tree. If what="spatial",
the return value of plot.im.

630 plot.scan.test

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
fit <- rppm(gold ~ dfault + greenstone, data=mur)
#
opa <- par(mfrow=c(1,2))
plot(fit)
plot(fit, what="spatial")
par(opa)

plot.scan.test Plot Result of Scan Test

Description

Computes or plots an image showing the likelihood ratio test statistic for the scan test, or the optimal
circle radius.

Usage

S3 method for class 'scan.test'
plot(x, ..., what=c("statistic", "radius"),

do.window = TRUE)

S3 method for class 'scan.test'
as.im(X, ..., what=c("statistic", "radius"))

Arguments

x,X Result of a scan test. An object of class "scan.test" produced by scan.test.

... Arguments passed to plot.im to control the appearance of the plot.

what Character string indicating whether to produce an image of the (profile) like-
lihood ratio test statistic (what="statistic", the default) or an image of the
optimal value of circle radius (what="radius").

do.window Logical value indicating whether to plot the original window of the data as well.

plot.slrm 631

Details

These functions extract, and plot, the spatially-varying value of the likelihood ratio test statistic
which forms the basis of the scan test.

If the test result X was based on circles of the same radius r, then as.im(X) is a pixel image of the
likelihood ratio test statistic as a function of the position of the centre of the circle.

If the test result X was based on circles of several different radii r, then as.im(X) is a pixel image
of the profile (maximum value over all radii r) likelihood ratio test statistic as a function of the
position of the centre of the circle, and as.im(X, what="radius") is a pixel image giving for each
location u the value of r which maximised the likelihood ratio test statistic at that location.

The plot method plots the corresponding image.

Value

The value of as.im.scan.test is a pixel image (object of class "im"). The value of plot.scan.test
is NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

scan.test, scanLRTS

Examples

if(interactive()) {
a <- scan.test(redwood, seq(0.04, 0.1, by=0.01),

method="poisson", nsim=19)
} else {

a <- scan.test(redwood, c(0.05, 0.1), method="poisson", nsim=2)
}
plot(a)
as.im(a)
plot(a, what="radius")

plot.slrm Plot a Fitted Spatial Logistic Regression

Description

Plots a fitted Spatial Logistic Regression model.

Usage

S3 method for class 'slrm'
plot(x, ..., type = "intensity")

632 plot.ssf

Arguments

x a fitted spatial logistic regression model. An object of class "slrm".

... Extra arguments passed to plot.im to control the appearance of the plot.

type Character string (partially) matching one of "probabilities", "intensity"
or "link".

Details

This is a method for plot for fitted spatial logistic regression models (objects of class "slrm",
usually obtained from the function slrm).

This function plots the result of predict.slrm.

Value

None.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, predict.slrm, plot.im

Examples

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fit <- slrm(X ~ Z)
plot(fit)
plot(fit, type="link")

plot.ssf Plot a Spatially Sampled Function

Description

Plot a spatially sampled function object.

plot.ssf 633

Usage

S3 method for class 'ssf'
plot(x, ...,

how = c("smoothed", "nearest", "points"),
style = c("image", "contour", "imagecontour"),
sigma = NULL, contourargs=list())

S3 method for class 'ssf'
image(x, ...)

S3 method for class 'ssf'
contour(x, ..., main, sigma = NULL)

Arguments

x Spatially sampled function (object of class "ssf").

... Arguments passed to image.default or plot.ppp to control the plot.

how Character string determining whether to display the function values at the data
points (how="points"), a smoothed interpolation of the function (how="smoothed"),
or the function value at the nearest data point (how="nearest").

style Character string indicating whether to plot the smoothed function as a colour
image, a contour map, or both.

contourargs Arguments passed to contour.default to control the contours, if style="contour"
or style="imagecontour".

sigma Smoothing bandwidth for smooth interpolation.

main Optional main title for the plot.

Details

These are methods for the generic plot, image and contour for the class "ssf".

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points.

For plot.ssf there are three types of display. If how="points" the exact function values will be
displayed as circles centred at the locations where they were computed. If how="smoothed" (the
default) these values will be kernel-smoothed using Smooth.ppp and displayed as a pixel image.
If how="nearest" the values will be interpolated by nearest neighbour interpolation using nnmark
and displayed as a pixel image.

For image.ssf and contour.ssf the values are kernel-smoothed before being displayed.

Value

NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

634 plot.studpermutest

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

ssf

Examples

a <- ssf(cells, nndist(cells, k=1:3))
plot(a, how="points")
plot(a, how="smoothed")
plot(a, how="nearest")

plot.studpermutest Plot a Studentised Permutation Test

Description

Plot the result of the studentised permutation test.

Usage

S3 method for class 'studpermutest'
plot(x, fmla, ...,

lty = NULL, col = NULL, lwd = NULL,
lty.theo = NULL, col.theo = NULL, lwd.theo = NULL,
lwd.mean = if (meanonly) 1 else NULL,
lty.mean = lty, col.mean = col,
separately = FALSE, meanonly = FALSE,
main = if (meanonly) "group means" else NULL,
xlim = NULL, ylim = NULL, ylab = NULL,
legend = !add, legendpos = "topleft", lbox = FALSE, add = FALSE)

Arguments

x An object of class "studpermutest" generated by studpermu.test and rep-
resenting the result of a studentised permutation test for spatial point pattern
data.

fmla Plot formula used in plot.fv.

... Additional graphical arguments passed to plot.fv.

lty,col,lwd Line type, colour, and line width of the curves plotting the summary function
for each point pattern in the original data. Either a single value or a vector of
length equal to the number of point patterns.

plot.studpermutest 635

lty.theo,col.theo,lwd.theo

Line type, colour, and line width of the curve representing the theoretical value
of the summary function.

lty.mean,col.mean,lwd.mean

Line type, colour, and line width (as a multiple of lwd) of the curve representing
the group mean of the summary function.

separately Logical value indicating whether to plot each group of data in a separate panel.

meanonly Logical value indicating whether to plot only the group means of the summary
function.

main Character string giving a main title for the plot.

xlim,ylim Numeric vectors of length 2 giving the limits for the x and y coordinates of the
plot or plots.

ylab Character string or expression to be used for the label on the y axis.

legend Logical value indicating whether to plot a legend explaining the meaning of each
curve.

legendpos Position of legend. See plot.fv.

lbox Logical value indicating whether to plot a box around the plot.

add Logical value indicating whether the plot should be added to the existing plot
(add=TRUE) or whether a new frame should be created (add=FALSE, the default).

Details

This is the plot method for objects of class "studpermutest" which represent the result of a stu-
dentised permutation test applied to several point patterns. The test is performed by studpermu.test.

The plot shows the summary functions for each point pattern, coloured according to group. Op-
tionally it can show the different groups in separate plot panels, or show only the group means in a
single panel.

Value

Null.

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

studpermu.test

636 Poisson

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
plot(testpyramidal)
plot(testpyramidal, meanonly=TRUE)
plot(testpyramidal, col.theo=8, lwd.theo=4, lty.theo=1)
plot(testpyramidal, . ~ pi * r^2)
op <- par(mfrow=c(1,3))
plot(testpyramidal, separately=TRUE)
plot(testpyramidal, separately=TRUE, col=2, lty=1, lwd.mean=2, col.mean=4)
par(op)

Poisson Poisson Point Process Model

Description

Creates an instance of the Poisson point process model which can then be fitted to point pattern
data.

Usage

Poisson()

Details

The function ppm, which fits point process models to point pattern data, requires an argument
interaction of class "interact" describing the interpoint interaction structure of the model to be
fitted. The appropriate description of the Poisson process is provided by the value of the function
Poisson.

This works for all types of Poisson processes including multitype and nonstationary Poisson pro-
cesses.

Value

An object of class "interact" describing the interpoint interaction structure of the Poisson point
process (namely, there are no interactions).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

ppm, Strauss

polynom 637

Examples

ppm(nztrees ~1, Poisson())
fit the stationary Poisson process to 'nztrees'
no edge correction needed

lon <- longleaf

longadult <- unmark(subset(lon, marks >= 30))
ppm(longadult ~ x, Poisson())
fit the nonstationary Poisson process
with intensity lambda(x,y) = exp(a + bx)

trees marked by species
lans <- lansing

ppm(lans ~ marks, Poisson())
fit stationary marked Poisson process
with different intensity for each species

ppm(lansing ~ marks * polynom(x,y,3), Poisson())
fit nonstationary marked Poisson process
with different log-cubic trend for each species

polynom Polynomial in One or Two Variables

Description

This function is used to represent a polynomial term in a model formula. It computes the homoge-
neous terms in the polynomial of degree n in one variable x or two variables x,y.

Usage

polynom(x, ...)

Arguments

x A numerical vector.

... Either a single integer n specifying the degree of the polynomial, or two argu-
ments y,n giving another vector of data y and the degree of the polynomial.

Details

This function is typically used inside a model formula in order to specify the most general possible
polynomial of order n involving one numerical variable x or two numerical variables x,y.

It is equivalent to poly(, raw=TRUE).

638 pool

If only one numerical vector argument x is given, the function computes the vectors x^k for k = 1,
2, ..., n. These vectors are combined into a matrix with n columns.

If two numerical vector arguments x,y are given, the function computes the vectors x^k * y^m for k
>= 0 and m >= 0 satisfying 0 < k + m <= n. These vectors are combined into a matrix with one column
for each homogeneous term.

Value

A numeric matrix, with rows corresponding to the entries of x, and columns corresponding to the
terms in the polynomial.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

poly, harmonic

Examples

x <- 1:4
y <- 10 * (0:3)
polynom(x, 3)
polynom(x, y, 3)

pool Pool Data

Description

Pool the data from several objects of the same class.

Usage

pool(...)

Arguments

... Objects of the same type.

Details

The function pool is generic. There are methods for several classes, listed below.

pool is used to combine the data from several objects of the same type, and to compute statistics
based on the combined dataset. It may be used to pool the estimates obtained from replicated
datasets. It may also be used in high-performance computing applications, when the objects ...
have been computed on different processors or in different batch runs, and we wish to combine
them.

pool.anylist 639

Value

An object of the same class as the arguments

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pool.envelope, pool.fasp, pool.rat, pool.fv

pool.anylist Pool Data from a List of Objects

Description

Pool the data from the objects in a list.

Usage

S3 method for class 'anylist'
pool(x, ...)

Arguments

x A list, belonging to the class "anylist", containing objects that can be pooled.

... Optional additional objects which can be pooled with the elements of x.

Details

The function pool is generic. Its purpose is to combine data from several objects of the same type
(typically computed from different datasets) into a common, pooled estimate.

The function pool.anyist is the method for the class "anylist". It is used when the objects to be
pooled are given in a list x.

Each of the elements of the list x, and each of the subsequent arguments ... if provided, must be
an object of the same class.

Value

An object of the same class as each of the entries in x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

640 pool.envelope

See Also

anylist, pool.

Examples

Keach <- anylapply(waterstriders, Kest, ratio=TRUE, correction="iso")
K <- pool(Keach)

pool.envelope Pool Data from Several Envelopes

Description

Pool the simulation data from several simulation envelopes (objects of class "envelope") and com-
pute a new envelope.

Usage

S3 method for class 'envelope'
pool(..., savefuns=FALSE, savepatterns=FALSE)

Arguments

... Objects of class "envelope".

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

Details

The function pool is generic. This is the method for the class "envelope" of simulation envelopes.
It is used to combine the simulation data from several simulation envelopes and to compute an
envelope based on the combined data.

Each of the arguments ... must be an object of class "envelope". These envelopes must be
compatible, in that they are envelopes for the same function, and were computed using the same
options.

• In normal use, each envelope object will have been created by running the command envelope
with the argument savefuns=TRUE. This ensures that each object contains the simulated data
(summary function values for the simulated point patterns) that were used to construct the
envelope.
The simulated data are extracted from each object and combined. A new envelope is computed
from the combined set of simulations.

• Alternatively, if each envelope object was created by running envelope with VARIANCE=TRUE,
then the saved functions are not required.
The sample means and sample variances from each envelope will be pooled. A new envelope
is computed from the pooled mean and variance.

pool.fasp 641

Warnings or errors will be issued if the envelope objects ... appear to be incompatible. Apart from
these basic checks, the code is not smart enough to decide whether it is sensible to pool the data.

To modify the envelope parameters or the type of envelope that is computed, first pool the envelope
data using pool.envelope, then use envelope.envelope to modify the envelope parameters.

Value

An object of class "envelope".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

envelope, envelope.envelope, pool, pool.fasp

Examples

E1 <- envelope(cells, Kest, nsim=10, savefuns=TRUE)
E2 <- envelope(cells, Kest, nsim=20, savefuns=TRUE)
pool(E1, E2)

V1 <- envelope(E1, VARIANCE=TRUE)
V2 <- envelope(E2, VARIANCE=TRUE)
pool(V1, V2)

pool.fasp Pool Data from Several Function Arrays

Description

Pool the simulation data from several function arrays (objects of class "fasp") and compute a new
function array.

Usage

S3 method for class 'fasp'
pool(...)

Arguments

... Objects of class "fasp".

642 pool.fv

Details

The function pool is generic. This is the method for the class "fasp" of function arrays. It is used
to combine the simulation data from several arrays of simulation envelopes and to compute a new
array of envelopes based on the combined data.

Each of the arguments ... must be a function array (object of class "fasp") containing simula-
tion envelopes. This is typically created by running the command alltypes with the arguments
envelope=TRUE and savefuns=TRUE. This ensures that each object is an array of simulation en-
velopes, and that each envelope contains the simulated data (summary function values) that were
used to construct the envelope.

The simulated data are extracted from each object and combined. A new array of envelopes is
computed from the combined set of simulations.

Warnings or errors will be issued if the objects ... appear to be incompatible. However, the code
is not smart enough to decide whether it is sensible to pool the data.

Value

An object of class "fasp".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

fasp, alltypes, pool.envelope, pool

Examples

data(amacrine)
A1 <- alltypes(amacrine,"K",nsim=9,envelope=TRUE,savefuns=TRUE)
A2 <- alltypes(amacrine,"K",nsim=10,envelope=TRUE,savefuns=TRUE)
pool(A1, A2)

pool.fv Pool Several Functions

Description

Combine several summary functions into a single function.

Usage

S3 method for class 'fv'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

pool.fv 643

Arguments

... Objects of class "fv".

weights Optional numeric vector of weights for the functions.

relabel Logical value indicating whether the columns of the resulting function should
be labelled to show that they were obtained by pooling.

variance Logical value indicating whether to compute the sample variance and related
terms.

Details

The function pool is generic. This is the method for the class "fv" of summary functions. It is used
to combine several estimates of the same function into a single function.

Each of the arguments ... must be an object of class "fv". They must be compatible, in that they
are estimates of the same function, and were computed using the same options.

The sample mean and sample variance of the corresponding estimates will be computed.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pool, pool.anylist, pool.rat

Examples

K <- lapply(waterstriders, Kest, correction="iso")
Kall <- pool(K[[1]], K[[2]], K[[3]])
Kall <- pool(as.anylist(K))
plot(Kall, cbind(pooliso, pooltheo) ~ r,

shade=c("loiso", "hiiso"),
main="Pooled K function of waterstriders")

644 pool.quadrattest

pool.quadrattest Pool Several Quadrat Tests

Description

Pool several quadrat tests into a single quadrat test.

Usage

S3 method for class 'quadrattest'
pool(..., df=NULL, df.est=NULL, nsim=1999,

Xname=NULL, CR=NULL)

Arguments

... Any number of objects, each of which is a quadrat test (object of class "quadrattest").

df Optional. Number of degrees of freedom of the test statistic. Relevant only for
χ2 tests. Incompatible with df.est.

df.est Optional. The number of fitted parameters, or the number of degrees of freedom
lost by estimation of parameters. Relevant only for χ2 tests. Incompatible with
df.

nsim Number of simulations, for Monte Carlo test.

Xname Optional. Name of the original data.

CR Optional. Numeric value of the Cressie-Read exponent CR overriding the value
used in the tests.

Details

The function pool is generic. This is the method for the class "quadrattest".

An object of class "quadrattest" represents a χ2 test or Monte Carlo test of goodness-of-fit
for a point process model, based on quadrat counts. Such objects are created by the command
quadrat.test.

Each of the arguments ... must be an object of class "quadrattest". They must all be the same
type of test (chi-squared test or Monte Carlo test, conditional or unconditional) and must all have
the same type of alternative hypothesis.

The test statistic of the pooled test is the Pearson X2 statistic taken over all cells (quadrats) of all
tests. The p value of the pooled test is then computed using either a Monte Carlo test or a χ2 test.

For a pooled χ2 test, the number of degrees of freedom of the combined test is computed by adding
the degrees of freedom of all the tests (equivalent to assuming the tests are independent) unless it is
determined by the arguments df or df.est. The resulting p value is computed to obtain the pooled
test.

For a pooled Monte Carlo test, new simulations are performed to determine the pooled Monte Carlo
p value.

pool.rat 645

Value

Another object of class "quadrattest".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

pool, quadrat.test

Examples

Y <- split(humberside)
test1 <- quadrat.test(Y[[1]])
test2 <- quadrat.test(Y[[2]])
pool(test1, test2, Xname="Humberside")

pool.rat Pool Data from Several Ratio Objects

Description

Pool the data from several ratio objects (objects of class "rat") and compute a pooled estimate.

Usage

S3 method for class 'rat'
pool(..., weights=NULL, relabel=TRUE, variance=TRUE)

Arguments

... Objects of class "rat".

weights Numeric vector of weights.

relabel Logical value indicating whether the result should be relabelled to show that it
was obtained by pooling.

variance Logical value indicating whether to compute the sample variance and related
terms.

646 pool.rat

Details

The function pool is generic. This is the method for the class "rat" of ratio objects. It is used to
combine several estimates of the same quantity when each estimate is a ratio.

Each of the arguments ... must be an object of class "rat" representing a ratio object (basically a
numerator and a denominator; see rat). We assume that these ratios are all estimates of the same
quantity.

If the objects are called R1, . . . , Rn and if Ri has numerator Yi and denominator Xi, so that no-
tionally Ri = Yi/Xi, then the pooled estimate is the ratio-of-sums estimator

R =

∑
i Yi∑
iXi

.

The standard error of R is computed using the delta method as described in Baddeley et al. (1993)
or Cochran (1977, pp 154, 161).

If the argument weights is given, it should be a numeric vector of length equal to the number of
objects to be pooled. The pooled estimator is the ratio-of-sums estimator

R =

∑
i wiYi∑
i wiXi

where w_iw[i] is the ith weight.

This calculation is implemented only for certain classes of objects where the arithmetic can be
performed.

This calculation is currently implemented only for objects which also belong to the class "fv"
(function value tables). For example, if Kest is called with argument ratio=TRUE, the result is a
suitable object (belonging to the classes "rat" and "fv").

Warnings or errors will be issued if the ratio objects ... appear to be incompatible. However, the
code is not smart enough to decide whether it is sensible to pool the data.

Value

An object of the same class as the input.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A.J, Moyeed, R.A., Howard, C.V. and Boyde, A. (1993) Analysis of a three-dimensional
point pattern with replication. Applied Statistics 42, 641–668.

Cochran, W.G. (1977) Sampling techniques, 3rd edition. New York: John Wiley and Sons.

See Also

rat, pool, pool.fv, Kest

ppm 647

Examples

K1 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K2 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K3 <- Kest(runifpoint(42), ratio=TRUE, correction="iso")
K <- pool(K1, K2, K3)
plot(K, pooliso ~ r, shade=c("hiiso", "loiso"))

ppm Fit Point Process Model to Data

Description

Fits a point process model to an observed point pattern.

Usage

ppm(Q, ...)

S3 method for class 'formula'
ppm(Q, interaction=NULL, ..., data=NULL, subset)

Arguments

Q A formula in the R language describing the model to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Arguments passed to ppm.ppp or ppm.quad to control the model-fitting process.

data Optional. The values of spatial covariates (other than the Cartesian coordinates)
required by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the model-fitting should be restricted. The result of evaluating
the expression should be either a logical vector, or a window (object of class
"owin") or a logical-valued pixel image (object of class "im").

Details

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

The model fitted by ppm is either a Poisson point process (in which different points do not interact
with each other) or a Gibbs point process (in which different points typically inhibit each other).
For clustered point process models, use kppm.

The function ppm is generic, with methods for the classes formula, ppp and quad. This page
describes the method for a formula.

648 ppm

The first argument is a formula in the R language describing the spatial trend model to be fitted.
It has the general form pattern ~ trend where the left hand side pattern is usually the name of
a spatial point pattern (object of class "ppp") to which the model should be fitted, or an expression
which evaluates to a point pattern; and the right hand side trend is an expression specifying the
spatial trend of the model.

Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by the trend
expression on the right hand side of the formula. The trend may involve the Cartesian coordinates
x, y, the marks marks, the names of entries in the argument data (if supplied), or the names of
objects that exist in the R session. The trend formula specifies the logarithm of the intensity of a
Poisson process, or in general, the logarithm of the first order potential of the Gibbs process. The
formula should not use any names beginning with .mpl as these are reserved for internal use. If the
formula is pattern~1, then the model to be fitted is stationary (or at least, its first order potential is
constant).

The symbol . in the trend expression stands for all the covariates supplied in the argument data. For
example the formula pattern ~ . indicates an additive model with a main effect for each covariate
in data.

Stochastic interactions between random points of the point process are defined by the argument
interaction. This is an object of class "interact" which is initialised in a very similar way
to the usage of family objects in glm and gam. The interaction models currently available are:
AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore,
HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets. See the examples below. Note that it
is possible to combine several interactions using Hybrid.

If interaction is missing or NULL, then the model to be fitted has no interpoint interactions, that is,
it is a Poisson process (stationary or nonstationary according to trend). In this case the methods of
maximum pseudolikelihood and maximum logistic likelihood coincide with maximum likelihood.

The fitted point process model returned by this function can be printed (by the print method print.ppm)
to inspect the fitted parameter values. If a nonparametric spatial trend was fitted, this can be ex-
tracted using the predict method predict.ppm.

To fit a model involving spatial covariates other than the Cartesian coordinates x and y, the values
of the covariates should either be supplied in the argument data, or should be stored in objects
that exist in the R session. Note that it is not sufficient to have observed the covariate only at the
points of the data point pattern; the covariate must also have been observed at other locations in the
window.

If it is given, the argument data is typically a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be an
object of class "im", see im.object.

a function, which can be evaluated at any location (x,y) to obtain the value of the spatial covariate.
It should be a function(x, y) or function(x, y, ...) in the R language. For marked
point pattern data, the covariate can be a function(x, y, marks) or function(x, y, marks,
...). The first two arguments of the function should be the Cartesian coordinates x and y.
The function may have additional arguments; if the function does not have default values for
these additional arguments, then the user must supply values for them, in covfunargs. See
the Examples.

ppm 649

a window, interpreted as a logical variable which is TRUE inside the window and FALSE outside it.
This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value indicates
which tile of the tessellation it belongs to. This should be an object of class "tess". (To make
a covariate in which each tile of the tessellation has a numerical value, convert the tessellation
to a function(x,y) using as.function.tess.)

a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature points).

Note that, for covariate functions, only the name of the function appears in the trend formula. A
covariate function is treated as if it were a single variable. The function arguments do not appear in
the trend formula. See the Examples.

If data is a list, the list entries should have names corresponding to (some of) the names of covari-
ates in the model formula trend. The variable names x, y and marks are reserved for the Cartesian
coordinates and the mark values, and these should not be used for variables in data.

Alternatively, data may be a data frame giving the values of the covariates at specified locations.
Then pattern should be a quadrature scheme (object of class "quad") giving the corresponding
locations. See ppm.quad for details.

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

regular parameters: A parameter φ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells ~ 1, Strauss(r=0.07)). Note that
the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

650 ppm

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

Technical Warnings and Error Messages

See ppm.ppp for some technical warnings about the weaknesses of the algorithm, and explanation
of some common error messages.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42 283–322.

Berman, M. and Turner, T.R. (1992) Approximating point process likelihoods with GLIM. Applied
Statistics 41, 31–38.

Besag, J. (1975) Statistical analysis of non-lattice data. The Statistician 24, 179-195.

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994) On parameter
estimation for pairwise interaction processes. International Statistical Review 62, 99-117.

Huang, F. and Ogata, Y. (1999) Improvements of the maximum pseudo-likelihood estimators in
various spatial statistical models. Journal of Computational and Graphical Statistics 8, 510–530.

Jensen, J.L. and Moeller, M. (1991) Pseudolikelihood for exponential family models of spatial point
processes. Annals of Applied Probability 1, 445–461.

Jensen, J.L. and Kuensch, H.R. (1994) On asymptotic normality of pseudo likelihood estimates for
pairwise interaction processes, Annals of the Institute of Statistical Mathematics 46, 475–486.

See Also

ppm.ppp and ppm.quad for more details on the fitting technique and edge correction.

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and project.ppm for ensuring the fitted model is a valid point process.

ppm 651

See kppm for fitting Cox point process models and cluster point process models, and dppm for fitting
determinantal point process models.

Examples

online <- interactive()
if(!online) {

reduce grid sizes for efficiency in tests
spatstat.options(npixel=32, ndummy.min=16)

}

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees ~ 1)

if(online) {
Q <- quadscheme(nztrees)
ppm(Q ~ 1)
equivalent.

}

fit1 <- ppm(nztrees ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

fit1
coef(fit1)
coef(summary(fit1))

ppm(nztrees ~ polynom(x,2))

fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx + cx^2)

if(online) {
library(splines)
ppm(nztrees ~ bs(x,df=3))

}
Fits the nonstationary Poisson process
with intensity function lambda(x,y) = exp(B(x))
where B is a B-spline with df = 3

ppm(nztrees ~ 1, Strauss(r=10), rbord=10)

Fit the stationary Strauss process with interaction range r=10
using the border method with margin rbord=10

ppm(nztrees ~ x, Strauss(13), correction="periodic")

Fit the nonstationary Strauss process with interaction range r=13

652 ppm

and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
using the periodic correction.

Compare Maximum Pseudolikelihood, Huang-Ogata and Variational Bayes fits:
if(online) ppm(swedishpines ~ 1, Strauss(9))

ppm(swedishpines ~ 1, Strauss(9), method="ho",
nsim=if(!online) 8 else 99)

ppm(swedishpines ~ 1, Strauss(9), method="VBlogi")

COVARIATES
#
X <- rpoispp(20)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }
#
(a) covariate values as function
ppm(X ~ y + weirdfunction)
#
(b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X ~ y + Z, covariates=list(Z=Zimage))
#
(c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q ~ y + Z, data=data.frame(Z=Zvalues))
Note Q not X

COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#

f <- function(x,y,a){ y - a }
ppm(X ~ x + f, covfunargs=list(a=1/2))

COVARIATE: logical value TRUE inside window, FALSE outside
b <- owin(c(0.1, 0.6), c(0.1, 0.9))
ppm(X ~ b)

MULTITYPE POINT PROCESSES
fit stationary marked Poisson process
with different intensity for each species
if(online) {

ppm(lansing ~ marks, Poisson())
} else {
ama <- amacrine[square(0.7)]
a <- ppm(ama ~ marks, Poisson(), nd=16)
}

fit nonstationary marked Poisson process
with different log-cubic trend for each species
if(online) {

ppm.object 653

ppm(lansing ~ marks * polynom(x,y,3), Poisson())
} else {
b <- ppm(ama ~ marks * polynom(x,y,2), Poisson(), nd=16)
}

ppm.object Class of Fitted Point Process Models

Description

A class ppm to represent a fitted stochastic model for a point process. The output of ppm.

Details

An object of class ppm represents a stochastic point process model that has been fitted to a point
pattern dataset. Typically it is the output of the model fitter, ppm.

The class ppm has methods for the following standard generic functions:

generic method description
print print.ppm print details
plot plot.ppm plot fitted model
predict predict.ppm fitted intensity and conditional intensity
fitted fitted.ppm fitted intensity
coef coef.ppm fitted coefficients of model
anova anova.ppm Analysis of Deviance
formula formula.ppm Extract model formula
terms terms.ppm Terms in the model formula
labels labels.ppm Names of estimable terms in the model formula
residuals residuals.ppm Point process residuals
simulate simulate.ppm Simulate the fitted model
update update.ppm Change or refit the model
vcov vcov.ppm Variance/covariance matrix of parameter estimates
model.frame model.frame.ppm Model frame
model.matrix model.matrix.ppm Design matrix
logLik logLik.ppm log pseudo likelihood
extractAIC extractAIC.ppm pseudolikelihood counterpart of AIC
nobs nobs.ppm number of observations

Objects of class ppm can also be handled by the following standard functions, without requiring a
special method:

name description
confint Confidence intervals for parameters
step Stepwise model selection
drop1 One-step model improvement
add1 One-step model improvement

654 ppm.object

The class ppm also has methods for the following generic functions defined in the spatstat package:

generic method description
as.interact as.interact.ppm Interpoint interaction structure
as.owin as.owin.ppm Observation window of data
berman.test berman.test.ppm Berman’s test
envelope envelope.ppm Simulation envelopes
fitin fitin.ppm Fitted interaction
is.marked is.marked.ppm Determine whether the model is marked
is.multitype is.multitype.ppm Determine whether the model is multitype
is.poisson is.poisson.ppm Determine whether the model is Poisson
is.stationary is.stationary.ppm Determine whether the model is stationary
cdf.test cdf.test.ppm Spatial distribution test
quadrat.test quadrat.test.ppm Quadrat counting test
reach reach.ppm Interaction range of model
rmhmodel rmhmodel.ppm Model in a form that can be simulated
rmh rmh.ppm Perform simulation
unitname unitname.ppm Name of unit of length

Information about the data (to which the model was fitted) can be extracted using data.ppm,
dummy.ppm and quad.ppm.

Internal format

If you really need to get at the internals, a ppm object contains at least the following entries:

coef the fitted regular parameters (as returned by glm)
trend the trend formula or NULL
interaction the point process interaction family (an object of class "interact") or NULL
Q the quadrature scheme used
maxlogpl the maximised value of log pseudolikelihood
correction name of edge correction method used

See ppm for explanation of these concepts. The irregular parameters (e.g. the interaction radius of
the Strauss process) are encoded in the interaction entry. However see the Warnings.

Warnings

The internal representation of ppm objects may change slightly between releases of the spatstat
package.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

ppm.ppp 655

See Also

ppm, coef.ppm, fitted.ppm, print.ppm, predict.ppm, plot.ppm.

Examples

fit <- ppm(cells ~ x, Strauss(0.1), correction="periodic")
fit
coef(fit)
pred <- predict(fit)
pred <- predict(fit, ngrid=20, type="trend")
if(interactive()) {
plot(fit)
}

ppm.ppp Fit Point Process Model to Point Pattern Data

Description

Fits a point process model to an observed point pattern.

Usage

S3 method for class 'ppp'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,
method="mpl",
forcefit=FALSE,
emend=project,
project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

656 ppm.ppp

S3 method for class 'quad'
ppm(Q, trend=~1, interaction=Poisson(),

...,
covariates=data,
data=NULL,
covfunargs = list(),
subset,
clipwin,
correction="border",
rbord=reach(interaction),
use.gam=FALSE,
method="mpl",
forcefit=FALSE,
emend=project,
project=FALSE,
prior.mean = NULL,
prior.var = NULL,
nd = NULL,
eps = NULL,
gcontrol=list(),
nsim=100, nrmh=1e5, start=NULL, control=list(nrep=nrmh),
verb=TRUE,
callstring=NULL)

Arguments

Q A data point pattern (of class "ppp") to which the model will be fitted, or a
quadrature scheme (of class "quad") containing this pattern.

trend An R formula object specifying the spatial trend to be fitted. The default for-
mula, ~1, indicates the model is stationary and no trend is to be fitted.

interaction An object of class "interact" describing the point process interaction struc-
ture, or a function that makes such an object, or NULL indicating that a Poisson
process (stationary or nonstationary) should be fitted.

... Ignored.

data,covariates

The values of any spatial covariates (other than the Cartesian coordinates) re-
quired by the model. Either a data frame, or a list whose entries are images,
functions, windows, tessellations or single numbers. See Details.

subset Optional. An expression (which may involve the names of the Cartesian coordi-
nates x and y and the names of entries in data) defining a subset of the spatial
domain, to which the likelihood or pseudolikelihood should be restricted. See
Details. The result of evaluating the expression should be either a logical vector,
or a window (object of class "owin") or a logical-valued pixel image (object of
class "im").

clipwin Optional. A spatial window (object of class "owin") to which data will be re-
stricted, before model-fitting is performed. See Details.

ppm.ppp 657

covfunargs A named list containing the values of any additional arguments required by co-
variate functions.

correction The name of the edge correction to be used. The default is "border" indicating
the border correction. Other possibilities may include "Ripley", "isotropic",
"periodic", "translate" and "none", depending on the interaction.

rbord If correction = "border" this argument specifies the distance by which the
window should be eroded for the border correction.

use.gam Logical flag; if TRUE then computations are performed using gam instead of glm.
method The method used to fit the model. Options are "mpl" for the method of Maxi-

mum PseudoLikelihood, "logi" for the Logistic Likelihood method, "VBlogi"
for the Variational Bayes Logistic Likelihood method, and "ho" for the Huang-
Ogata approximate maximum likelihood method.

forcefit Logical flag for internal use. If forcefit=FALSE, some trivial models will be
fitted by a shortcut. If forcefit=TRUE, the generic fitting method will always
be used.

emend,project (These are equivalent: project is an older name for emend.) Logical value.
Setting emend=TRUE will ensure that the fitted model is always a valid point
process by applying emend.ppm.

prior.mean Optional vector of prior means for canonical parameters (for method="VBlogi").
See Details.

prior.var Optional prior variance covariance matrix for canonical parameters (for method="VBlogi").
See Details.

nd Optional. Integer or pair of integers. The dimension of the grid of dummy points
(nd * nd or nd[1] * nd[2]) used to evaluate the integral in the pseudolikelihood.
Incompatible with eps.

eps Optional. A positive number, or a vector of two positive numbers, giving the
horizontal and vertical spacing, respectively, of the grid of dummy points. In-
compatible with nd.

gcontrol Optional. List of parameters passed to glm.control (or passed to gam.control
if use.gam=TRUE) controlling the model-fitting algorithm.

nsim Number of simulated realisations to generate (for method="ho")
nrmh Number of Metropolis-Hastings iterations for each simulated realisation (for

method="ho")
start,control Arguments passed to rmh controlling the behaviour of the Metropolis-Hastings

algorithm (for method="ho")
verb Logical flag indicating whether to print progress reports (for method="ho")
callstring Internal use only.

Details

NOTE: This help page describes the old syntax of the function ppm, described in many older
documents. This old syntax is still supported. However, if you are learning about ppm for the first
time, we recommend you use the new syntax described in the help file for ppm.

This function fits a point process model to an observed point pattern. The model may include spatial
trend, interpoint interaction, and dependence on covariates.

658 ppm.ppp

basic use: In basic use, Q is a point pattern dataset (an object of class "ppp") to which we wish to
fit a model.
The syntax of ppm() is closely analogous to the R functions glm and gam. The analogy is:

glm ppm
formula trend
family interaction

The point process model to be fitted is specified by the arguments trend and interaction
which are respectively analogous to the formula and family arguments of glm().
Systematic effects (spatial trend and/or dependence on spatial covariates) are specified by
the argument trend. This is an R formula object, which may be expressed in terms of the
Cartesian coordinates x, y, the marks marks, or the variables in covariates (if supplied), or
both. It specifies the logarithm of the first order potential of the process. The formula should
not use any names beginning with .mpl as these are reserved for internal use. If trend is
absent or equal to the default, ~1, then the model to be fitted is stationary (or at least, its first
order potential is constant).
The symbol . in the trend expression stands for all the covariates supplied in the argument
data. For example the formula ~ . indicates an additive model with a main effect for each
covariate in data.
Stochastic interactions between random points of the point process are defined by the ar-
gument interaction. This is an object of class "interact" which is initialised in a very
similar way to the usage of family objects in glm and gam. The models currently available
are: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard,
MultiStrauss, MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen,
Poisson, Saturated, SatPiece, Softcore, Strauss, StraussHard and Triplets. See the
examples below. It is also possible to combine several interactions using Hybrid.
If interaction is missing or NULL, then the model to be fitted has no interpoint interactions,
that is, it is a Poisson process (stationary or nonstationary according to trend). In this case
the methods of maximum pseudolikelihood and maximum logistic likelihood coincide with
maximum likelihood.
The fitted point process model returned by this function can be printed (by the print method
print.ppm) to inspect the fitted parameter values. If a nonparametric spatial trend was fitted,
this can be extracted using the predict method predict.ppm.

Models with covariates: To fit a model involving spatial covariates other than the Cartesian coor-
dinates x and y, the values of the covariates should be supplied in the argument covariates.
Note that it is not sufficient to have observed the covariate only at the points of the data point
pattern; the covariate must also have been observed at other locations in the window.
Typically the argument covariates is a list, with names corresponding to variables in the
trend formula. Each entry in the list is either

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be
an object of class "im", see im.object.

a function, which can be evaluated at any location (x,y) to obtain the value of the spa-
tial covariate. It should be a function(x, y) or function(x, y, ...) in the R lan-
guage. For marked point pattern data, the covariate can be a function(x, y, marks)
or function(x, y, marks, ...). The first two arguments of the function should be the

ppm.ppp 659

Cartesian coordinates x and y. The function may have additional arguments; if the func-
tion does not have default values for these additional arguments, then the user must supply
values for them, in covfunargs. See the Examples.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE out-
side it. This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value
indicates which tile of the tessellation it belongs to. This should be an object of class
"tess".

a single number, indicating a covariate that is constant in this dataset.

The software will look up the values of each covariate at the required locations (quadrature
points).
Note that, for covariate functions, only the name of the function appears in the trend formula.
A covariate function is treated as if it were a single variable. The function arguments do not
appear in the trend formula. See the Examples.
If covariates is a list, the list entries should have names corresponding to the names of
covariates in the model formula trend. The variable names x, y and marks are reserved for
the Cartesian coordinates and the mark values, and these should not be used for variables in
covariates.
If covariates is a data frame, Q must be a quadrature scheme (see under Quadrature Schemes
below). Then covariates must have as many rows as there are points in Q. The ith row of
covariates should contain the values of spatial variables which have been observed at the ith
point of Q.

Quadrature schemes: In advanced use, Q may be a ‘quadrature scheme’. This was originally just
a technicality but it has turned out to have practical uses, as we explain below.
Quadrature schemes are required for our implementation of the method of maximum pseudo-
likelihood. The definition of the pseudolikelihood involves an integral over the spatial window
containing the data. In practice this integral must be approximated by a finite sum over a set
of quadrature points. We use the technique of Baddeley and Turner (2000), a generalisation
of the Berman-Turner (1992) device. In this technique the quadrature points for the numeri-
cal approximation include all the data points (points of the observed point pattern) as well as
additional ‘dummy’ points.
Quadrature schemes are also required for the method of maximum logistic likelihood, which
combines the data points with additional ‘dummy’ points.
A quadrature scheme is an object of class "quad" (see quad.object) which specifies both
the data point pattern and the dummy points for the quadrature scheme, as well as the quadra-
ture weights associated with these points. If Q is simply a point pattern (of class "ppp", see
ppp.object) then it is interpreted as specifying the data points only; a set of dummy points
specified by default.dummy() is added, and the default weighting rule is invoked to compute
the quadrature weights.
Finer quadrature schemes (i.e. those with more dummy points) generally yield a better ap-
proximation, at the expense of higher computational load.
An easy way to fit models using a finer quadrature scheme is to let Q be the original point pat-
tern data, and use the argument nd to determine the number of dummy points in the quadrature
scheme.
Complete control over the quadrature scheme is possible. See quadscheme for an overview.
Use quadscheme(X, D, method="dirichlet") to compute quadrature weights based on the

660 ppm.ppp

Dirichlet tessellation, or quadscheme(X, D, method="grid") to compute quadrature weights
by counting points in grid squares, where X and D are the patterns of data points and dummy
points respectively. Alternatively use pixelquad to make a quadrature scheme with a dummy
point at every pixel in a pixel image.
A practical advantage of quadrature schemes arises when we want to fit a model involving
covariates (e.g. soil pH). Suppose we have only been able to observe the covariates at a small
number of locations. Suppose cov.dat is a data frame containing the values of the covariates
at the data points (i.e.\ cov.dat[i,] contains the observations for the ith data point) and
cov.dum is another data frame (with the same columns as cov.dat) containing the covariate
values at another set of points whose locations are given by the point pattern Y. Then setting
Q = quadscheme(X,Y) combines the data points and dummy points into a quadrature scheme,
and covariates = rbind(cov.dat, cov.dum) combines the covariate data frames. We can
then fit the model by calling ppm(Q, ..., covariates).

Model-fitting technique: There are several choices for the technique used to fit the model.

method="mpl" (the default): the model will be fitted by maximising the pseudolikelihood
(Besag, 1975) using the Berman-Turner computational approximation (Berman and Turner,
1992; Baddeley and Turner, 2000). Maximum pseudolikelihood is equivalent to maxi-
mum likelihood if the model is a Poisson process. Maximum pseudolikelihood is biased
if the interpoint interaction is very strong, unless there is a large number of dummy points.
The default settings for method='mpl' specify a moderately large number of dummy
points, striking a compromise between speed and accuracy.

method="logi": the model will be fitted by maximising the logistic likelihood (Baddeley
et al, 2014). This technique is roughly equivalent in speed to maximum pseudolikeli-
hood, but is believed to be less biased. Because it is less biased, the default settings for
method='logi' specify a relatively small number of dummy points, so that this method
is the fastest, in practice.

method="VBlogi": the model will be fitted in a Bayesian setup by maximising the posterior
probability density for the canonical model parameters. This uses the variational Bayes
approximation to the posterior derived from the logistic likelihood as described in Rajala
(2014). The prior is assumed to be multivariate Gaussian with mean vector prior.mean
and variance-covariance matrix prior.var.

method="ho": the model will be fitted by applying the approximate maximum likelihood
method of Huang and Ogata (1999). See below. The Huang-Ogata method is slower than
the other options, but has better statistical properties.

Note that method='logi', method='VBlogi' and method='ho' involve randomisation, so
that the results are subject to random variation.

Huang-Ogata method: If method="ho" then the model will be fitted using the Huang-Ogata (1999)
approximate maximum likelihood method. First the model is fitted by maximum pseudolike-
lihood as described above, yielding an initial estimate of the parameter vector θ0. From this
initial model, nsim simulated realisations are generated. The score and Fisher information
of the model at θ = θ0 are estimated from the simulated realisations. Then one step of the
Fisher scoring algorithm is taken, yielding an updated estimate θ1. The corresponding model
is returned.
Simulated realisations are generated using rmh. The iterative behaviour of the Metropolis-
Hastings algorithm is controlled by the arguments start and control which are passed to
rmh.

ppm.ppp 661

As a shortcut, the argument nrmh determines the number of Metropolis-Hastings iterations run
to produce one simulated realisation (if control is absent). Also if start is absent or equal
to NULL, it defaults to list(n.start=N) where N is the number of points in the data point
pattern.

Edge correction Edge correction should be applied to the sufficient statistics of the model, to re-
duce bias. The argument correction is the name of an edge correction method. The de-
fault correction="border" specifies the border correction, in which the quadrature window
(the domain of integration of the pseudolikelihood) is obtained by trimming off a margin of
width rbord from the observation window of the data pattern. Not all edge corrections are
implemented (or implementable) for arbitrary windows. Other options depend on the argu-
ment interaction, but these generally include correction="periodic" (the periodic or
toroidal edge correction in which opposite edges of a rectangular window are identified) and
correction="translate" (the translation correction, see Baddeley 1998 and Baddeley and
Turner 2000). For pairwise interaction models there is also Ripley’s isotropic correction, iden-
tified by correction="isotropic" or "Ripley".

Subsetting The arguments subset and clipwin specify that the model should be fitted to a re-
stricted subset of the available data. These arguments are equivalent for Poisson point process
models, but different for Gibbs models. If clipwin is specified, then all the available data will
be restricted to this spatial region, and data outside this region will be discarded, before the
model is fitted. If subset is specified, then no data are deleted, but the domain of integration
of the likelihood or pseudolikelihood is restricted to the subset. For Poisson models, these
two arguments have the same effect; but for a Gibbs model, interactions between points inside
and outside the subset are taken into account, while interactions between points inside and
outside the clipwin are ignored.

Value

An object of class "ppm" describing a fitted point process model.

See ppm.object for details of the format of this object and methods available for manipulating it.

Interaction parameters

Apart from the Poisson model, every point process model fitted by ppm has parameters that deter-
mine the strength and range of ‘interaction’ or dependence between points. These parameters are
of two types:

regular parameters: A parameter φ is called regular if the log likelihood is a linear function of θ
where θ = θ(ψ) is some transformation of ψ. [Then θ is called the canonical parameter.]

irregular parameters Other parameters are called irregular.

Typically, regular parameters determine the ‘strength’ of the interaction, while irregular parameters
determine the ‘range’ of the interaction. For example, the Strauss process has a regular parameter γ
controlling the strength of interpoint inhibition, and an irregular parameter r determining the range
of interaction.

The ppm command is only designed to estimate regular parameters of the interaction. It requires
the values of any irregular parameters of the interaction to be fixed. For example, to fit a Strauss
process model to the cells dataset, you could type ppm(cells, ~1, Strauss(r=0.07)). Note

662 ppm.ppp

that the value of the irregular parameter r must be given. The result of this command will be a fitted
model in which the regular parameter γ has been estimated.

To determine the irregular parameters, there are several practical techniques, but no general sta-
tistical theory available. Useful techniques include maximum profile pseudolikelihood, which is
implemented in the command profilepl, and Newton-Raphson maximisation, implemented in the
experimental command ippm.

Some irregular parameters can be estimated directly from data: the hard-core radius in the model
Hardcore and the matrix of hard-core radii in MultiHard can be estimated easily from data. In
these cases, ppm allows the user to specify the interaction without giving the value of the irregu-
lar parameter. The user can give the hard core interaction as interaction=Hardcore() or even
interaction=Hardcore, and the hard core radius will then be estimated from the data.

Error and Warning Messages

Some common error messages and warning messages are listed below, with explanations.

“System is computationally singular” The Fisher information matrix of the fitted model has a
determinant close to zero, so that the matrix cannot be inverted, and the software cannot cal-
culate standard errors or confidence intervals. This error is usually reported when the model
is printed, because the print method calculates standard errors for the fitted parameters. Sin-
gularity usually occurs because the spatial coordinates in the original data were very large
numbers (e.g. expressed in metres) so that the fitted coefficients were very small numbers.
The simple remedy is to rescale the data, for example, to convert from metres to kilometres
by X <- rescale(X, 1000), then re-fit the model. Singularity can also occur if the covariate
values are very large numbers, or if the covariates are approximately collinear.

“Covariate values were NA or undefined at X% (M out of N) of the quadrature points” The co-
variate data (typically a pixel image) did not provide values of the covariate at some of the
spatial locations in the observation window of the point pattern. This means that the spatial
domain of the pixel image does not completely cover the observation window of the point
pattern. If the percentage is small, this warning can be ignored - typically it happens because
of rounding effects which cause the pixel image to be one-pixel-width narrower than the ob-
servation window. However if more than a few percent of covariate values are undefined, it
would be prudent to check that the pixel images are correct, and are correctly registered in
their spatial relation to the observation window.

“Some tiles with positive area do not contain any quadrature points: relative error = X%” A
problem has arisen when creating the quadrature scheme used to fit the model. In the default
rule for computing the quadrature weights, space is divided into rectangular tiles, and the
number of quadrature points (data and dummy points) in each tile is counted. It is possible for
a tile with non-zero area to contain no quadrature points; in this case, the quadrature scheme
will contribute a bias to the model-fitting procedure. A small relative error (less than 2 per-
cent) is not important. Relative errors of a few percent can occur because of the shape of the
window. If the relative error is greater than about 5 percent, we recommend trying different
parameters for the quadrature scheme, perhaps setting a larger value of nd to increase the num-
ber of dummy points. A relative error greater than 10 percent indicates a major problem with
the input data: in this case, extract the quadrature scheme by applying quad.ppm to the fitted
model, and inspect it. (The most likely cause of this problem is that the spatial coordinates of
the original data were not handled correctly, for example, coordinates of the locations and the
window boundary were incompatible.)

ppm.ppp 663

“Model is unidentifiable” It is not possible to estimate all the model parameters from this dataset.
The error message gives a further explanation, such as “data pattern is empty”. Choose a
simpler model, or check the data.

“N data points are illegal (zero conditional intensity)” In a Gibbs model (i.e. with interaction
between points), the conditional intensity may be zero at some spatial locations, indicating
that the model forbids the presence of a point at these locations. However if the conditional
intensity is zero at a data point, this means that the model is inconsistent with the data. Modify
the interaction parameters so that the data point is not illegal (e.g. reduce the value of the hard
core radius) or choose a different interaction.

Warnings

The implementation of the Huang-Ogata method is experimental; several bugs were fixed in spat-
stat 1.19-0.

See the comments above about the possible inefficiency and bias of the maximum pseudolikelihood
estimator.

The accuracy of the Berman-Turner approximation to the pseudolikelihood depends on the number
of dummy points used in the quadrature scheme. The number of dummy points should at least equal
the number of data points.

The parameter values of the fitted model do not necessarily determine a valid point process. Some
of the point process models are only defined when the parameter values lie in a certain subset. For
example the Strauss process only exists when the interaction parameter γ is less than or equal to 1,
corresponding to a value of ppm()$theta[2] less than or equal to 0.

By default (if emend=FALSE) the algorithm maximises the pseudolikelihood without constraining
the parameters, and does not apply any checks for sanity after fitting the model. This is because the
fitted parameter value could be useful information for data analysis. To constrain the parameters to
ensure that the model is a valid point process, set emend=TRUE. See also the functions valid.ppm
and emend.ppm.

The trend formula should not use any variable names beginning with the prefixes .mpl or Interaction
as these names are reserved for internal use. The data frame covariates should have as many rows
as there are points in Q. It should not contain variables called x, y or marks as these names are
reserved for the Cartesian coordinates and the marks.

If the model formula involves one of the functions poly(), bs() or ns() (e.g. applied to spatial
coordinates x and y), the fitted coefficients can be misleading. The resulting fit is not to the raw
spatial variates (x, x^2, x*y, etc.) but to a transformation of these variates. The transformation
is implemented by poly() in order to achieve better numerical stability. However the resulting
coefficients are appropriate for use with the transformed variates, not with the raw variates. This
affects the interpretation of the constant term in the fitted model, logbeta. Conventionally, β is the
background intensity, i.e. the value taken by the conditional intensity function when all predictors
(including spatial or “trend” predictors) are set equal to 0. However the coefficient actually produced
is the value that the log conditional intensity takes when all the predictors, including the transformed
spatial predictors, are set equal to 0, which is not the same thing.

Worse still, the result of predict.ppm can be completely wrong if the trend formula contains one of
the functions poly(), bs() or ns(). This is a weakness of the underlying function predict.glm.

If you wish to fit a polynomial trend, we offer an alternative to poly(), namely polynom(), which
avoids the difficulty induced by transformations. It is completely analogous to poly except that it

664 ppm.ppp

does not orthonormalise. The resulting coefficient estimates then have their natural interpretation
and can be predicted correctly. Numerical stability may be compromised.

Values of the maximised pseudolikelihood are not comparable if they have been obtained with
different values of rbord.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

Besag, J. Statistical analysis of non-lattice data. The Statistician 24 (1975) 179-195.

Diggle, P.J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. On parameter esti-
mation for pairwise interaction processes. International Statistical Review 62 (1994) 99-117.

Huang, F. and Ogata, Y. Improvements of the maximum pseudo-likelihood estimators in various
spatial statistical models. Journal of Computational and Graphical Statistics 8 (1999) 510-530.

Jensen, J.L. and Moeller, M. Pseudolikelihood for exponential family models of spatial point pro-
cesses. Annals of Applied Probability 1 (1991) 445–461.

Jensen, J.L. and Kuensch, H.R. On asymptotic normality of pseudo likelihood estimates for pairwise
interaction processes, Annals of the Institute of Statistical Mathematics 46 (1994) 475-486.

Rajala T. (2014) A note on Bayesian logistic regression for spatial exponential family Gibbs point
processes, Preprint on ArXiv.org. https://arxiv.org/abs/1411.0539

See Also

ppm.object for details of how to print, plot and manipulate a fitted model.

ppp and quadscheme for constructing data.

Interactions: AreaInter, BadGey, Concom, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer,
Hardcore, HierHard, HierStrauss, HierStraussHard, Hybrid, LennardJones, MultiHard, MultiStrauss,
MultiStraussHard, OrdThresh, Ord, Pairwise, PairPiece, Penttinen, Poisson, Saturated,
SatPiece, Softcore, Strauss, StraussHard and Triplets.

See profilepl for advice on fitting nuisance parameters in the interaction, and ippm for irregular
parameters in the trend.

See valid.ppm and emend.ppm for ensuring the fitted model is a valid point process.

https://arxiv.org/abs/1411.0539

ppmInfluence 665

Examples

fit the stationary Poisson process
to point pattern 'nztrees'

ppm(nztrees)
ppm(nztrees ~ 1)
equivalent.

Q <- quadscheme(nztrees)
ppm(Q)
equivalent.

fit1 <- ppm(nztrees, ~ x)
fit the nonstationary Poisson process
with intensity function lambda(x,y) = exp(a + bx)
where x,y are the Cartesian coordinates
and a,b are parameters to be estimated

For other examples, see help(ppm)

ppmInfluence Leverage and Influence Measures for Spatial Point Process Model

Description

Calculates all the leverage and influence measures described in influence.ppm, leverage.ppm
and dfbetas.ppm.

Usage

ppmInfluence(fit,
what = c("leverage", "influence", "dfbetas"),
...,
iScore = NULL, iHessian = NULL, iArgs = NULL,
drop = FALSE,
fitname = NULL)

Arguments

fit A fitted point process model of class "ppm".

what Character vector specifying which quantities are to be calculated. Default is to
calculate all quantities.

... Ignored.
iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters,
if required. See Details.

iArgs List of extra arguments for the functions iScore, iHessian if required.

666 ppmInfluence

drop Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contribu-
tions from quadrature points that were not used to fit the model.

fitname Optional character string name for the fitted model fit.

Details

This function calculates all the leverage and influence measures described in influence.ppm,
leverage.ppm and dfbetas.ppm.

When analysing large datasets, the user can call ppmInfluence to perform the calculations effi-
ciently, then extract the leverage and influence values as desired. For example the leverage can be
extracted either as result$leverage or leverage(result).

If the point process model trend has irregular parameters that were fitted (using ippm) then the
influence calculation requires the first and second derivatives of the log trend with respect to the
irregular parameters. The argument iScore should be a list, with one entry for each irregular
parameter, of R functions that compute the partial derivatives of the log trend (i.e. log intensity or
log conditional intensity) with respect to each irregular parameter. The argument iHessian should
be a list, with p2 entries where p is the number of irregular parameters, of R functions that compute
the second order partial derivatives of the log trend with respect to each pair of irregular parameters.

Value

A list containing the leverage and influence measures specified by what. The result also belongs to
the class "ppmInfluence".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

leverage.ppm, influence.ppm, dfbetas.ppm

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X ~ x+y)
fI <- ppmInfluence(fit)

fitlev <- fI$leverage
fitlev <- leverage(fI)

fitinf <- fI$influence
fitinf <- influence(fI)

fitdfb <- fI$dfbetas
fitdfb <- dfbetas(fI)

PPversion 667

PPversion Transform a Function into its P-P or Q-Q Version

Description

Given a function object f containing both the estimated and theoretical versions of a summary
function, these operations combine the estimated and theoretical functions into a new function.
When plotted, the new function gives either the P-P plot or Q-Q plot of the original f.

Usage

PPversion(f, theo = "theo", columns = ".")

QQversion(f, theo = "theo", columns = ".")

Arguments

f The function to be transformed. An object of class "fv".

theo The name of the column of f that should be treated as the theoretical value of
the function.

columns Character vector, specifying the columns of f to which the transformation will
be applied. Either a vector of names of columns of f, or one of the abbreviations
recognised by fvnames.

Details

The argument f should be an object of class "fv", containing both empirical estimates f̂(r) and a
theoretical value f0(r) for a summary function.

The P–P version of f is the function g(x) = f̂(f−10 (x)) where f−10 is the inverse function of f0.
A plot of g(x) against x is equivalent to a plot of f̂(r) against f0(r) for all r. If f is a cumulative
distribution function (such as the result of Fest or Gest) then this is a P–P plot, a plot of the
observed versus theoretical probabilities for the distribution. The diagonal line y = x corresponds
to perfect agreement between observed and theoretical distribution.

The Q–Q version of f is the function h(x) = f−10 (f̂(x)). If f is a cumulative distribution func-
tion, a plot of h(x) against x is a Q–Q plot, a plot of the observed versus theoretical quantiles of
the distribution. The diagonal line y = x corresponds to perfect agreement between observed and
theoretical distribution. Another straight line corresponds to the situation where the observed vari-
able is a linear transformation of the theoretical variable. For a point pattern X, the Q–Q version of
Kest(X) is essentially equivalent to Lest(X).

Value

Another object of class "fv".

668 predict.dppm

Author(s)

Tom Lawrence and Adrian Baddeley.

Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.fv

Examples

opa <- par(mar=0.1+c(5,5,4,2))
G <- Gest(redwoodfull)
plot(PPversion(G))
plot(QQversion(G))
par(opa)

predict.dppm Prediction from a Fitted Determinantal Point Process Model

Description

Given a fitted determinantal point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'dppm'
fitted(object, ...)

S3 method for class 'dppm'
predict(object, ...)

Arguments

object Fitted determinantal point process model. An object of class "dppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a determinantal point process model (object of class "dppm") obtained using the function
dppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

predict.kppm 669

Value

The value of fitted.dppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.dppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

dppm, plot.dppm, fitted.ppm, predict.ppm

Examples

if(interactive()) {
fit <- dppm(swedishpines ~ x + y, dppGauss())

} else {
fit <- dppm(redwood ~ x, dppGauss())

}
predict(fit)

predict.kppm Prediction from a Fitted Cluster Point Process Model

Description

Given a fitted cluster point process model, these functions compute the fitted intensity.

Usage

S3 method for class 'kppm'
fitted(object, ...)

S3 method for class 'kppm'
predict(object, ...)

Arguments

object Fitted cluster point process model. An object of class "kppm".

... Arguments passed to fitted.ppm or predict.ppm respectively.

Details

These functions are methods for the generic functions fitted and predict. The argument object
should be a cluster point process model (object of class "kppm") obtained using the function kppm.

The intensity of the fitted model is computed, using fitted.ppm or predict.ppm respectively.

670 predict.mppm

Value

The value of fitted.kppm is a numeric vector giving the fitted values at the quadrature points.

The value of predict.kppm is usually a pixel image (object of class "im"), but see predict.ppm
for details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

kppm, plot.kppm, vcov.kppm, fitted.ppm, predict.ppm

Examples

data(redwood)
fit <- kppm(redwood ~ x, "Thomas")
predict(fit)

predict.mppm Prediction for Fitted Multiple Point Process Model

Description

Given a fitted multiple point process model obtained by mppm, evaluate the spatial trend and/or the
conditional intensity of the model. By default, predictions are evaluated over a grid of locations,
yielding pixel images of the trend and conditional intensity. Alternatively predictions may be eval-
uated at specified locations with specified values of the covariates.

Usage

S3 method for class 'mppm'
predict(object, ..., newdata = NULL, type = c("trend", "cif"),

ngrid = 40, locations=NULL, verbose=FALSE)

Arguments

object The fitted model. An object of class "mppm" obtained from mppm.

... Ignored.

newdata Optional. New values of the covariates, for which the predictions should be
computed. See Details.

type Type of predicted values required. A character string or vector of character
strings. Options are "trend" for the spatial trend (first-order term) and "cif"
or "lambda" for the conditional intensity. Alternatively type="all" selects all
options.

predict.mppm 671

ngrid Dimensions of the grid of spatial locations at which prediction will be performed
(if locations=NULL). An integer or a pair of integers.

locations Optional. The locations at which predictions should be performed. A list of
point patterns, with one entry for each row of newdata.

verbose Logical flag indicating whether to print progress reports.

Details

This function computes the spatial trend and the conditional intensity of a spatial point process
model that has been fitted to several spatial point patterns. See Chapter 16 of Baddeley, Rubak and
Turner (2015) for explanation and examples.

Note that by “spatial trend” we mean the (exponentiated) first order potential and not the intensity
of the process. [For example if we fit the stationary Strauss process with parameters β and γ, then
the spatial trend is constant and equal to β.] The conditional intensity λ(u,X) of the fitted model
is evaluated at each required spatial location u, with respect to the response point pattern X.

If newdata=NULL, predictions are computed for the original values of the covariates, to which
the model was fitted. Otherwise newdata should be a hyperframe (see hyperframe) containing
columns of covariates as required by the model. If type includes "cif", then newdata must also
include a column of spatial point pattern responses, in order to compute the conditional intensity.

If locations=NULL, then predictions are performed at an ngrid by ngrid grid of locations in the
window for each response point pattern. The result will be a hyperframe containing a column of
images of the trend (if selected) and a column of images of the conditional intensity (if selected).
The result can be plotted.

If locations is given, then it should be a list of point patterns (objects of class "ppp"). Predictions
are performed at these points, and the results are returned as mark values attached to the locations.
The result is a hyperframe containing columns called trend and/or cif. The column called trend
contains marked point patterns in which the point locations are the locations and the mark value
is the predicted trend. The column called cif contains marked point patterns in which the point
locations are the locations and the mark value is the predicted conditional intensity.

Value

A hyperframe with columns named trend and/or cif.

If locations=NULL, the entries of the hyperframe are pixel images.

If locations is not null, the entries are marked point patterns constructed by attaching the predicted
values to the locations point patterns.

Models that depend on row number

The point process model that is described by an mppm object may be a different point process for
each row of the original hyperframe of data. This occurs if the model formula includes the variable
id (representing row number) or if the model has a different interpoint interaction on each row.

If the point process model is different on each row of the original data, then either

• newdata is missing. Predictions are computed for each row of the original data using the point
process model that applies on each row.

672 predict.ppm

• newdata must have the same number of rows as the original data. Each row of newdata is
assumed to be a replacement for the corresponding row of the original data. The prediction
for row i of newdata will be computed for the point process model that applies to row i of
the original data.

• newdata must include a column called id specifying the row number, and therefore identify-
ing which of the point process models should apply. The predictions for row i of newdata
will be computed for the point process model that applies to row k of the original data, where
k = newdata$id[i].

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Baddeley, A., Bischof, L., Sintorn, I.-M., Haggarty, S., Bell, M. and Turner, R. Analysis of a
designed experiment where the response is a spatial point pattern. In preparation.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, fitted.mppm, hyperframe

Examples

h <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ x, data=h, interaction=Strauss(7))
prediction on a grid
p <- predict(fit)
plot(p$trend)
prediction at specified locations
loc <- with(h, runifpoint(20, Window(Bugs)))
p2 <- predict(fit, locations=loc)
plot(p2$trend)

predict.ppm Prediction from a Fitted Point Process Model

Description

Given a fitted point process model obtained by ppm, evaluate the spatial trend or the conditional
intensity of the model at new locations.

predict.ppm 673

Usage

S3 method for class 'ppm'
predict(object, window=NULL, ngrid=NULL, locations=NULL,

covariates=NULL,
type=c("trend", "cif", "intensity", "count"),
se=FALSE,
interval=c("none", "confidence", "prediction"),
level = 0.95,
X=data.ppm(object), correction, ignore.hardcore=FALSE,
...,
dimyx=NULL, eps=NULL,
new.coef=NULL, check=TRUE, repair=TRUE)

Arguments

object A fitted point process model, typically obtained from the model-fitting algorithm
ppm. An object of class "ppm" (see ppm.object).

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Incompatible
with locations. Equivalent to dimyx.)

locations Optional. Data giving the exact x, y coordinates (and marks, if required) of
locations at which predictions should be computed. Either a point pattern, or
a data frame with columns named x and y, or a binary image mask, or a pixel
image. (Incompatible with ngrid, dimyx and eps).

covariates Values of external covariates required by the model. Either a data frame or a list
of images. See Details.

type Character string. Indicates which property of the fitted model should be pre-
dicted. Options are "trend" for the spatial trend, "cif" or "lambda" for the
conditional intensity, "intensity" for the intensity, and "count" for the total
number of points in window.

se Logical value indicating whether to calculate standard errors as well.
interval String (partially matched) indicating whether to produce estimates (interval="none",

the default) or a confidence interval (interval="confidence") or a prediction
interval (interval="prediction").

level Coverage probability for the confidence or prediction interval.
X Optional. A point pattern (object of class "ppp") to be taken as the data point

pattern when calculating the conditional intensity. The default is to use the orig-
inal data to which the model was fitted.

correction Name of the edge correction to be used in calculating the conditional intensity.
Options include "border" and "none". Other options may include "periodic",
"isotropic" and "translate" depending on the model. The default correction
is the one that was used to fit object.

674 predict.ppm

ignore.hardcore

Advanced use only. Logical value specifying whether to compute only the finite
part of the interaction potential (effectively removing any hard core interaction
terms).

... Ignored.

dimyx Equivalent to ngrid.

eps Width and height of pixels in the prediction grid. A numerical value, or numeric
vector of length 2.

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

repair Logical value indicating whether to repair the internal format of object, if it is
found to be damaged.

Details

This function computes properties of a fitted spatial point process model (object of class "ppm").
For a Poisson point process it can compute the fitted intensity function, or the expected number of
points in a region. For a Gibbs point process it can compute the spatial trend (first order potential),
conditional intensity, and approximate intensity of the process. Point estimates, standard errors,
confidence intervals and prediction intervals are available.

Given a point pattern dataset, we may fit a point process model to the data using the model-fitting
algorithm ppm. This returns an object of class "ppm" representing the fitted point process model (see
ppm.object). The parameter estimates in this fitted model can be read off simply by printing the
ppm object. The spatial trend, conditional intensity and intensity of the fitted model are evaluated
using this function predict.ppm.

The default action is to create a rectangular grid of points in the observation window of the data
point pattern, and evaluate the spatial trend at these locations.

The argument type specifies the values that are desired:

If type="trend": the “spatial trend” of the fitted model is evaluated at each required spatial loca-
tion u. See below.

If type="cif": the conditional intensity λ(u,X) of the fitted model is evaluated at each required
spatial location u, with respect to the data point pattern X .

If type="intensity": the intensity λ(u) of the fitted model is evaluated at each required spatial
location u.

If type="count": the expected total number of points (or the expected number of points falling in
window) is evaluated. If window is a tessellation, the expected number of points in each tile of
the tessellation is evaluated.

The spatial trend, conditional intensity, and intensity are all equivalent if the fitted model is a Poisson
point process. However, if the model is not a Poisson process, then they are all different. The
“spatial trend” is the (exponentiated) first order potential, and not the intensity of the process. [For

predict.ppm 675

example if we fit the stationary Strauss process with parameters β and γ, then the spatial trend is
constant and equal to β, while the intensity is a smaller value.]

The default is to compute an estimate of the desired quantity. If interval="confidence" or
interval="prediction", the estimate is replaced by a confidence interval or prediction interval.

If se=TRUE, then a standard error is also calculated, and is returned together with the (point or
interval) estimate.

The spatial locations where predictions are required, are determined by the (incompatible) argu-
ments ngrid and locations.

• If the argument ngrid is present, then predictions are performed at a rectangular grid of loca-
tions in the window window. The result of prediction will be a pixel image or images.

• If locations is present, then predictions will be performed at the spatial locations given by
this dataset. These may be an arbitrary list of spatial locations, or they may be a rectangular
grid. The result of prediction will be either a numeric vector or a pixel image or images.

• If neither ngrid nor locations is given, then ngrid is assumed. The value of ngrid defaults
to spatstat.options("npixel"), which is initialised to 128 when spatstat is loaded.

The argument locations may be a point pattern, a data frame or a list specifying arbitrary locations;
or it may be a binary image mask (an object of class "owin" with type "mask") or a pixel image
(object of class "im") specifying (a subset of) a rectangular grid of locations.

• If locations is a point pattern (object of class "ppp"), then prediction will be performed at
the points of the point pattern. The result of prediction will be a vector of predicted values,
one value for each point. If the model is a marked point process, then locations should be a
marked point pattern, with marks of the same kind as the model; prediction will be performed
at these marked points. The result of prediction will be a vector of predicted values, one value
for each (marked) point.

• If locations is a data frame or list, then it must contain vectors locations$x and locations$y
specifying the x, y coordinates of the prediction locations. Additionally, if the model is a
marked point process, then locations must also contain a factor locations$marks specify-
ing the marks of the prediction locations. These vectors must have equal length. The result of
prediction will be a vector of predicted values, of the same length.

• If locations is a binary image mask, then prediction will be performed at each pixel in this
binary image where the pixel value is TRUE (in other words, at each pixel that is inside the
window). If the fitted model is an unmarked point process, then the result of prediction will
be an image. If the fitted model is a marked point process, then prediction will be performed
for each possible value of the mark at each such location, and the result of prediction will be
a list of images, one for each mark value.

• If locations is a pixel image (object of class "im"), then prediction will be performed at each
pixel in this image where the pixel value is defined (i.e.\ where the pixel value is not NA).

The argument covariates gives the values of any spatial covariates at the prediction locations. If
the trend formula in the fitted model involves spatial covariates (other than the Cartesian coordinates
x, y) then covariates is required. The format and use of covariates are analogous to those of
the argument of the same name in ppm. It is either a data frame or a list of images.

• If covariates is a list of images, then the names of the entries should correspond to the names
of covariates in the model formula trend. Each entry in the list must be an image object (of

676 predict.ppm

class "im", see im.object). The software will look up the pixel values of each image at the
quadrature points.

• If covariates is a data frame, then the ith row of covariates is assumed to contain covariate
data for the ith location. When locations is a data frame, this just means that each row of
covariates contains the covariate data for the location specified in the corresponding row
of locations. When locations is a binary image mask, the row covariates[i,] must
correspond to the location x[i],y[i] where x = as.vector(raster.x(locations)) and y
= as.vector(raster.y(locations)).

Note that if you only want to use prediction in order to generate a plot of the predicted values, it
may be easier to use plot.ppm which calls this function and plots the results.

Value

If total is given: a numeric vector or matrix.

If locations is given and is a data frame: a vector of predicted values for the spatial locations
(and marks, if required) given in locations.

If ngrid is given, or if locations is given and is a binary image mask or a pixel image: If object
is an unmarked point process, the result is a pixel image object (of class "im", see im.object)
containing the predictions. If object is a multitype point process, the result is a list of pixel images,
containing the predictions for each type at the same grid of locations.

The “predicted values” are either values of the spatial trend (if type="trend"), values of the condi-
tional intensity (if type="cif" or type="lambda"), values of the intensity (if type="intensity")
or numbers of points (if type="count").

If se=TRUE, then the result is a list with two entries, the first being the predicted values in the format
described above, and the second being the standard errors in the same format.

Warnings

The current implementation invokes predict.glm so that prediction is wrong if the trend formula
in object involves terms in ns(), bs() or poly(). This is a weakness of predict.glm itself!

Error messages may be very opaque, as they tend to come from deep in the workings of predict.glm.
If you are passing the covariates argument and the function crashes, it is advisable to start by
checking that all the conditions listed above are satisfied.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. Practical maximum pseudolikelihood for spatial point patterns. Aus-
tralian and New Zealand Journal of Statistics 42 (2000) 283–322.

Berman, M. and Turner, T.R. Approximating point process likelihoods with GLIM. Applied Statis-
tics 41 (1992) 31–38.

predict.rppm 677

See Also

ppm, ppm.object, plot.ppm, print.ppm, fitted.ppm, spatstat.options

Examples

m <- ppm(cells ~ polynom(x,y,2), Strauss(0.05))
trend <- predict(m, type="trend")
if(human <- interactive()) {
image(trend)
points(cells)
}
cif <- predict(m, type="cif")
if(human) {
persp(cif)
}
mj <- ppm(japanesepines ~ harmonic(x,y,2))
se <- predict(mj, se=TRUE) # image of standard error
ci <- predict(mj, interval="c") # two images, confidence interval

prediction interval for total number of points
predict(mj, type="count", interval="p")

prediction intervals for counts in tiles
predict(mj, window=quadrats(japanesepines, 3), type="count", interval="p")

prediction at arbitrary locations
predict(mj, locations=data.frame(x=0.3, y=0.4))

X <- runifpoint(5, Window(japanesepines))
predict(mj, locations=X, se=TRUE)

multitype
rr <- matrix(0.06, 2, 2)
ma <- ppm(amacrine ~ marks, MultiStrauss(rr))
Z <- predict(ma)
Z <- predict(ma, type="cif")
predict(ma, locations=data.frame(x=0.8, y=0.5,marks="on"), type="cif")

predict.rppm Make Predictions From a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, compute the
predicted intensity of the model.

678 predict.rppm

Usage

S3 method for class 'rppm'
predict(object, ...)

S3 method for class 'rppm'
fitted(object, ...)

Arguments

object Fitted point process model of class "rppm" produced by the function rppm.

... Optional arguments passed to predict.ppm to specify the locations where pre-
diction is required. (Ignored by fitted.rppm)

Details

These functions are methods for the generic functions fitted and predict. They compute the
fitted intensity of a point process model. The argument object should be a fitted point process
model of class "rppm" produced by the function rppm.

The fitted method computes the fitted intensity at the original data points, yielding a numeric
vector with one entry for each data point.

The predict method computes the fitted intensity at any locations. By default, predictions are
calculated at a regular grid of spatial locations, and the result is a pixel image giving the predicted
intensity values at these locations.

Alternatively, predictions can be performed at other locations, or a finer grid of locations, or
only at certain specified locations, using additional arguments ... which will be interpreted by
predict.ppm. Common arguments are ngrid to increase the grid resolution, window to specify the
prediction region, and locations to specify the exact locations of predictions. See predict.ppm
for details of these arguments.

Predictions are computed by evaluating the explanatory covariates at each desired location, and
applying the recursive partitioning rule to each set of covariate values.

Value

The result of fitted.rppm is a numeric vector.

The result of predict.rppm is a pixel image, a list of pixel images, or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rppm, plot.rppm

predict.slrm 679

Examples

fit <- rppm(unmark(gorillas) ~ vegetation, data=gorillas.extra)
plot(predict(fit))
lambdaX <- fitted(fit)
lambdaX[1:5]
Mondriaan pictures
plot(predict(rppm(redwoodfull ~ x + y)))
points(redwoodfull)

predict.slrm Predicted or Fitted Values from Spatial Logistic Regression

Description

Given a fitted Spatial Logistic Regression model, this function computes the fitted probabilities for
each pixel, or the fitted point process intensity, or the values of the linear predictor in each pixel.

Usage

S3 method for class 'slrm'
predict(object, ..., type = "intensity",

newdata=NULL, window=NULL)

Arguments

object a fitted spatial logistic regression model. An object of class "slrm".
... Optional arguments passed to pixellate determining the pixel resolution for

the discretisation of the point pattern.
type Character string (partially) matching one of "probabilities", "intensity"

or "link".
newdata Optional. List containing new covariate values for the prediction. See Details.
window Optional. New window in which to predict. An object of class "owin".

Details

This is a method for predict for spatial logistic regression models (objects of class "slrm", usually
obtained from the function slrm).

The argument type determines which quantity is computed. If type="intensity"), the value of
the point process intensity is computed at each pixel. If type="probabilities") the probability of
the presence of a random point in each pixel is computed. If type="link", the value of the linear
predictor is computed at each pixel.

If newdata = NULL (the default), the algorithm computes fitted values of the model (based on the
data that was originally used to fit the model object).

If newdata is given, the algorithm computes predicted values of the model, using the new values
of the covariates provided by newdata. The argument newdata should be a list; names of entries
in the list should correspond to variables appearing in the model formula of the object. Each list
entry may be a pixel image or a single numeric value.

680 print.ppm

Value

A pixel image (object of class "im") containing the predicted values for each pixel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> <adrian@maths.uwa.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x+y)
plot(predict(fit))

data(copper)
X <- copper$SouthPoints
Y <- copper$SouthLines
Z <- distmap(Y)
fitc <- slrm(X ~ Z)
pc <- predict(fitc)

Znew <- distmap(copper$Lines)[copper$SouthWindow]
pcnew <- predict(fitc, newdata=list(Z=Znew))

print.ppm Print a Fitted Point Process Model

Description

Default print method for a fitted point process model.

Usage

S3 method for class 'ppm'
print(x,...,

what=c("all", "model", "trend", "interaction", "se", "errors"))

Arguments

x A fitted point process model, typically obtained from the model-fittingg algo-
rithm ppm. An object of class "ppm".

what Character vector (partially-matched) indicating what information should be printed.

... Ignored.

profilepl 681

Details

This is the print method for the class "ppm". It prints information about the fitted model in a
sensible format.

The argument what makes it possible to print only some of the information.

If what is missing, then by default, standard errors for the estimated coefficients of the model will be
printed only if the model is a Poisson point process. To print the standard errors for a non-Poisson
model, call print.ppm with the argument what given explicitly, or reset the default rule by typing
spatstat.options(print.ppm.SE="always").

Value

none.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object for details of the class "ppm".

ppm for generating these objects.

plot.ppm, predict.ppm

Examples

m <- ppm(cells ~1, Strauss(0.05))
m

profilepl Fit Models by Profile Maximum Pseudolikelihood or AIC

Description

Fits point process models by maximising the profile likelihood, profile pseudolikelihood, profile
composite likelihood or AIC.

Usage

profilepl(s, f, ..., aic=FALSE, rbord=NULL, verbose = TRUE, fast=TRUE)

682 profilepl

Arguments

s Data frame containing values of the irregular parameters over which the criterion
will be computed.

f Function (such as Strauss) that generates an interpoint interaction object, given
values of the irregular parameters.

... Data passed to ppm to fit the model.

aic Logical value indicating whether to find the parameter values which minimise
the AIC (aic=TRUE) or maximise the profile likelihood (aic=FALSE, the default).

rbord Radius for border correction (same for all models). If omitted, this will be com-
puted from the interactions.

verbose Logical value indicating whether to print progress reports.

fast Logical value indicating whether to use a faster, less accurate model-fitting tech-
nique when computing the profile pseudolikelihood. See Section on Speed and
Accuracy.

Details

The model-fitting function ppm fits point process models to point pattern data. However, only the
‘regular’ parameters of the model can be fitted by ppm. The model may also depend on ‘irregular’
parameters that must be fixed in any call to ppm.

This function profilepl is a wrapper which finds the values of the irregular parameters that give
the best fit. If aic=FALSE (the default), the best fit is the model which maximises the likelihood
(if the models are Poisson processes) or maximises the pseudolikelihood or logistic likelihood. If
aic=TRUE then the best fit is the model which minimises the Akaike Information Criterion AIC.ppm.

The argument s must be a data frame whose columns contain values of the irregular parameters
over which the maximisation is to be performed.

An irregular parameter may affect either the interpoint interaction or the spatial trend.

interaction parameters: in a call to ppm, the argument interaction determines the interaction
between points. It is usually a call to a function such as Strauss. The arguments of this
call are irregular parameters. For example, the interaction radius parameter r of the Strauss
process, determined by the argument r to the function Strauss, is an irregular parameter.

trend parameters: in a call to ppm, the spatial trend may depend on covariates, which are supplied
by the argument covariates. These covariates may be functions written by the user, of the
form function(x,y,...), and the extra arguments ... are irregular parameters.

The argument f determines the interaction for each model to be fitted. It would typically be one
of the functions Poisson, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel,
Geyer, Hardcore, LennardJones, OrdThresh, Softcore, Strauss or StraussHard. Alternatively
it could be a function written by the user.

Columns of s which match the names of arguments of f will be interpreted as interaction parame-
ters. Other columns will be interpreted as trend parameters.

The data frame s must provide values for each argument of f, except for the optional arguments,
which are those arguments of f that have the default value NA.

profilepl 683

To find the best fit, each row of s will be taken in turn. Interaction parameters in this row will be
passed to f, resulting in an interaction object. Then ppm will be applied to the data ... using this
interaction. Any trend parameters will be passed to ppm through the argument covfunargs. This
results in a fitted point process model. The value of the log pseudolikelihood or AIC from this
model is stored. After all rows of s have been processed in this way, the row giving the maximum
value of log pseudolikelihood will be found.

The object returned by profilepl contains the profile pseudolikelihood (or profile AIC) function,
the best fitting model, and other data. It can be plotted (yielding a plot of the log pseudolikelihood or
AIC values against the irregular parameters) or printed (yielding information about the best fitting
values of the irregular parameters).

In general, f may be any function that will return an interaction object (object of class "interact")
that can be used in a call to ppm. Each argument of f must be a single value.

Value

An object of class "profilepl". There are methods for plot, print, summary, simulate, as.ppm,
fitin and parameters for objects of this class.

The components of the object include

fit Best-fitting model

param The data frame s

iopt Row index of the best-fitting parameters in s

To extract the best fitting model you can also use as.ppm.

Speed and Accuracy

Computation of the profile pseudolikelihood can be time-consuming. We recommend starting with
a small experiment in which s contains only a few rows of values. This will indicate roughly
the optimal values of the parameters. Then a full calculation using more finely spaced values can
identify the exact optimal values.

It is normal that the procedure appears to slow down at the end. During the computation of the
profile pseudolikelihood, the model-fitting procedure is accelerated by omitting some calculations
that are not needed for computing the pseudolikelihood. When the optimal parameter values have
been identified, they are used to fit the final model in its entirety. Fitting the final model can take
longer than computing the profile pseudolikelihood.

If fast=TRUE (the default), then additional shortcuts are taken in order to accelerate the computation
of the profile log pseudolikelihood. These shortcuts mean that the values of the profile log pseudo-
likelihood in the result ($prof) may not be equal to the values that would be obtained if the model
was fitted normally. Currently this happens only for the area interaction AreaInter. It may be wise
to do a small experiment with fast=TRUE and then a definitive calculation with fast=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

684 prune.rppm

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

plot.profilepl

Examples

one irregular parameter
rr <- data.frame(r=seq(0.05,0.15, by=0.01))

ps <- profilepl(rr, Strauss, cells)
ps
plot(ps)

two irregular parameters
rs <- expand.grid(r=seq(0.05,0.15, by=0.01),sat=1:3)

pg <- profilepl(rs, Geyer, cells)
pg
as.ppm(pg)

more information
summary(pg)

multitype pattern with a common interaction radius
RR <- data.frame(R=seq(0.03,0.05,by=0.01))
MS <- function(R) { MultiStrauss(radii=diag(c(R,R))) }
pm <- profilepl(RR, MS, amacrine ~marks)

prune.rppm Prune a Recursively Partitioned Point Process Model

Description

Given a model which has been fitted to point pattern data by recursive partitioning, apply pruning
to reduce the complexity of the partition tree.

Usage

S3 method for class 'rppm'
prune(tree, ...)

Arguments

tree Fitted point process model of class "rppm" produced by the function rppm.
... Arguments passed to prune.rpart to control the pruning procedure.

pseudoR2 685

Details

This is a method for the generic function prune for the class "rppm". An object of this class is a
point process model, fitted to point pattern data by recursive partitioning, by the function rppm.

The recursive partition tree will be pruned using prune.rpart. The result is another object of class
"rppm".

Value

Object of class "rppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

rppm, plot.rppm, predict.rppm.

Examples

Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
fit <- rppm(gold ~ dfault + greenstone, data=mur)
fit
prune(fit, cp=0.1)

pseudoR2 Calculate Pseudo-R-Squared for Point Process Model

Description

Given a fitted point process model, calculate the pseudo-R-squared value, which measures the frac-
tion of variation in the data that is explained by the model.

Usage

pseudoR2(object, ...)

S3 method for class 'ppm'
pseudoR2(object, ..., keepoffset=TRUE)

S3 method for class 'slrm'
pseudoR2(object, ..., keepoffset=TRUE)

686 pseudoR2

Arguments

object Fitted point process model. An object of class "ppm" or "slrm".

keepoffset Logical value indicating whether to retain offset terms in the model when com-
puting the deviance difference. See Details.

... Additional arguments passed to deviance.ppm or deviance.slrm.

Details

The function pseudoR2 is generic, with methods for fitted point process models of class "ppm" and
"slrm".

This function computes McFadden’s pseudo-Rsquared

R2 = 1− D

D0

where D is the deviance of the fitted model object, and D0 is the deviance of the null model.
Deviance is defined as twice the negative log-likelihood or log-pseudolikelihood.

The null model is usually obtained by re-fitting the model using the trend formula ~1. However
if the original model formula included offset terms, and if keepoffset=TRUE (the default), then
the null model formula consists of these offset terms. This ensures that the pseudoR2 value is
non-negative.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

deviance.ppm, deviance.slrm.

Examples

fit <- ppm(swedishpines ~ x+y)
pseudoR2(fit)

xcoord <- as.im(function(x,y) x, Window(swedishpines))
fut <- ppm(swedishpines ~ offset(xcoord/200) + y)
pseudoR2(fut)

psib 687

psib Sibling Probability of Cluster Point Process

Description

Computes the sibling probability of a cluster point process model.

Usage

psib(object)

S3 method for class 'kppm'
psib(object)

Arguments

object Fitted cluster point process model (object of class "kppm").

Details

In a Poisson cluster process, two points are called siblings if they belong to the same cluster, that
is, if they had the same parent point. If two points of the process are separated by a distance r, the
probability that they are siblings is p(r) = 1 − 1/g(r) where g is the pair correlation function of
the process.

The value p(0) = 1 − 1/g(0) is the probability that, if two points of the process are situated very
close to each other, they came from the same cluster. This probability is an index of the strength of
clustering, with high values suggesting strong clustering.

This concept was proposed in Baddeley, Rubak and Turner (2015, page 479) and Baddeley (2017).

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A. (2017) Local composite likelihood for spatial point processes. Spatial Statistics 22,
261–295.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

kppm

688 psst

Examples

fit <- kppm(redwood ~1, "Thomas")
psib(fit)

psst Pseudoscore Diagnostic For Fitted Model against General Alternative

Description

Given a point process model fitted to a point pattern dataset, and any choice of functional summary
statistic, this function computes the pseudoscore test statistic of goodness-of-fit for the model.

Usage

psst(object, fun, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef=NULL, hi.res=NULL, funargs = list(correction="best"),
verbose=TRUE)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

fun Summary function to be applied to each point pattern.
r Optional. Vector of values of the argument r at which the function S(r) should

be computed. This argument is usually not specified. There is a sensible default.
breaks Optional alternative to r for advanced use.
... Ignored.
model Optional. A fitted point process model (object of class "ppm") to be re-fitted to

the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

funargs List of additional arguments to be passed to fun.
verbose Logical value determining whether to print progress reports during the compu-

tation.

psst 689

Details

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. Given a functional summary
statistic S, consider a family of alternative models obtained by exponential tilting of the null model
by S. The pseudoscore for the null model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

This algorithm computes V (r) by direct evaluation of the sum and integral. It is computationally
intensive, but it is available for any summary statistic S(r).

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Special cases: psstA, psstG.

Alternative functions: Kres, Gres.

690 psstA

Examples

if(live <- interactive()) {
fit0 <- ppm(cells ~ 1)

} else {
fit0 <- ppm(cells ~ 1, nd=8)

}
G0 <- psst(fit0, Gest)
G0
if(live) plot(G0)

psstA Pseudoscore Diagnostic For Fitted Model against Area-Interaction Al-
ternative

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of area-interaction type.

Usage

psstA(object, r = NULL, breaks = NULL, ...,
model = NULL,
trend = ~1, interaction = Poisson(),
rbord = reach(interaction), ppmcorrection = "border",
correction = "all",
truecoef = NULL, hi.res = NULL,
nr=spatstat.options("psstA.nr"),
ngrid=spatstat.options("psstA.ngrid"))

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks This argument is for internal use only.

... Extra arguments passed to quadscheme to determine the quadrature scheme, if
object is a point pattern.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

psstA 691

ppmcorrection Optional. Character string specifying the edge correction for the pseudolikeli-
hood to be used in fitting the point process model. Passed to ppm.

correction Optional. Character string specifying which diagnostic quantities will be com-
puted. Options are "all" and "best". The default is to compute all diagnostic
quantities.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

nr Optional. Number of r values to be used if r is not specified.

ngrid Integer. Number of points in the square grid used to compute the approximate
area.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

Let x be a point pattern dataset consisting of points x1, . . . , xn in a window W . Consider a point
process model fitted to x, with conditional intensity λ(u, x) at location u. For the purpose of testing
goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative hypothesis is a
family of hybrid models obtained by combining the fitted model with the area-interaction process
(see AreaInter). The family of alternatives includes models that are slightly more regular than the
fitted model, and others that are slightly more clustered than the fitted model.

The pseudoscore, evaluated at the null model, is

V (r) =
∑
i

A(xi, x, r)−
∫
W

A(u, x, r)λ(u, x)du

where
A(u, x, r) = B(x ∪ {u}, r)−B(x \ u, r)

where B(x, r) is the area of the union of the discs of radius r centred at the points of x (i.e. B(x, r)
is the area of the dilation of x by a distance r). Thus A(u, x, r) is the unclaimed area associated
with u, that is, the area of that part of the disc of radius r centred at the point u that is not covered
by any of the discs of radius r centred at points of x.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

692 psstA

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Warning

This computation can take a very long time.

To shorten the computation time, choose smaller values of the arguments nr and ngrid, or reduce
the values of their defaults spatstat.options("psstA.nr") and spatstat.options("psstA.ngrid").

Computation time is roughly proportional to nr * npoints * ngrid^2 where npoints is the number
of points in the point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstG, psst, Gres, Kres.

Point process models: ppm.

Options: spatstat.options

Examples

if(live <- interactive()) {
X <- rStrauss(200,0.1,0.05)

} else {
pso <- spatstat.options(psstA.ngrid=16,psstA.nr=10,

ndummy.min=16,npixel=32)
X <- cells

}

plot(psstA(X))
plot(psstA(X, interaction=Strauss(0.05)))

if(!live) spatstat.options(pso)

psstG 693

psstG Pseudoscore Diagnostic For Fitted Model against Saturation Alterna-
tive

Description

Given a point process model fitted to a point pattern dataset, this function computes the pseudoscore
diagnostic of goodness-of-fit for the model, against moderately clustered or moderately inhibited
alternatives of saturation type.

Usage

psstG(object, r = NULL, breaks = NULL, ...,
model=NULL,
trend = ~1, interaction = Poisson(), rbord = reach(interaction),
truecoef = NULL, hi.res = NULL)

Arguments

object Object to be analysed. Either a fitted point process model (object of class "ppm")
or a point pattern (object of class "ppp") or quadrature scheme (object of class
"quad").

r Optional. Vector of values of the argument r at which the diagnostic should be
computed. This argument is usually not specified. There is a sensible default.

breaks Optional alternative to r for advanced use.

... Ignored.

model Optional. A fitted point process model (object of class "ppm") to be re-fitted to
the data using update.ppm, if object is a point pattern. Overrides the argu-
ments trend,interaction,rbord,ppmcorrection.

trend,interaction,rbord

Optional. Arguments passed to ppm to fit a point process model to the data, if
object is a point pattern. See ppm for details.

truecoef Optional. Numeric vector. If present, this will be treated as if it were the true
coefficient vector of the point process model, in calculating the diagnostic. In-
compatible with hi.res.

hi.res Optional. List of parameters passed to quadscheme. If this argument is present,
the model will be re-fitted at high resolution as specified by these parameters.
The coefficients of the resulting fitted model will be taken as the true coeffi-
cients. Then the diagnostic will be computed for the default quadrature scheme,
but using the high resolution coefficients.

Details

This function computes the pseudoscore test statistic which can be used as a diagnostic for goodness-
of-fit of a fitted point process model.

694 psstG

Consider a point process model fitted to x, with conditional intensity λ(u, x) at location u. For the
purpose of testing goodness-of-fit, we regard the fitted model as the null hypothesis. The alternative
hypothesis is a family of hybrid models obtained by combining the fitted model with the Geyer
saturation process (see Geyer) with saturation parameter 1. The family of alternatives includes
models that are more regular than the fitted model, and others that are more clustered than the fitted
model.

For any point pattern x, and any r > 0, let S(x, r) be the number of points in x whose nearest
neighbour (the nearest other point in x) is closer than r units. Then the pseudoscore for the null
model is

V (r) =
∑
i

∆S(xi, x, r)−
∫
W

∆S(u, x, r)λ(u, x)du

where the ∆ operator is

∆S(u, x, r) = S(x ∪ {u}, r)− S(x \ u, r)

the difference between the values of S for the point pattern with and without the point u.

According to the Georgii-Nguyen-Zessin formula, V (r) should have mean zero if the model is
correct (ignoring the fact that the parameters of the model have been estimated). Hence V (r) can
be used as a diagnostic for goodness-of-fit.

The diagnostic V (r) is also called the pseudoresidual of S. On the right hand side of the equation
for V (r) given above, the sum over points of x is called the pseudosum and the integral is called
the pseudocompensator.

Value

A function value table (object of class "fv"), essentially a data frame of function values.

Columns in this data frame include dat for the pseudosum, com for the compensator and res for
the pseudoresidual.

There is a plot method for this class. See fv.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Jesper Møller.

References

Baddeley, A., Rubak, E. and Møller, J. (2011) Score, pseudo-score and residual diagnostics for
spatial point process models. Statistical Science 26, 613–646.

See Also

Alternative functions: psstA, psst, Kres, Gres.

qqplot.ppm 695

Examples

if(live <- interactive()) {
X <- rStrauss(200,0.1,0.05)

} else {
pso <- spatstat.options(ndummy.min=16,npixel=32)
X <- cells

}

plot(psstG(X))
plot(psstG(X, interaction=Strauss(0.05)))

if(!live) spatstat.options(pso)

qqplot.ppm Q-Q Plot of Residuals from Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, produce a Q-Q plot based on residuals from
the model.

Usage

qqplot.ppm(fit, nsim=100, expr=NULL, ..., type="raw",
style="mean", fast=TRUE, verbose=TRUE, plot.it=TRUE,
dimyx=NULL, nrep=if(fast) 5e4 else 1e5,
control=update(default.rmhcontrol(fit), nrep=nrep),
saveall=FALSE,
monochrome=FALSE,
limcol=if(monochrome) "black" else "red",
maxerr=max(100, ceiling(nsim/10)),
check=TRUE, repair=TRUE, envir.expr)

Arguments

fit The fitted point process model, which is to be assessed using the Q-Q plot. An
object of class "ppm". Smoothed residuals obtained from this fitted model will
provide the “data” quantiles for the Q-Q plot.

nsim The number of simulations from the “reference” point process model.

expr Determines the simulation mechanism which provides the “theoretical” quan-
tiles for the Q-Q plot. See Details.

... Arguments passed to diagnose.ppm influencing the computation of residuals.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

696 qqplot.ppm

style Character string controlling the type of Q-Q plot. Options are "classical" and
"mean". See Details.

fast Logical flag controlling the speed and accuracy of computation. Use fast=TRUE
for interactive use and fast=FALSE for publication standard plots. See Details.

verbose Logical flag controlling whether the algorithm prints progress reports during
long computations.

plot.it Logical flag controlling whether the function produces a plot or simply returns
a value (silently).

dimyx Dimensions of the pixel grid on which the smoothed residual field will be cal-
culated. A vector of two integers.

nrep If control is absent, then nrep gives the number of iterations of the Metropolis-
Hastings algorithm that should be used to generate one simulation of the fitted
point process.

control List of parameters controlling the Metropolis-Hastings algorithm rmh which
generates each simulated realisation from the model (unless the model is Pois-
son). This list becomes the argument control of rmh.default. It overrides
nrep.

saveall Logical flag indicating whether to save all the intermediate calculations.

monochrome Logical flag indicating whether the plot should be in black and white (monochrome=TRUE),
or in colour (monochrome=FALSE).

limcol String. The colour to be used when plotting the 95% limit curves.

maxerr Maximum number of failures tolerated while generating simulated realisations.
See Details.

check Logical value indicating whether to check the internal format of fit. If there
is any possibility that this object has been restored from a dump file, or has
otherwise lost track of the environment where it was originally computed, set
check=TRUE.

repair Logical value indicating whether to repair the internal format of fit, if it is
found to be damaged.

envir.expr Optional. An environment in which the expression expr should be evaluated.

Details

This function generates a Q-Q plot of the residuals from a fitted point process model. It is an
addendum to the suite of diagnostic plots produced by the function diagnose.ppm, kept separate
because it is computationally intensive. The quantiles of the theoretical distribution are estimated
by simulation.

In classical statistics, a Q-Q plot of residuals is a useful diagnostic for checking the distributional
assumptions. Analogously, in spatial statistics, a Q-Q plot of the (smoothed) residuals from a fitted
point process model is a useful way to check the interpoint interaction part of the model (Baddeley
et al, 2005). The systematic part of the model (spatial trend, covariate effects, etc) is assessed using
other plots made by diagnose.ppm.

The argument fit represents the fitted point process model. It must be an object of class "ppm"
(typically produced by the maximum pseudolikelihood fitting algorithm ppm). Residuals will be

qqplot.ppm 697

computed for this fitted model using residuals.ppm, and the residuals will be kernel-smoothed to
produce a “residual field”. The values of this residual field will provide the “data” quantiles for the
Q-Q plot.

The argument expr is not usually specified. It provides a way to modify the “theoretical” or “refer-
ence” quantiles for the Q-Q plot.

In normal usage we set expr=NULL. The default is to generate nsim simulated realisations of the
fitted model fit, re-fit this model to each of the simulated patterns, evaluate the residuals from
these fitted models, and use the kernel-smoothed residual field from these fitted models as a sample
from the reference distribution for the Q-Q plot.

In advanced use, expr may be an expression. It will be re-evaluated nsim times, and should
include random computations so that the results are not identical each time. The result of evaluating
expr should be either a point pattern (object of class "ppp") or a fitted point process model (object
of class "ppm"). If the value is a point pattern, then the original fitted model fit will be fitted to this
new point pattern using update.ppm, to yield another fitted model. Smoothed residuals obtained
from these nsim fitted models will yield the “theoretical” quantiles for the Q-Q plot.

Alternatively expr can be a list of point patterns, or an envelope object that contains a list of point
patterns (typically generated by calling envelope with savepatterns=TRUE). These point patterns
will be used as the simulated patterns.

Simulation is performed (if expr=NULL) using the Metropolis-Hastings algorithm rmh. Each sim-
ulated realisation is the result of running the Metropolis-Hastings algorithm from an independent
random starting state each time. The iterative and termination behaviour of the Metropolis-Hastings
algorithm are governed by the argument control. See rmhcontrol for information about this ar-
gument. As a shortcut, the argument nrep determines the number of Metropolis-Hastings iterations
used to generate each simulated realisation, if control is absent.

By default, simulations are generated in an expanded window. Use the argument control to change
this, as explained in the section on Warning messages.

The argument type selects the type of residual or weight that will be computed. For options, see
diagnose.ppm.

The argument style determines the type of Q-Q plot. It is highly recommended to use the default,
style="mean".

style="classical" The quantiles of the residual field for the data (on the y axis) are plotted
against the quantiles of the pooled simulations (on the x axis). This plot is biased, and there-
fore difficult to interpret, because of strong autocorrelations in the residual field and the large
differences in sample size.

style="mean" The order statistics of the residual field for the data are plotted against the sample
means, over the nsim simulations, of the corresponding order statistics of the residual field
for the simulated datasets. Dotted lines show the 2.5 and 97.5 percentiles, over the nsim
simulations, of each order statistic.

The argument fast is a simple way to control the accuracy and speed of computation. If fast=FALSE,
the residual field is computed on a fine grid of pixels (by default 100 by 100 pixels, see below)
and the Q-Q plot is based on the complete set of order statistics (usually 10,000 quantiles). If
fast=TRUE, the residual field is computed on a coarse grid (at most 40 by 40 pixels) and the Q-
Q plot is based on the percentiles only. This is about 7 times faster. It is recommended to use
fast=TRUE for interactive data analysis and fast=FALSE for definitive plots for publication.

698 qqplot.ppm

The argument dimyx gives full control over the resolution of the pixel grid used to calculate the
smoothed residuals. Its interpretation is the same as the argument dimyx to the function as.mask.
Note that dimyx[1] is the number of pixels in the y direction, and dimyx[2] is the number in
the x direction. If dimyx is not present, then the default pixel grid dimensions are controlled by
spatstat.options("npixel").

Since the computation is so time-consuming, qqplot.ppm returns a list containing all the data
necessary to re-display the Q-Q plot. It is advisable to assign the result of qqplot.ppm to something
(or use .Last.value if you forgot to.) The return value is an object of class "qqppm". There are
methods for plot.qqppm and print.qqppm. See the Examples.

The argument saveall is usually set to FALSE. If saveall=TRUE, then the intermediate results
of calculation for each simulated realisation are saved and returned. The return value includes a
3-dimensional array sim containing the smoothed residual field images for each of the nsim real-
isations. When saveall=TRUE, the return value is an object of very large size, and should not be
saved on disk.

Errors may occur during the simulation process, because random data are generated. For example:

• one of the simulated patterns may be empty.

• one of the simulated patterns may cause an error in the code that fits the point process model.

• the user-supplied argument expr may have a bug.

Empty point patterns do not cause a problem for the code, but they are reported. Other problems that
would lead to a crash are trapped; the offending simulated data are discarded, and the simulation is
retried. The argument maxerr determines the maximum number of times that such errors will be
tolerated (mainly as a safeguard against an infinite loop).

Value

An object of class "qqppm" containing the information needed to reproduce the Q-Q plot. Entries x
and y are numeric vectors containing quantiles of the simulations and of the data, respectively.

Side Effects

Produces a Q-Q plot if plot.it is TRUE.

Warning messages

A warning message will be issued if any of the simulations trapped an error (a potential crash).

A warning message will be issued if all, or many, of the simulated point patterns are empty. This
usually indicates a problem with the simulation procedure.

The default behaviour of qqplot.ppm is to simulate patterns on an expanded window (specified
through the argument control) in order to avoid edge effects. The model’s trend is extrapolated
over this expanded window. If the trend is strongly inhomogeneous, the extrapolated trend may
have very large (or even infinite) values. This can cause the simulation algorithm to produce empty
patterns.

The only way to suppress this problem entirely is to prohibit the expansion of the window, by setting
the control argument to something like control=list(nrep=1e6, expand=1). Here expand=1
means there will be no expansion. See rmhcontrol for more information about the argument
control.

qqplot.ppm 699

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, lurking, residuals.ppm, eem, ppm.object, ppm, rmh, rmhcontrol

Examples

data(cells)

fit <- ppm(cells, ~1, Poisson())
diagnose.ppm(fit) # no suggestion of departure from stationarity
if(interactive()) {

qqplot.ppm(fit, 80) # strong evidence of non-Poisson interaction
diagnose.ppm(fit, type="pearson")
qqplot.ppm(fit, type="pearson")
}

capture the plot coordinates
mypreciousdata <- qqplot.ppm(fit, type="pearson")
mypreciousdata <- qqplot.ppm(fit, 4, type="pearson")
plot(mypreciousdata)

use the idiom .Last.value if you forgot to assign them
mypreciousdata <- .Last.value

##
Q-Q plots based on fixed n
The above QQ plots used simulations from the (fitted) Poisson process.
But I want to simulate conditional on n, instead of Poisson
Do this by setting rmhcontrol(p=1)
fixit <- list(p=1)
if(interactive()) {qqplot.ppm(fit, 100, control=fixit)}

##
Inhomogeneous Poisson data
X <- rpoispp(function(x,y){1000 * exp(-3*x)}, 1000)
plot(X)
Inhomogeneous Poisson model
fit <- ppm(X, ~x, Poisson())

700 quad.ppm

if(interactive()) {qqplot.ppm(fit, 100)}

conclusion: fitted inhomogeneous Poisson model looks OK

##
Advanced use of 'expr' argument
#
set the initial conditions in Metropolis-Hastings algorithm
#
expr <- expression(rmh(fit, start=list(n.start=42), verbose=FALSE))
if(interactive()) qqplot.ppm(fit, 100, expr)

quad.ppm Extract Quadrature Scheme Used to Fit a Point Process Model

Description

Given a fitted point process model, this function extracts the quadrature scheme used to fit the
model.

Usage

quad.ppm(object, drop=FALSE, clip=FALSE)

Arguments

object fitted point process model (an object of class "ppm" or "kppm" or "lppm").

drop Logical value determining whether to delete quadrature points that were not
used to fit the model.

clip Logical value determining whether to erode the window, if object was fitted
using the border correction. See Details.

Details

An object of class "ppm" represents a point process model that has been fitted to data. It is typically
produced by the model-fitting algorithm ppm.

The maximum pseudolikelihood algorithm in ppm approximates the pseudolikelihood integral by
a sum over a finite set of quadrature points, which is constructed by augmenting the original data
point pattern by a set of “dummy” points. The fitted model object returned by ppm contains complete
information about this quadrature scheme. See ppm or ppm.object for further information.

This function quad.ppm extracts the quadrature scheme. A typical use of this function would be to
inspect the quadrature scheme (points and weights) to gauge the accuracy of the approximation to
the exact pseudolikelihood.

Some quadrature points may not have been used in fitting the model. This happens if the border
correction is used, and in other cases (e.g. when the value of a covariate is NA at these points). The

quadrat.test 701

argument drop specifies whether these unused quadrature points shall be deleted (drop=TRUE) or
retained (drop=FALSE) in the return value.

The quadrature scheme has a window, which by default is set to equal the window of the original
data. However this window may be larger than the actual domain of integration of the pseudolike-
lihood or composite likelihood that was used to fit the model. If clip=TRUE then the window of the
quadrature scheme is set to the actual domain of integration. This option only has an effect when the
model was fitted using the border correction; then the window is obtained by eroding the original
data window by the border correction distance.

See ppm.object for a list of all operations that can be performed on objects of class "ppm". See
quad.object for a list of all operations that can be performed on objects of class "quad".

This function can also be applied to objects of class "kppm" and "lppm".

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm.object, quad.object, ppm

Examples

fit <- ppm(cells ~1, Strauss(r=0.1))
Q <- quad.ppm(fit)
plot(Q)
npoints(Q$data)
npoints(Q$dummy)

quadrat.test Dispersion Test for Spatial Point Pattern Based on Quadrat Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern, based on quadrat counts.
Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson model. By default
performs chi-squared tests; can also perform Monte Carlo based tests.

702 quadrat.test

Usage

quadrat.test(X, ...)

S3 method for class 'ppp'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'ppm'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'slrm'
quadrat.test(X, nx=5, ny=nx,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
...,
xbreaks=NULL, ybreaks=NULL, tess=NULL,
nsim=1999)

S3 method for class 'quadratcount'
quadrat.test(X,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
...,
nsim=1999)

Arguments

X A point pattern (object of class "ppp") to be subjected to the goodness-of-fit test.
Alternatively a fitted point process model (object of class "ppm" or "slrm") to
be tested. Alternatively X can be the result of applying quadratcount to a point
pattern.

nx,ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

quadrat.test 703

alternative Character string (partially matched) specifying the alternative hypothesis.

method Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte
Carlo test.

conditional Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR Optional. Numerical value. The exponent for the Cressie-Read test statistic. See
Details.

lambda Optional. Pixel image (object of class "im") or function (class "funxy") giving
the predicted intensity of the point process.

df.est Optional. Advanced use only. The number of fitted parameters, or the number
of degrees of freedom lost by estimation of parameters.

... Ignored.

xbreaks Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

ybreaks Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess" or something acceptable to as.tess) deter-
mining the quadrats. Incompatible with nx, ny, xbreaks, ybreaks.

nsim The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform χ2 tests or Monte Carlo tests of goodness-of-fit for a point process model,
based on quadrat counts.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp"), point process models (class "ppm" or "slrm") and quadrat count tables
(class "quadratcount").

• if X is a point pattern, we test the null hypothesis that the data pattern is a realisation of
Complete Spatial Randomness (the uniform Poisson point process). Marks in the point pattern
are ignored. (If lambda is given then the null hypothesis is the Poisson process with intensity
lambda.)

• if X is a split point pattern, then for each of the component point patterns (taken separately)
we test the null hypotheses of Complete Spatial Randomness. See quadrat.test.splitppp
for documentation.

• If X is a fitted point process model, then it should be a Poisson point process model. The data
to which this model was fitted are extracted from the model object, and are treated as the data
point pattern for the test. We test the null hypothesis that the data pattern is a realisation of the
(inhomogeneous) Poisson point process specified by X.

In all cases, the window of observation is divided into tiles, and the number of data points in each
tile is counted, as described in quadratcount. The quadrats are rectangular by default, or may be
regions of arbitrary shape specified by the argument tess. The expected number of points in each

704 quadrat.test

quadrat is also calculated, as determined by CSR (in the first case) or by the fitted model (in the
second case). Then the Pearson X2 statistic

X2 = sum((observed− expected)2/expected)

is computed.

If method="Chisq" then a χ2 test of goodness-of-fit is performed by comparing the test statistic to
the χ2 distribution with m− k degrees of freedom, where m is the number of quadrats and k is the
number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-
sided p-value, so that the test will be declared significant if X2 is either very large or very small.
One-sided p-values can be obtained by specifying the alternative. An important requirement of
the χ2 test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected
counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from
the null hypothesis (either CSR or the fitted point process model). The Pearson X2 statistic is
computed as above. The p-value is determined by comparing the X2 statistic for the observed
point pattern, with the values obtained from the simulations. Again the default is to compute the
two-sided p-value.

If conditional is TRUE then the simulated samples are generated from the multinomial distribution
with the number of “trials” equal to the number of observed points and the vector of probabilities
equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated
samples are independent Poisson counts, with means equal to the expected counts.

If the argument CR is given, then instead of the Pearson X2 statistic, the Cressie-Read (1984) power
divergence test statistic

2nI =
2

CR(CR+ 1)

∑
i

[(
Xi

Ei

)C
R− 1

]
is computed, where Xi is the ith observed count and Ei is the corresponding expected count. The
value CR=1 gives the Pearson X2 statistic; CR=0 gives the likelihood ratio test statistic G2; CR=-1/2
gives the Freeman-Tukey statistic T 2; CR=-1 gives the modified likelihood ratio test statistic GM2;
and CR=-2 gives Neyman’s modified statistic NM2. In all cases the asymptotic distribution of this
test statistic is the same χ2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output
about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display
the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the
examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrattest", and there is a plot method
for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

quadrat.test 705

References

Cressie, N. and Read, T.R.C. (1984) Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society, Series B 46, 440–464.

See Also

quadrat.test.splitppp, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific alternative, use anova.ppm.

Examples

quadrat.test(simdat)
quadrat.test(simdat, 4, 3)

quadrat.test(simdat, alternative="regular")
quadrat.test(simdat, alternative="clustered")

Likelihood ratio test
quadrat.test(simdat, CR=0)
Power divergence tests
quadrat.test(simdat, CR=-1)$p.value
quadrat.test(simdat, CR=-2)$p.value

Using Monte Carlo p-values
quadrat.test(swedishpines) # Get warning, small expected values.
quadrat.test(swedishpines, method="M", nsim=4999)
quadrat.test(swedishpines, method="M", nsim=4999, conditional=FALSE)

quadrat counts
qS <- quadratcount(simdat, 4, 3)
quadrat.test(qS)

fitted model: inhomogeneous Poisson
fitx <- ppm(simdat ~ x)
quadrat.test(fitx)

an equivalent test (results differ due to discretisation effects):
quadrat.test(simdat, lambda=predict(fitx), df.est=length(coef(fitx)))

te <- quadrat.test(simdat, 4)
residuals(te) # Pearson residuals

plot(te)

plot(simdat, pch="+", cols="green", lwd=2)
plot(te, add=TRUE, col="red", cex=1.4, lty=2, lwd=3)

sublab <- eval(substitute(expression(p[chi^2]==z),
list(z=signif(te$p.value,3))))

706 quadrat.test.mppm

title(sub=sublab, cex.sub=3)

quadrats of irregular shape
B <- dirichlet(runifpoint(6, Window(simdat)))
qB <- quadrat.test(simdat, tess=B)
plot(simdat, main="quadrat.test(simdat, tess=B)", pch="+")
plot(qB, add=TRUE, col="red", lwd=2, cex=1.2)

quadrat.test.mppm Chi-Squared Test for Multiple Point Process Model Based on Quadrat
Counts

Description

Performs a chi-squared goodness-of-fit test of a Poisson point process model fitted to multiple point
patterns.

Usage

S3 method for class 'mppm'
quadrat.test(X, ...)

Arguments

X An object of class "mppm" representing a point process model fitted to multiple
point patterns. It should be a Poisson model.

... Arguments passed to quadrat.test.ppm which determine the size of the quadrats.

Details

This function performs a χ2 test of goodness-of-fit for a Poisson point process model, based on
quadrat counts. It can also be used to perform a test of Complete Spatial Randomness for a list of
point patterns.

The function quadrat.test is generic, with methods for point patterns (class "ppp"), point process
models (class "ppm") and multiple point process models (class "mppm").

For this function, the argument X should be a multiple point process model (object of class "mppm")
obtained by fitting a point process model to a list of point patterns using the function mppm.

To perform the test, the data point patterns are extracted from X. For each point pattern

• the window of observation is divided into rectangular tiles, and the number of data points in
each tile is counted, as described in quadratcount.

• The expected number of points in each quadrat is calculated, as determined by the fitted model.

Then we perform a single χ2 test of goodness-of-fit based on these observed and expected counts.

quadrat.test.mppm 707

Value

An object of class "htest". Printing the object gives comprehensible output about the outcome of
the test. The p-value of the test is stored in the component p.value.

The return value also belongs to the special class "quadrat.test". Plotting the object will display,
for each window, the position of the quadrats, annotated by their observed and expected counts and
the Pearson residuals. See the examples.

The return value also has an attribute "components" which is a list containing the results of χ2 tests
of goodness-of-fit for each individual point pattern.

Testing Complete Spatial Randomness

If the intention is to test Complete Spatial Randomness (CSR) there are two options:

• CSR with the same intensity of points in each point pattern;

• CSR with a different, unrelated intensity of points in each point pattern.

In the first case, suppose P is a list of point patterns we want to test. Then fit the multiple model
fit1 <- mppm(P, ~1) which signifies a Poisson point process model with a constant intensity. Then
apply quadrat.test(fit1).

In the second case, fit the model codefit2 <- mppm(P, ~id) which signifies a Poisson point process
with a different constant intensity for each point pattern. Then apply quadrat.test(fit2).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, quadrat.test

Examples

H <- hyperframe(X=waterstriders)
Poisson with constant intensity for all patterns
fit1 <- mppm(X~1, H)
quadrat.test(fit1, nx=2)

uniform Poisson with different intensity for each pattern
fit2 <- mppm(X ~ id, H)
quadrat.test(fit2, nx=2)

708 quadrat.test.splitppp

quadrat.test.splitppp Dispersion Test of CSR for Split Point Pattern Based on Quadrat
Counts

Description

Performs a test of Complete Spatial Randomness for each of the component patterns in a split point
pattern, based on quadrat counts. By default performs chi-squared tests; can also perform Monte
Carlo based tests.

Usage

S3 method for class 'splitppp'
quadrat.test(X, ..., df=NULL, df.est=NULL, Xname=NULL)

Arguments

X A split point pattern (object of class "splitppp"), each component of which
will be subjected to the goodness-of-fit test.

... Arguments passed to quadrat.test.ppp.
df,df.est,Xname

Arguments passed to pool.quadrattest.

Details

The function quadrat.test is generic, with methods for point patterns (class "ppp"), split point
patterns (class "splitppp") and point process models (class "ppm").

If X is a split point pattern, then for each of the component point patterns (taken separately) we test
the null hypotheses of Complete Spatial Randomness, then combine the result into a single test.

The method quadrat.test.ppp is applied to each component point pattern. Then the results are
pooled using pool.quadrattest to obtain a single test.

Value

An object of class "quadrattest" which can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

quadrat.test, quadratcount, quadrats, quadratresample, chisq.test, cdf.test.

To test a Poisson point process model against a specific Poisson alternative, use anova.ppm.

quantile.density 709

Examples

data(humberside)
qH <- quadrat.test(split(humberside), 2, 3)
plot(qH)
qH

quantile.density Quantiles of a Density Estimate

Description

Given a kernel estimate of a probability density, compute quantiles.

Usage

S3 method for class 'density'
quantile(x, probs = seq(0, 1, 0.25), names = TRUE,

..., warn = TRUE)

Arguments

x Object of class "density" computed by a method for density

probs Numeric vector of probabilities for which the quantiles are required.

names Logical value indicating whether to attach names (based on probs) to the result.

... Ignored.

warn Logical value indicating whether to issue a warning if the density estimate x had
to be renormalised because it was computed in a restricted interval.

Details

This function calculates quantiles of the probability distribution whose probability density has been
estimated and stored in the object x. The object x must belong to the class "density", and would
typically have been obtained from a call to the function density.

The probability density is first normalised so that the total probability is equal to 1. A warning is
issued if the density estimate was restricted to an interval (i.e. if x was created by a call to density
which included either of the arguments from and to).

Next, the density estimate is numerically integrated to obtain an estimate of the cumulative distri-
bution function F (x). Then for each desired probability p, the algorithm finds the corresponding
quantile q.

The quantile q corresponding to probability p satisfies F (q) = p up to the resolution of the grid of
values contained in x. The quantile is computed from the right, that is, q is the smallest available
value of x such that F (x) ≥ p.

Value

A numeric vector containing the quantiles.

710 ranef.mppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

quantile, quantile.ewcdf, quantile.im, CDF.

Examples

dd <- density(runif(10))
quantile(dd)

ranef.mppm Extract Random Effects from Point Process Model

Description

Given a point process model fitted to a list of point patterns, extract the fixed effects of the model.
A method for ranef.

Usage

S3 method for class 'mppm'
ranef(object, ...)

Arguments

object A fitted point process model (an object of class "mppm").

... Ignored.

Details

This is a method for the generic function ranef.

The argument object must be a fitted point process model (object of class "mppm") produced by
the fitting algorithm mppm). This represents a point process model that has been fitted to a list of
several point pattern datasets. See mppm for information.

This function extracts the coefficients of the random effects of the model.

Value

A data frame, or list of data frames, as described in the help for ranef.lme.

range.fv 711

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

fixef.mppm, coef.mppm

Examples

H <- hyperframe(Y = waterstriders)
Tweak data to exaggerate differences
H$Y[[1]] <- rthin(H$Y[[1]], 0.3)

m1 <- mppm(Y ~ id, data=H, Strauss(7))
ranef(m1)
m2 <- mppm(Y ~ 1, random=~1|id, data=H, Strauss(7))
ranef(m2)

range.fv Range of Function Values

Description

Compute the range, maximum, or minimum of the function values in a summary function.

Usage

S3 method for class 'fv'
range(..., na.rm = TRUE, finite = na.rm)

S3 method for class 'fv'
max(..., na.rm = TRUE, finite = na.rm)

S3 method for class 'fv'
min(..., na.rm = TRUE, finite = na.rm)

Arguments

... One or more function value tables (objects of class "fv" representing summary
functions) or other data.

na.rm Logical. Whether to ignore NA values.
finite Logical. Whether to ignore values that are infinite, NaN or NA.

712 rat

Details

These are methods for the generic range, max and min. They compute the range, maximum, and
minimum of the function values that would be plotted on the y axis by default.

For more complicated calculations, use with.fv.

Value

Numeric vector of length 2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

See Also

with.fv

Examples

G <- Gest(cells)
range(G)
max(G)
min(G)

rat Ratio object

Description

Stores the numerator, denominator, and value of a ratio as a single object.

Usage

rat(ratio, numerator, denominator, check = TRUE)

Arguments

ratio,numerator,denominator

Three objects belonging to the same class.

check Logical. Whether to check that the objects are compatible.

rdpp 713

Details

The class "rat" is a simple mechanism for keeping track of the numerator and denominator when
calculating a ratio. Its main purpose is simply to signal that the object is a ratio.

The function rat creates an object of class "rat" given the numerator, the denominator and the
ratio. No calculation is performed; the three objects are simply stored together.

The arguments ratio, numerator, denominator can be objects of any kind. They should belong
to the same class. It is assumed that the relationship

ratio =
numerator

denominator

holds in some version of arithmetic. However, no calculation is performed.

By default the algorithm checks whether the three arguments ratio, numerator, denominator are
compatible objects, according to compatible.

The result is equivalent to ratio except for the addition of extra information.

Value

An object equivalent to the object ratio except that it also belongs to the class "rat" and has
additional attributes numerator and denominator.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

See Also

compatible, pool

rdpp Simulation of a Determinantal Point Process

Description

Generates simulated realisations from a determinantal point process.

Usage

rdpp(eig, index, basis = "fourierbasis",
window = boxx(rep(list(0:1), ncol(index))),
reject_max = 10000, progress = 0, debug = FALSE, ...)

714 reach

Arguments

eig vector of values between 0 and 1 specifying the non-zero eigenvalues for the
process.

index data.frame or matrix (or something acceptable to as.matrix) specifying in-
dices of the basis functions.

basis character string giving the name of the basis.

window window (of class "owin", "box3" or "boxx") giving the domain of the point
process.

reject_max integer giving the maximal number of trials for rejection sampling.

progress integer giving the interval for making a progress report. The value zero turns
reporting off.

debug logical value indicating whether debug informationb should be outputted.

... Ignored.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

index <- expand.grid(-2:2,-2:2)
eig <- exp(-rowSums(index^2))
X <- rdpp(eig, index)
X
To simulate a det. projection p. p. with the given indices set eig=1:
XX <- rdpp(1, index)
XX

reach Interaction Distance of a Point Process Model

Description

Computes the interaction distance of a point process model.

reach 715

Usage

S3 method for class 'ppm'
reach(x, ..., epsilon=0)

S3 method for class 'interact'
reach(x, ...)

S3 method for class 'fii'
reach(x, ..., epsilon)

Arguments

x Either a fitted point process model (object of class "ppm"), an interpoint interac-
tion (object of class "interact"), a fitted interpoint interaction (object of class
"fii") or a point process model for simulation (object of class "rmhmodel").

epsilon Numerical threshold below which interaction is treated as zero. See details.

... Other arguments are ignored.

Details

The function reach computes the ‘interaction distance’ or ‘interaction range’ of a point process
model.

The definition of the interaction distance depends on the type of point process model. This help
page explains the interaction distance for a Gibbs point process. For other kinds of models, see
reach.kppm and reach.dppm.

For a Gibbs point process model, the interaction distance is the shortest distance D such that any
two points in the process which are separated by a distance greater than D do not interact with each
other.

For example, the interaction range of a Strauss process (see Strauss or rStrauss) with parameters
β, γ, r is equal to r, unless γ = 1 in which case the model is Poisson and the interaction range is
0. The interaction range of a Poisson process is zero. The interaction range of the Ord threshold
process (see OrdThresh) is infinite, since two points may interact at any distance apart.

The function reach is generic, with methods for the case where x is

• a fitted point process model (object of class "ppm", usually obtained from the model-fitting
function ppm);

• an interpoint interaction structure (object of class "interact") created by one of the functions
Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh or Ord;

• a fitted interpoint interaction (object of class "fii") extracted from a fitted point process
model by the command fitin;

• a point process model for simulation (object of class "rmhmodel"), usually obtained from
rmhmodel.

When x is an "interact" object, reach(x) returns the maximum possible interaction range for any
point process model with interaction structure given by x. For example, reach(Strauss(0.2))
returns 0.2.

716 reach

When x is a "ppm" object, reach(x) returns the interaction range for the point process model
represented by x. For example, a fitted Strauss process model with parameters beta,gamma,r will
return either 0 or r, depending on whether the fitted interaction parameter gamma is equal or not
equal to 1.

For some point process models, such as the soft core process (see Softcore), the interaction dis-
tance is infinite, because the interaction terms are positive for all pairs of points. A practical solution
is to compute the distance at which the interaction contribution from a pair of points falls below a
threshold epsilon, on the scale of the log conditional intensity. This is done by setting the argument
epsilon to a positive value.

Value

The interaction distance, or NA if this cannot be computed from the information given.

Other types of models

Methods for reach are also defined for point process models of class "kppm" and "dppm". Their
technical definition is different from this one. See reach.kppm and reach.dppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, Poisson, Strauss, StraussHard, MultiStrauss, MultiStraussHard, Softcore, DiggleGratton,
Pairwise, PairPiece, Geyer, LennardJones, Saturated, OrdThresh, Ord.

reach.rmhmodel

See reach.kppm and reach.dppm for other types of point process models.

Examples

reach(Poisson())
returns 0

reach(Strauss(r=7))
returns 7
fit <- ppm(swedishpines ~ 1, Strauss(r=7))
reach(fit)
returns 7

reach(OrdThresh(42))
returns Inf

reach(MultiStrauss(matrix(c(1,3,3,1),2,2)))
returns 3

reach.dppm 717

reach.dppm Range of Interaction for a Determinantal Point Process Model

Description

Returns the range of interaction for a determinantal point process model.

Usage

S3 method for class 'dppm'
reach(x, ...)

S3 method for class 'detpointprocfamily'
reach(x, ...)

Arguments

x Model of class "detpointprocfamily" or "dppm".

... Additional arguments passed to the range function of the given model.

Details

The range of interaction for a determinantal point process model may defined as the smallest number
R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function. For many models the
range is infinite, but one may instead use a value where the pair correlation function is sufficiently
close to 1. For example in the Matérn model this defaults to finding R such that g(R) = 0.99.

Value

Numeric

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

reach(dppMatern(lambda=100, alpha=.01, nu=1, d=2))

718 reach.kppm

reach.kppm Range of Interaction for a Cox or Cluster Point Process Model

Description

Returns the range of interaction for a Cox or cluster point process model.

Usage

S3 method for class 'kppm'
reach(x, ..., epsilon)

Arguments

x Fitted point process model of class "kppm".

epsilon Optional numerical value. Differences smaller than epsilon are treated as zero.

... Additional arguments passed to the range function of the given model.

Details

The range of interaction for a fitted point process model of class "kppm" may defined as the smallest
number R such that g(r) = 1 for all r ≥ R, where g is the pair correlation function.

For many models the range is infinite, but one may instead use a value where the pair correlation
function is sufficiently close to 1. The argument epsilon specifies the tolerance; there is a sensible
default.

Value

Numeric

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

Examples

fit <- kppm(redwood ~ 1)
reach(fit)

rectcontact 719

rectcontact Contact Distribution Function using Rectangular Structuring Element

Description

Computes an estimate of the contact distribution function of a set, using a rectangular structuring
element.

Usage

rectcontact(X, ..., asp = 1, npasses=4,
eps = NULL, r = NULL, breaks = NULL, correction = c("rs", "km"))

Arguments

X Logical-valued image. The TRUE values in the image determine the spatial re-
gion whose contact distribution function should be estimated.

... Ignored.

asp Aspect ratio for the rectangular metric. A single positive number. See rectdistmap
for explanation.

npasses Number of passes to perform in the distance algorithm. A positive integer. See
rectdistmap for explanation.

eps Pixel size, if the image should be converted to a finer grid.

r Optional vector of distance values. Do Not Use This.

breaks Do Not Use This.

correction Character vector specifying the edge correction.

Details

To be written.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

Hest

720 reduced.sample

Examples

make an image which is TRUE/FALSE inside/outside the letter R
V <- letterR
Frame(V) <- grow.rectangle(Frame(V), 0.5)
Z <- as.im(V, value=TRUE, na.replace=FALSE)
analyse
plot(rectcontact(Z))

reduced.sample Reduced Sample Estimator using Histogram Data

Description

Compute the Reduced Sample estimator of a survival time distribution function, from histogram
data

Usage

reduced.sample(nco, cen, ncc, show=FALSE, uppercen=0)

Arguments

nco vector of counts giving the histogram of uncensored observations (those survival
times that are less than or equal to the censoring time)

cen vector of counts giving the histogram of censoring times

ncc vector of counts giving the histogram of censoring times for the uncensored
observations only

uppercen number of censoring times greater than the rightmost histogram breakpoint (if
there are any)

show Logical value controlling the amount of detail returned by the function value
(see below)

Details

This function is needed mainly for internal use in spatstat, but may be useful in other applications
where you want to form the reduced sample estimator from a huge dataset.

Suppose Ti are the survival times of individuals i = 1, . . . ,M with unknown distribution function
F (t) which we wish to estimate. Suppose these times are right-censored by random censoring
times Ci. Thus the observations consist of right-censored survival times T̃i = min(Ti, Ci) and
non-censoring indicators Di = 1{Ti ≤ Ci} for each i.

If the number of observations M is large, it is efficient to use histograms. Form the histogram
cen of all censoring times Ci. That is, obs[k] counts the number of values Ci in the interval
(breaks[k],breaks[k+1]] for k > 1 and [breaks[1],breaks[2]] for k = 1. Also form the
histogram nco of all uncensored times, i.e. those T̃i such that Di = 1, and the histogram of all
censoring times for which the survival time is uncensored, i.e. those Ci such that Di = 1. These
three histograms are the arguments passed to kaplan.meier.

reload.or.compute 721

The return value rs is the reduced-sample estimator of the distribution function F (t). Specifically,
rs[k] is the reduced sample estimate of F(breaks[k+1]). The value is exact, i.e. the use of
histograms does not introduce any approximation error.

Note that, for the results to be valid, either the histogram breaks must span the censoring times,
or the number of censoring times that do not fall in a histogram cell must have been counted in
uppercen.

Value

If show = FALSE, a numeric vector giving the values of the reduced sample estimator. If show=TRUE,
a list with three components which are vectors of equal length,

rs Reduced sample estimate of the survival time c.d.f. F (t)

numerator numerator of the reduced sample estimator

denominator denominator of the reduced sample estimator

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

kaplan.meier, km.rs

reload.or.compute Compute Unless Previously Saved

Description

If the designated file does not yet exist, evaluate the expression and save the results in the file. If
the file already exists, re-load the results from the file.

Usage

reload.or.compute(filename, expr, objects = NULL,
context = parent.frame(),
destination = parent.frame(),
force=FALSE, verbose=TRUE)

722 reload.or.compute

Arguments

filename Name of data file. A character string.

expr R language expression to be evaluated.

objects Optional character vector of names of objects to be saved in filename after
evaluating expr, or names of objects that should be present in filename when
loaded.

context Environment containing objects that are mentioned in expr (other than objects
in the global environment).

destination Environment into which the resulting objects should be assigned.

force Logical value indicating whether to perform the computation in any case.

verbose Logical value indicating whether to print a message indicating whether the data
were recomputed or reloaded from the file.

Details

This facility is useful for saving, and later re-loading, the results of time-consuming computations.
It would typically be used in an R script file or an Sweave document.

If the file called filename does not yet exist, then expr will be evaluated and the results will be
saved in filename. The optional argument objects specifies which results should be saved to the
file: the default is to save all objects that were created by evaluating the expression.

If the file called filename already exists, then it will be loaded. The optional argument objects
specifies the names of objects that should be present in the file; a warning is issued if any of them
are missing.

The resulting objects can be assigned into any desired destination. The default behaviour is
equivalent to evaluating expr in the current environment.

If force=TRUE then expr will be evaluated (regardless of whether the file already exists or not)
and the results will be saved in filename, overwriting any previously-existing file with that name.
This is a convenient way to force the code to re-compute everything in an R script file or Sweave
document.

Value

Character vector (invisible) giving the names of the objects computed or loaded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

Not run:
if(FALSE) {
reload.or.compute("mydata.rda", {

x <- very.long.computation()
y <- 42

relrisk 723

})
}

End(Not run)

relrisk Estimate of Spatially-Varying Relative Risk

Description

Generic command to estimate the spatially-varying probability of each type of point, or the ratios
of such probabilities.

Usage

relrisk(X, ...)

Arguments

X Either a point pattern (class "ppp") or a fitted point process model (class "ppm")
from which the probabilities will be estimated.

... Additional arguments appropriate to the method.

Details

In a point pattern containing several different types of points, we may be interested in the spatially-
varying probability of each possible type, or the relative risks which are the ratios of such probabil-
ities.

The command relrisk is generic and can be used to estimate relative risk in different ways.

The function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing.

The function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

Value

A pixel image, or a list of pixel images, or a numeric vector or matrix, containing the requested
estimates of relative risk.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

relrisk.ppp, relrisk.ppm.

724 relrisk.ppm

relrisk.ppm Parametric Estimate of Spatially-Varying Relative Risk

Description

Given a point process model fitted to a multitype point pattern, this function computes the fitted
spatially-varying probability of each type of point, or the ratios of such probabilities, according to
the fitted model. Optionally the standard errors of the estimates are also computed.

Usage

S3 method for class 'ppm'
relrisk(X, ...,

at = c("pixels", "points"),
relative = FALSE, se = FALSE,
casecontrol = TRUE, control = 1, case,
ngrid = NULL, window = NULL)

Arguments

X A fitted point process model (object of class "ppm").

... Ignored.

at String specifying whether to compute the probability values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

ngrid Optional. Dimensions of a rectangular grid of locations inside window where
the predictions should be computed. An integer, or an integer vector of length
2, specifying the number of grid points in the y and x directions. (Applies only
when at="pixels".)

window Optional. A window (object of class "owin") delimiting the locations where
predictions should be computed. Defaults to the window of the original data
used to fit the model object. (Applies only when at="pixels".)

relrisk.ppm 725

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppm is the method for fitted point process models (class "ppm"). It computes
parametric estimates of relative risk, using the fitted model.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the
functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Probabilities and risks are computed from the fitted intensity of the model, using predict.ppm. If
se=TRUE then standard errors will also be computed, based on asymptotic theory, using vcov.ppm.

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

726 relrisk.ppp

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

There is another method relrisk.ppp for point pattern datasets which computes nonparametric
estimates of relative risk by kernel smoothing.

See also relrisk, relrisk.ppp, ppm

Examples

fit <- ppm(chorley ~ marks * (x+y))
rr <- relrisk(fit, relative=TRUE, control="lung", se=TRUE)
plot(rr$estimate)
plot(rr$SE)
rrX <- relrisk(fit, at="points", relative=TRUE, control="lung")

relrisk.ppp Nonparametric Estimate of Spatially-Varying Relative Risk

Description

Given a multitype point pattern, this function estimates the spatially-varying probability of each
type of point, or the ratios of such probabilities, using kernel smoothing. The default smoothing
bandwidth is selected by cross-validation.

Usage

S3 method for class 'ppp'
relrisk(X, sigma = NULL, ...,

at = c("pixels", "points"),
weights = NULL, varcov = NULL,
relative=FALSE,
adjust=1, edge=TRUE, diggle=FALSE, se=FALSE,
casecontrol=TRUE, control=1, case)

Arguments

X A multitype point pattern (object of class "ppp" which has factor valued marks).

sigma Optional. The numeric value of the smoothing bandwidth (the standard devi-
ation of isotropic Gaussian smoothing kernel). Alternatively sigma may be a
function which can be used to select a different bandwidth for each type of
point. See Details.

relrisk.ppp 727

... Arguments passed to bw.relrisk to select the bandwidth, or passed to density.ppp
to control the pixel resolution.

at Character string specifying whether to compute the probability values at a grid
of pixel locations (at="pixels") or only at the points of X (at="points").

weights Optional. Weights for the data points of X. A numeric vector, an expression,
or a pixel image.

varcov Optional. Variance-covariance matrix of anisotopic Gaussian smoothing kernel.
Incompatible with sigma.

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

adjust Optional. Adjustment factor for the bandwidth sigma.

edge Logical value indicating whether to apply edge correction.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

se Logical value indicating whether to compute standard errors as well.

casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and
controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.ppp is the method for point pattern datasets. It computes nonparametric
estimates of relative risk by kernel smoothing.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at spatial location u
will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case relative
to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern withm > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at spatial location
u will belong to type j. If relative=TRUE, the command computes the relative risk of an event of
type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as controls.
The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every spatial location u on a fine pixel grid, and
the result is a pixel image representing the function p(u) or a list of pixel images representing the

728 relrisk.ppp

functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of relative risk (arising because the
probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a simple Nadaraja-Watson type kernel smoother (Diggle, 2003). The
smoothing bandwidth can be specified in any of the following ways:

• sigma is a single numeric value, giving the standard deviation of the isotropic Gaussian kernel.

• sigma is a numeric vector of length 2, giving the standard deviations in the x and y directions
of a Gaussian kernel.

• varcov is a 2 by 2 matrix giving the variance-covariance matrix of the Gaussian kernel.

• sigma is a function which selects the bandwidth. Bandwidth selection will be applied sepa-
rately to each type of point. An example of such a function is bw.diggle.

• sigma and varcov are both missing or null. Then a common smoothing bandwidth sigma
will be selected by cross-validation using bw.relrisk.

• An infinite smoothing bandwidth, sigma=Inf, is permitted and yields a constant estimate of
relative risk.

If se=TRUE then standard errors will also be computed, based on asymptotic theory, assuming a
Poisson process.

The optional argument weights may provide numerical weights for the points of X. It should be a
numeric vector of length equal to npoints(X).

The argument weights can also be an expression. It will be evaluated in the data frame as.data.frame(X)
to obtain a vector of weights. The expression may involve the symbols x and y representing the
Cartesian coordinates, and the symbol marks representing the mark values.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in X).

Value

If se=FALSE (the default), the format is described below. If se=TRUE, the result is a list of two
entries, estimate and SE, each having the format described below.

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image (if
at="pixels") or a vector (if at="points"). The pixel values or vector values are the probabilities
of a case if relative=FALSE, or the relative risk of a case (probability of a case divided by the
probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images, with one image for each possible type of point. The
result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

repul.dppm 729

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

There is another method relrisk.ppm for point process models which computes parametric esti-
mates of relative risk, using the fitted model.

See also bw.relrisk, density.ppp, Smooth.ppp, eval.im

Examples

p.oak <- relrisk(urkiola, 20)
if(interactive()) {

plot(p.oak, main="proportion of oak")
plot(eval.im(p.oak > 0.3), main="More than 30 percent oak")
plot(split(lansing), main="Lansing Woods")
p.lan <- relrisk(lansing, 0.05, se=TRUE)
plot(p.lan$estimate, main="Lansing Woods species probability")
plot(p.lan$SE, main="Lansing Woods standard error")
wh <- im.apply(p.lan$estimate, which.max)
types <- levels(marks(lansing))
wh <- eval.im(types[wh])
plot(wh, main="Most common species")

}

repul.dppm Repulsiveness Index of a Determinantal Point Process Model

Description

Computes a measure of the degree of repulsion between points in a determinantal point process
model.

Usage

repul(model, ...)

S3 method for class 'dppm'
repul(model, ...)

730 repul.dppm

Arguments

model A fitted point process model of determinantal type (object of class "dppm").

... Ignored.

Details

The repulsiveness index µ of a determinantal point process model was defined by Lavancier, Møller
and Rubak (2015) as

µ = λ

∫
(1− g(x)) dx

where λ is the intensity of the model and g(x) is the pair correlation function, and the integral is
taken over all two-dimensional vectors x.

Values of µ are dimensionless. Larger values of µ indicate stronger repulsion between points.

If the model is stationary, the result is a single number.

If the model is not stationary, the result is a pixel image (obtained by multiplying the spatially-
varying intensity by the integral defined above).

Value

A numeric value or a pixel image.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Lavancier, F., Møller, J. and Rubak, E. (2015), Determinantal point process models and statistical
inference. Journal of Royal Statistical Society: Series B (Statistical Methodology), 77, 853–877.

See Also

dppm

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
repul(fit)

residuals.dppm 731

residuals.dppm Residuals for Fitted Determinantal Point Process Model

Description

Given a determinantal point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'dppm'
residuals(object, ...)

Arguments

object The fitted determinatal point process model (an object of class "dppm") for
which residuals should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, dppm

Examples

fit <- dppm(swedishpines ~ x, dppGauss, method="c")
rr <- residuals(fit)

732 residuals.kppm

residuals.kppm Residuals for Fitted Cox or Cluster Point Process Model

Description

Given a Cox or cluster point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'kppm'
residuals(object, ...)

Arguments

object The fitted point process model (an object of class "kppm") for which residuals
should be calculated.

... Arguments passed to residuals.ppm.

Details

This function extracts the intensity component of the model using as.ppm and then applies residuals.ppm
to compute the residuals.

Use plot.msr to plot the residuals directly.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

msr, kppm

Examples

fit <- kppm(redwood ~ x, "Thomas")
rr <- residuals(fit)

residuals.mppm 733

residuals.mppm Residuals for Point Process Model Fitted to Multiple Point Patterns

Description

Given a point process model fitted to multiple point patterns, compute residuals for each pattern.

Usage

S3 method for class 'mppm'
residuals(object, type = "raw", ...,

fittedvalues = fitted.mppm(object))

Arguments

object Fitted point process model (object of class "mppm").

... Ignored.

type Type of residuals: either "raw", "pearson" or "inverse". Partially matched.

fittedvalues Advanced use only. Fitted values of the model to be used in the calculation.

Details

Baddeley et al (2005) defined residuals for the fit of a point process model to spatial point pattern
data. For an explanation of these residuals, see the help file for residuals.ppm.

This function computes the residuals for a point process model fitted to multiple point patterns. The
object should be an object of class "mppm" obtained from mppm.

The return value is a list. The number of entries in the list equals the number of point patterns in
the original data. Each entry in the list has the same format as the output of residuals.ppm. That
is, each entry in the list is a signed measure (object of class "msr") giving the residual measure for
the corresponding point pattern.

Value

A list of signed measures (objects of class "msr") giving the residual measure for each of the
original point patterns. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ida-Maria Sintorn and Leanne Bischoff.
Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

734 residuals.ppm

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, residuals.mppm

Examples

fit <- mppm(Bugs ~ x, hyperframe(Bugs=waterstriders))
r <- residuals(fit)
compute total residual for each point pattern
rtot <- sapply(r, integral.msr)
standardise the total residuals
areas <- sapply(windows.mppm(fit), area.owin)
rtot/sqrt(areas)

residuals.ppm Residuals for Fitted Point Process Model

Description

Given a point process model fitted to a point pattern, compute residuals.

Usage

S3 method for class 'ppm'
residuals(object, type="raw", ...,

check=TRUE, drop=FALSE,
fittedvalues=NULL,
new.coef=NULL, dropcoef=FALSE,
quad=NULL)

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String indicating the type of residuals to be calculated. Current options are
"raw", "inverse", "pearson" and "score". A partial match is adequate.

... Ignored.

check Logical value indicating whether to check the internal format of object. If
there is any possibility that this object has been restored from a dump file, or
has otherwise lost track of the environment where it was originally computed,
set check=TRUE.

residuals.ppm 735

drop Logical value determining whether to delete quadrature points that were not
used to fit the model. See quad.ppm for explanation.

fittedvalues Vector of fitted values for the conditional intensity at the quadrature points, from
which the residuals will be computed. For expert use only.

new.coef Optional. Numeric vector of coefficients for the model, replacing coef(object).
See the section on Modified Residuals below.

dropcoef Internal use only.

quad Optional. Data specifying how to re-fit the model. A list of arguments passed to
quadscheme. See the section on Modified Residuals below.

Details

This function computes several kinds of residuals for the fit of a point process model to a spa-
tial point pattern dataset (Baddeley et al, 2005). Use plot.msr to plot the residuals directly, or
diagnose.ppm to produce diagnostic plots based on these residuals.

The argument object must be a fitted point process model (object of class "ppm"). Such objects
are produced by the maximum pseudolikelihood fitting algorithm ppm. This fitted model object
contains complete information about the original data pattern.

Residuals are attached both to the data points and to some other points in the window of observation
(namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model
is correct, then the sum of the residuals over all (data and dummy) points in a spatial region B has
mean zero. For further explanation, see Baddeley et al (2005).

The type of residual is chosen by the argument type. Current options are

"raw": the raw residuals
rj = zj − wjλj

at the quadrature points uj , where zj is the indicator equal to 1 if uj is a data point and 0 if uj
is a dummy point; wj is the quadrature weight attached to uj ; and

λj = λ̂(uj , x)

is the conditional intensity of the fitted model at uj . These are the spatial analogue of the
martingale residuals of a one-dimensional counting process.

"inverse": the ‘inverse-lambda’ residuals (Baddeley et al, 2005)

r
(I)
j =

rj
λj

=
zj
λj
− wj

obtained by dividing the raw residuals by the fitted conditional intensity. These are a counter-
part of the exponential energy marks (see eem).

"pearson": the Pearson residuals (Baddeley et al, 2005)

r
(P)
j =

rj√
λj

=
zj√
λj
− wj

√
λj

obtained by dividing the raw residuals by the square root of the fitted conditional intensity. The
Pearson residuals are standardised, in the sense that if the model (true and fitted) is Poisson,
then the sum of the Pearson residuals in a spatial region B has variance equal to the area of B.

736 residuals.ppm

"score": the score residuals (Baddeley et al, 2005)

rj = (zj − wjλj)xj

obtained by multiplying the raw residuals rj by the covariates xj for quadrature point j. The
score residuals always sum to zero.

The result of residuals.ppm is a measure (object of class "msr"). Use plot.msr to plot the
residuals directly, or diagnose.ppm to produce diagnostic plots based on these residuals. Use
integral.msr to compute the total residual.

By default, the window of the measure is the same as the original window of the data. If drop=TRUE
then the window is the domain of integration of the pseudolikelihood or composite likelihood.
This only matters when the model object was fitted using the border correction: in that case, if
drop=TRUE the window of the residuals is the erosion of the original data window by the border
correction distance rbord.

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Modified Residuals

Sometimes we want to modify the calculation of residuals by using different values for the model
parameters. This capability is provided by the arguments new.coef and quad.

If new.coef is given, then the residuals will be computed by taking the model parameters to be
new.coef. This should be a numeric vector of the same length as the vector of fitted model param-
eters coef(object).

If new.coef is missing and quad is given, then the model parameters will be determined by re-
fitting the model using a new quadrature scheme specified by quad. Residuals will be computed for
the original model object using these new parameter values.

The argument quad should normally be a list of arguments in name=value format that will be passed
to quadscheme (together with the original data points) to determine the new quadrature scheme. It
may also be a quadrature scheme (object of class "quad") to which the model should be fitted, or a
point pattern (object of class "ppp") specifying the dummy points in a new quadrature scheme.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

residuals.slrm 737

See Also

msr, diagnose.ppm, ppm.object, ppm

Examples

fit <- ppm(cells, ~x, Strauss(r=0.15))

Pearson residuals
rp <- residuals(fit, type="pe")
rp

simulated data
X <- rStrauss(100,0.7,0.05)
fit Strauss model
fit <- ppm(X, ~1, Strauss(0.05))
res.fit <- residuals(fit)

check that total residual is 0
integral.msr(residuals(fit, drop=TRUE))

true model parameters
truecoef <- c(log(100), log(0.7))
res.true <- residuals(fit, new.coef=truecoef)

residuals.slrm Residuals for Fitted Spatial Logistic Regression Model

Description

Given a spatial logistic regression model fitted to a point pattern, compute the residuals for each
pixel.

Usage

S3 method for class 'slrm'
residuals(object,

type=c("raw", "deviance", "pearson", "working",
"response", "partial", "score"),

...)

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String (partially matched) indicating the type of residuals to be calculated.

... Ignored.

738 residuals.slrm

Details

This function computes several kinds of residuals for the fit of a spatial logistic regression model to
a spatial point pattern dataset.

The argument object must be a fitted spatial logistic regression model (object of class "slrm").
Such objects are created by the fitting algorithm slrm.

The residuals are computed for each pixel that was used to fit the original model. The residuals are
returned as a pixel image (if the residual values are scalar), or a list of pixel images (if the residual
values are vectors).

The type of residual is chosen by the argument type.

For a given pixel, suppose p is the fitted probability of presence of a point, and y is the presence
indicator (equal to 1 if the pixel contains any data points, and equal to 0 otherwise). Then

• type="raw" or type="response" specifies the response residual

r = y − p

• type="pearson" is the Pearson residual

rP =
y − p√
p(1− p)

• type="deviance" is the deviance residual

rD = (−1)y+1
√
−2(ylogp+ (1− y)log(1− p))

• type="score" specifies the score residuals

rS = (y − p)x

where x is the vector of canonical covariate values for the pixel

• type="working" specifies the working residuals as defined in residuals.glm

• type="partial" specifies the partial residuals as defined in residuals.glm

Value

A pixel image (if the residual values are scalar), or a list of pixel images (if the residual values are
vectors).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

residuals.glm, residuals.ppm

response 739

Examples

d <- if(interactive()) 128 else 32
H <- unmark(humberside)
fit <- slrm(H ~ x + y, dimyx=d)

plot(residuals(fit))

plot(residuals(fit, type="score"))

response Extract the Values of the Response from a Fitted Model

Description

Given a fitted model (of any kind) extract the values of the response variable.

Usage

response(object)

S3 method for class 'lm'
response(object)

S3 method for class 'glm'
response(object)

S3 method for class 'ppm'
response(object)

S3 method for class 'kppm'
response(object)

S3 method for class 'dppm'
response(object)

S3 method for class 'slrm'
response(object)

S3 method for class 'mppm'
response(object)

Arguments

object A fitted model (object of class "lm", "glm", "ppm", "kppm", "dppm", "slrm" or
"mppm" or some other class).

740 rex

Details

For fitted linear models of class "lm" and fitted generalized linear models of class "glm", the nu-
merical values of the response variable are extracted if they are available, and otherwise NULL is
returned.

For fitted point process models of class "ppm", "kppm", "dppm", "slrm" or "lppm", the original
data point pattern is extracted.

For a fitted point process model of class "mppm", the list of original data point patterns is extracted.

Value

For response.lm and response.glm, a numeric vector, or NULL.

For response.ppm, response.kppm, response.dppm and response.slrm a two-dimensional spa-
tial point pattern (class "ppp").

For response.mppm, a list of two-dimensional spatial point patterns (objects of class "ppp"). The
list also belongs to classes "solist" and "ppplist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

fit <- ppm(cells ~ x)
response(fit)

rex Richardson Extrapolation

Description

Performs Richardson Extrapolation on a sequence of approximate values.

Usage

rex(x, r = 2, k = 1, recursive = FALSE)

Arguments

x A numeric vector or matrix, whose columns are successive estimates or approx-
imations to a vector of parameters.

r A number greater than 1. The ratio of successive step sizes. See Details.

k Integer. The order of convergence assumed. See Details.

recursive Logical value indicating whether to perform one step of Richardson extrapola-
tion (recursive=FALSE, the default) or repeat the extrapolation procedure until
a best estimate is obtained (recursive=TRUE.

rex 741

Details

Richardson extrapolation is a general technique for improving numerical approximations, often
used in numerical integration (Brezinski and Zaglia, 1991). It can also be used to improve parameter
estimates in statistical models (Baddeley and Turner, 2014).

The successive columns of x are assumed to have been obtained using approximations with step
sizes a, a/r, a/r2, . . . where a is the initial step size (which does not need to be specified).

Estimates based on a step size s are assumed to have an error of order sk.

Thus, the default values r=2 and k=1 imply that the errors in the second column of x should be
roughly (1/r)k = 1/2 as large as the errors in the first column, and so on.

Value

A matrix whose columns contain a sequence of improved estimates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Baddeley, A. and Turner, R. (2014) Bias correction for parameter estimates of spatial point process
models. Journal of Statistical Computation and Simulation 84, 1621–1643. DOI: 10.1080/00949655.2012.755976

Brezinski, C. and Zaglia, M.R. (1991) Extrapolation Methods. Theory and Practice. North-
Holland.

See Also

bc

Examples

integrals of sin(x) and cos(x) from 0 to pi
correct answers: 2, 0
est <- function(nsteps) {

xx <- seq(0, pi, length=nsteps)
ans <- pi * c(mean(sin(xx)), mean(cos(xx)))
names(ans) <- c("sin", "cos")
ans

}
X <- cbind(est(10), est(20), est(40))
X
rex(X)
rex(X, recursive=TRUE)

fitted Gibbs point process model
fit0 <- ppm(cells ~ 1, Strauss(0.07), nd=16)
fit1 <- update(fit0, nd=32)
fit2 <- update(fit0, nd=64)
co <- cbind(coef(fit0), coef(fit1), coef(fit2))

742 rho2hat

co
rex(co, k=2, recursive=TRUE)

rho2hat Smoothed Relative Density of Pairs of Covariate Values

Description

Given a point pattern and two spatial covariates Z1 and Z2, construct a smooth estimate of the
relative risk of the pair (Z1, Z2).

Usage

rho2hat(object, cov1, cov2, ..., method=c("ratio", "reweight"))

Arguments

object A point pattern (object of class "ppp"), a quadrature scheme (object of class
"quad") or a fitted point process model (object of class "ppm").

cov1,cov2 The two covariates. Each argument is either a function(x,y) or a pixel image
(object of class "im") providing the values of the covariate at any location, or
one of the strings "x" or "y" signifying the Cartesian coordinates.

... Additional arguments passed to density.ppp to smooth the scatterplots.

method Character string determining the smoothing method. See Details.

Details

This is a bivariate version of rhohat.

If object is a point pattern, this command produces a smoothed version of the scatterplot of the
values of the covariates cov1 and cov2 observed at the points of the point pattern.

The covariates cov1,cov2 must have continuous values.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z1(u), Z2(u))κ(u)

where κ(u) is the intensity of the fitted model object, and ρ(z1, z2) is a function to be estimated.
The algorithm computes a smooth estimate of the function ρ.

The method determines how the density estimates will be combined to obtain an estimate of ρ(z1, z2):

• If method="ratio", then ρ(z1, z2) is estimated by the ratio of two density estimates. The
numerator is a (rescaled) density estimate obtained by smoothing the points (Z1(yi), Z2(yi))
obtained by evaluating the two covariate Z1, Z2 at the data points yi. The denominator is a
density estimate of the reference distribution of (Z1, Z2).

• If method="reweight", then ρ(z1, z2) is estimated by applying density estimation to the
points (Z1(yi), Z2(yi)) obtained by evaluating the two covariate Z1, Z2 at the data points
yi, with weights inversely proportional to the reference density of (Z1, Z2).

rhohat 743

Value

A pixel image (object of class "im"). Also belongs to the special class "rho2hat" which has a plot
method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

See Also

rhohat, methods.rho2hat

Examples

data(bei)
attach(bei.extra)
plot(rho2hat(bei, elev, grad))
fit <- ppm(bei, ~elev, covariates=bei.extra)
plot(rho2hat(fit, elev, grad))
plot(rho2hat(fit, elev, grad, method="reweight"))

rhohat Nonparametric Estimate of Intensity as Function of a Covariate

Description

Computes a nonparametric estimate of the intensity of a point process, as a function of a (continu-
ous) spatial covariate.

Usage

rhohat(object, covariate, ...)

S3 method for class 'ppp'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing", "piecewise"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,

744 rhohat

covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'quad'
rhohat(object, covariate, ...,

baseline=NULL, weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing", "piecewise"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'ppm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing", "piecewise"),
subset=NULL,
dimyx=NULL, eps=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'slrm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing", "piecewise"),
subset=NULL,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

Arguments

object A point pattern (object of class "ppp" or "lpp"), a quadrature scheme (object of
class "quad") or a fitted point process model (object of class "ppm", "slrm" or
"lppm").

covariate Either a function(x,y) or a pixel image (object of class "im") providing the
values of the covariate at any location. Alternatively one of the strings "x" or
"y" signifying the Cartesian coordinates.

weights Optional weights attached to the data points. Either a numeric vector of weights
for each data point, or a pixel image (object of class "im") or a function(x,y)

rhohat 745

providing the weights.

baseline Optional baseline for intensity function. A function(x,y) or a pixel image
(object of class "im") providing the values of the baseline at any location.

method Character string determining the smoothing method. See Details.

horvitz Logical value indicating whether to use Horvitz-Thompson weights. See De-
tails.

smoother Character string determining the smoothing algorithm. See Details.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the estimate should be calculated.

dimyx,eps Arguments controlling the pixel resolution at which the covariate will be evalu-
ated. See Details.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

bwref Optional. An alternative value of bw to use when smoothing the reference den-
sity (the density of the covariate values observed at all locations in the window).

... Additional arguments passed to density.default or locfit.

covname Optional. Character string to use as the name of the covariate.

confidence Confidence level for confidence intervals. A number between 0 and 1.

positiveCI Logical value. If TRUE, confidence limits are always positive numbers; if FALSE,
the lower limit of the confidence interval may sometimes be negative. Default is
FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

breaks Breakpoints for the piecewise-constant function computed when smoother='piecewise'.
Either a vector of numeric values specifying the breakpoints, or a single integer
specifying the number of equally-spaced breakpoints. There is a sensible de-
fault.

Details

This command estimates the relationship between point process intensity and a given spatial co-
variate. Such a relationship is sometimes called a resource selection function (if the points are
organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are min-
eral deposits and the covariate is a geological variable). This command uses nonparametric methods
which do not assume a particular form for the relationship.

If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function λ(u) of the form

λ(u) = ρ(Z(u))

where Z is the spatial covariate function given by covariate, and ρ(z) is the resource selection
function or prospectivity index. A nonparametric estimator of the function ρ(z) is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

λ(u) = ρ(Z(u))B(u)

746 rhohat

where B(u) is the baseline intensity at location u. A nonparametric estimator of the relative inten-
sity ρ(z) is computed.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z(u))κ(u)

where κ(u) is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity ρ(z) is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

• If smoother="kernel" (the default) or smoother="local", the nonparametric estimator is a
smoothing estimator of ρ(z), effectively a kind of density estimator (Baddeley et al, 2012).
The estimated function ρ(z) will be a smooth function of z. Confidence bands are also com-
puted, assuming a Poisson point process. See the section on Smooth estimates.

• If smoother="increasing" or smoother="decreasing", we use the nonparametric maxi-
mum likelihood estimator of ρ(z) described by Sager (1982). This assumes that ρ(z) is either
an increasing function of z, or a decreasing function of z. The estimated function will be a step
function, increasing or decreasing as a function of z. See the section on Monotone estimates.

• If smoother="piecewise", the estimate of ρ(z) is piecewise constant. The range of covariate
values is divided into several intervals (ranges or bands). The endpoints of these intervals are
the breakpoints, which may be specified by the argument breaks; there is a sensible default.
The estimate of ρ(z) takes a constant value on each interval. The estimate of ρ(z) in each
interval of covariate values is simply the average intensity (number of points per unit area) in
the relevant sub-region.

See Baddeley (2018) for a comparison of these estimation techniques.

If the argument weights is present, then the contribution from each data point X[i] to the estimate
of ρ is multiplied by weights[i].

If the argument subset is present, then the calculations are performed using only the data inside
this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates with
categorical (factor) values or discrete values such as small integers. For a categorical covariate, use
intensity.quadratcount applied to the result of quadratcount(X, tess=covariate).

The argument covariate should be a pixel image, or a function, or one of the strings "x" or "y"
signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial
resolution controlled by the arguments dimyx,eps which are passed to as.mask.

Value

A function value table (object of class "fv") containing the estimated values of ρ (and confidence
limits) for a sequence of values ofZ. Also belongs to the class "rhohat" which has special methods
for print, plot and predict.

rhohat 747

Smooth estimates

Smooth estimators of ρ(z) were proposed by Baddeley and Turner (2005) and Baddeley et al (2012).
Similar estimators were proposed by Guan (2008) and in the literature on relative distributions
(Handcock and Morris, 1999).

The estimated function ρ(z) will be a smooth function of z.

The smooth estimation procedure involves computing several density estimates and combining
them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density
estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estima-
tion, performed by locfit.

The argument method determines how the density estimates will be combined to obtain an estimate
of ρ(z):

• If method="ratio", then ρ(z) is estimated by the ratio of two density estimates, The numer-
ator is a (rescaled) density estimate obtained by smoothing the values Z(yi) of the covariate
Z observed at the data points yi. The denominator is a density estimate of the reference dis-
tribution of Z. See Baddeley et al (2012), equation (8). This is similar but not identical to an
estimator proposed by Guan (2008).

• If method="reweight", then ρ(z) is estimated by applying density estimation to the values
Z(yi) of the covariate Z observed at the data points yi, with weights inversely proportional to
the reference density of Z. See Baddeley et al (2012), equation (9).

• If method="transform", the smoothing method is variable-bandwidth kernel smoothing, im-
plemented by applying the Probability Integral Transform to the covariate values, yielding
values in the range 0 to 1, then applying edge-corrected density estimation on the interval
[0, 1], and back-transforming. See Baddeley et al (2012), equation (10).

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Pointwise confidence intervals for the true value of ρ(z) are also calculated for each z, and will
be plotted as grey shading. The confidence intervals are derived using the central limit theorem,
based on variance calculations which assume a Poisson point process. If positiveCI=FALSE, the
lower limit of the confidence interval may sometimes be negative, because the confidence intervals
are based on a normal approximation to the estimate of ρ(z). If positiveCI=TRUE, the confidence
limits are always positive, because the confidence interval is based on a normal approximation to
the estimate of log(ρ(z)). For consistency with earlier versions, the default is positiveCI=FALSE
for smoother="kernel" and positiveCI=TRUE for smoother="local".

Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function ρ(z) was described by
Sager (1982). This method assumes that ρ(z) is either an increasing function of z, or a decreasing
function of z. The estimated function will be a step function, increasing or decreasing as a function
of z.

748 rhohat

This estimator is chosen by specifying smoother="increasing" or smoother="decreasing".
The argument method is ignored this case.

To compute the estimate of ρ(z), the algorithm first computes several primitive step-function esti-
mates, and then takes the maximum of these primitive functions.

If smoother="decreasing", each primitive step function takes the form ρ(z) = λ when z ≤ t, and
ρ(z) = 0 when z > t, where and λ is a primitive estimate of intensity based on the data for Z ≤ t.
The jump location t will be the value of the covariate Z at one of the data points. The primitive
estimate λ is the average intensity (number of points divided by area) for the region of space where
the covariate value is less than or equal to t.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Confidence intervals are not available for the monotone estimators.

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang,
Yong Song, and Rolf Turner <r.turner@auckland.ac.nz>.

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

Baddeley, A. and Turner, R. (2005) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,
Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

Baddeley, A. (2018) A statistical commentary on mineral prospectivity analysis. Chapter 2, pages
25–65 in Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar,
Q. Cheng and F.P. Agterberg. Springer, Berlin.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point
processes. Journal of the American Statistical Association 103, 1238–1247.

Handcock, M.S. and Morris, M. (1999) Relative Distribution Methods in the Social Sciences.
Springer, New York.

Sager, T.W. (1982) Nonparametric maximum likelihood estimation of spatial patterns. Annals of
Statistics 10, 1125–1136.

See Also

rho2hat, methods.rhohat, parres.

See ppm for a parametric method for the same problem.

rmh.ppm 749

Examples

X <- rpoispp(function(x,y){exp(3+3*x)})
rho <- rhohat(X, "x")
rho <- rhohat(X, function(x,y){x})
plot(rho)
curve(exp(3+3*x), lty=3, col=4, lwd=2, add=TRUE)

rhoB <- rhohat(X, "x", method="reweight")
rhoC <- rhohat(X, "x", method="transform")

rhoM <- rhohat(X, "x", smoother="increasing")

plot(rhoM, add=TRUE, .y ~ .x, col=6)
legend("top", lty=c(3, 1), col=c(4, 6), lwd=c(2, 1),

legend=c("true", "increasing"))

fit <- ppm(X ~x)
rr <- rhohat(fit, "y")

rmh.ppm Simulate from a Fitted Point Process Model

Description

Given a point process model fitted to data, generate a random simulation of the model, using the
Metropolis-Hastings algorithm.

Usage

S3 method for class 'ppm'
rmh(model, start=NULL,

control=default.rmhcontrol(model, w=w),
...,
w = NULL,
project=TRUE,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE, new.coef=NULL)

Arguments

model A fitted point process model (object of class "ppm", see ppm.object) which it
is desired to simulate. This fitted model is usually the result of a call to ppm. See
Details below.

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(x.start=data.ppm(model))

750 rmh.ppm

control Data controlling the iterative behaviour of the Metropolis-Hastings algorithm.
See rmhcontrol for description of these arguments.

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

w Optional. Window in which the simulations should be generated. Default is the
window of the original data.

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

nsim Number of simulated point patterns that should be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a single point pattern.
saveinfo Logical value indicating whether to save auxiliary information.
verbose Logical flag indicating whether to print progress reports.
new.coef New values for the canonical parameters of the model. A numeric vector of the

same length as coef(model).

Details

This function generates simulated realisations from a point process model that has been fitted to
point pattern data. It is a method for the generic function rmh for the class "ppm" of fitted point
process models. To simulate other kinds of point process models, see rmh or rmh.default.

The argument model describes the fitted model. It must be an object of class "ppm" (see ppm.object),
and will typically be the result of a call to the point process model fitting function ppm.

The current implementation enables simulation from any fitted model involving the interactions
AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, MultiStrauss, MultiStraussHard,
PairPiece, Poisson, Strauss, StraussHard and Softcore, including nonstationary models. See
the examples.

It is also possible to simulate hybrids of several such models. See Hybrid and the examples.

It is possible that the fitted coefficients of a point process model may be “illegal”, i.e. that there may
not exist a mathematically well-defined point process with the given parameter values. For example,
a Strauss process with interaction parameter γ > 1 does not exist, but the model-fitting procedure
used in ppm will sometimes produce values of γ greater than 1. In such cases, if project=FALSE
then an error will occur, while if project=TRUE then rmh.ppm will find the nearest legal model
and simulate this model instead. (The nearest legal model is obtained by projecting the vector of
coefficients onto the set of valid coefficient vectors. The result is usually the Poisson process with
the same fitted intensity.)

The arguments start and control are lists of parameters determining the initial state and the
iterative behaviour, respectively, of the Metropolis-Hastings algorithm.

The argument start is passed directly to rmhstart. See rmhstart for details of the parameters of
the initial state, and their default values.

The argument control is first passed to rmhcontrol. Then if any additional arguments ... are
given, update.rmhcontrol is called to update the parameter values. See rmhcontrol for details of
the iterative behaviour parameters, and default.rmhcontrol for their default values.

rmh.ppm 751

Note that if you specify expansion of the simulation window using the parameter expand (so that
the model will be simulated on a window larger than the original data window) then the model must
be capable of extrapolation to this larger window. This is usually not possible for models which
depend on external covariates, because the domain of a covariate image is usually the same as the
domain of the fitted model.

After extracting the relevant information from the fitted model object model, rmh.ppm invokes the
default rmh algorithm rmh.default, unless the model is Poisson. If the model is Poisson then
the Metropolis-Hastings algorithm is not needed, and the model is simulated directly, using one of
rpoispp, rmpoispp, rpoint or rmpoint.

See rmh.default for further information about the implementation, or about the Metropolis-Hastings
algorithm.

Value

A point pattern (an object of class "ppp"; see ppp.object) or a list of point patterns.

Warnings

See Warnings in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

simulate.ppm, rmh, rmhmodel, rmhcontrol, default.rmhcontrol, update.rmhcontrol, rmhstart,
rmh.default, ppp.object, ppm,

Interactions: AreaInter, DiggleGratton, DiggleGatesStibbard, Geyer, Hardcore, Hybrid,
MultiStrauss, MultiStraussHard, PairPiece, Poisson, Strauss, StraussHard, Softcore

Examples

live <- interactive()
op <- spatstat.options()
spatstat.options(rmh.nrep=1e5)
Nrep <- 1e5

X <- swedishpines
if(live) plot(X, main="Swedish Pines data")

Poisson process
fit <- ppm(X, ~1, Poisson())
Xsim <- rmh(fit)
if(live) plot(Xsim, main="simulation from fitted Poisson model")

Strauss process
fit <- ppm(X, ~1, Strauss(r=7))
Xsim <- rmh(fit)

752 rmhmodel.ppm

if(live) plot(Xsim, main="simulation from fitted Strauss model")

if(live) {
Strauss process simulated on a larger window
then clipped to original window
Xsim <- rmh(fit, control=list(nrep=Nrep, expand=1.1, periodic=TRUE))
Xsim <- rmh(fit, nrep=Nrep, expand=2, periodic=TRUE)

}

if(live) {
X <- rSSI(0.05, 100)
piecewise-constant pairwise interaction function
fit <- ppm(X, ~1, PairPiece(seq(0.02, 0.1, by=0.01)))
Xsim <- rmh(fit)

}

marked point pattern
Y <- amacrine

if(live) {
marked Poisson models
fit <- ppm(Y)
fit <- ppm(Y,~marks)
fit <- ppm(Y,~polynom(x,2))
fit <- ppm(Y,~marks+polynom(x,2))
fit <- ppm(Y,~marks*polynom(x,y,2))
Ysim <- rmh(fit)

}

multitype Strauss models
MS <- MultiStrauss(radii=matrix(0.07, ncol=2, nrow=2),

types = levels(Y$marks))
if(live) {
fit <- ppm(Y ~marks, MS)
Ysim <- rmh(fit)
}

fit <- ppm(Y ~ marks*polynom(x,y,2), MS)
Ysim <- rmh(fit)
if(live) plot(Ysim, main="simulation from fitted inhomogeneous Multitype Strauss")

spatstat.options(op)

if(live) {
Hybrid model
fit <- ppm(redwood, ~1, Hybrid(A=Strauss(0.02), B=Geyer(0.1, 2)))
Y <- rmh(fit)

}

rmhmodel.ppm Interpret Fitted Model for Metropolis-Hastings Simulation.

rmhmodel.ppm 753

Description

Converts a fitted point process model into a format that can be used to simulate the model by the
Metropolis-Hastings algorithm.

Usage

S3 method for class 'ppm'
rmhmodel(model, w, ..., verbose=TRUE, project=TRUE,

control=rmhcontrol(),
new.coef=NULL)

Arguments

model Fitted point process model (object of class "ppm").

w Optional. Window in which the simulations should be generated.

... Ignored.

verbose Logical flag indicating whether to print progress reports while the model is being
converted.

project Logical flag indicating what to do if the fitted model does not correspond to a
valid point process. See Details.

control Parameters determining the iterative behaviour of the simulation algorithm. Passed
to rmhcontrol.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(model).

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.ppm is the method for the class "ppm" of fitted point process models.

The argument model should be a fitted point process model (object of class "ppm") typically ob-
tained from the model-fitting function ppm. This will be converted into an object of class "rmhmodel".

The optional argument w specifies the window in which the pattern is to be generated. If specified,
it must be in a form which can be coerced to an object of class owin by as.owin.

Not all fitted point process models obtained from ppm can be simulated. We have not yet imple-
mented simulation code for the LennardJones and OrdThresh models.

It is also possible that a fitted point process model obtained from ppm may not correspond to a valid
point process. For example a fitted model with the Strauss interpoint interaction may have any
value of the interaction parameter γ; however the Strauss process is not well-defined for γ > 1
(Kelly and Ripley, 1976).

The argument project determines what to do in such cases. If project=FALSE, a fatal error will
occur. If project=TRUE, the fitted model parameters will be adjusted to the nearest values which
do correspond to a valid point process. For example a Strauss process with γ > 1 will be projected
to a Strauss process with γ = 1, equivalent to a Poisson process.

754 roc

Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

See Also

rmhmodel, rmhmodel.list, rmhmodel.default, rmh, rmhcontrol, rmhstart, ppm, AreaInter,
BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore, Hybrid, LennardJones,
MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson, Softcore, Strauss, StraussHard
and Triplets.

Examples

fit1 <- ppm(cells ~1, Strauss(0.07))
mod1 <- rmhmodel(fit1)

fit2 <- ppm(cells ~x, Geyer(0.07, 2))
mod2 <- rmhmodel(fit2)

fit3 <- ppm(cells ~x, Hardcore(0.07))
mod3 <- rmhmodel(fit3)

Then rmh(mod1), etc

roc Receiver Operating Characteristic

Description

Computes the Receiver Operating Characteristic curve for a point pattern or a fitted point process
model.

roc 755

Usage

roc(X, ...)

S3 method for class 'ppp'
roc(X, covariate, ..., high = TRUE)

S3 method for class 'ppm'
roc(X, ...)

S3 method for class 'kppm'
roc(X, ...)

S3 method for class 'slrm'
roc(X, ...)

Arguments

X Point pattern (object of class "ppp" or "lpp") or fitted point process model
(object of class "ppm", "kppm", "slrm" or "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

Details

This command computes Receiver Operating Characteristic curve. The area under the ROC is
computed by auc.

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to
separate the spatial domain into areas of high and low density of points. For each possible threshold
z, the algorithm calculates the fraction a(z) of area in the study region where the covariate takes
a value greater than z, and the fraction b(z) of data points for which the covariate value is greater
than z. The ROC is a plot of b(z) against a(z) for all thresholds z.

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate
the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the
goodness-of-fit of the model (Lobo et al, 2007).

(For spatial logistic regression models (class "slrm") replace “intensity” by “probability of pres-
ence” in the text above.)

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve.

756 rose

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

auc

Examples

plot(roc(swedishpines, "x"))
fit <- ppm(swedishpines ~ x+y)
plot(roc(fit))

rose Rose Diagram

Description

Plots a rose diagram (rose of directions), the analogue of a histogram or density plot for angular
data.

Usage

rose(x, ...)

Default S3 method:
rose(x, breaks = NULL, ...,

weights=NULL,
nclass = NULL,
unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main)

S3 method for class 'histogram'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

rose 757

S3 method for class 'density'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

S3 method for class 'fv'
rose(x, ...,

unit = c("degree", "radian"),
start=0, clockwise=FALSE,
main, labels=TRUE, at=NULL, do.plot = TRUE)

Arguments

x Data to be plotted. A numeric vector containing angles, or a histogram ob-
ject containing a histogram of angular values, or a density object containing a
smooth density estimate for angular data, or an fv object giving a function of an
angular argument.

breaks, nclass Arguments passed to hist to determine the histogram breakpoints.

... Additional arguments passed to polygon controlling the appearance of the plot
(or passed from rose.default to hist to control the calculation of the his-
togram).

unit The unit in which the angles are expressed.

start The starting direction for measurement of angles, that is, the spatial direction
which corresponds to a measured angle of zero. Either a character string giving
a compass direction ("N" for north, "S" for south, "E" for east, or "W" for west)
or a number giving the angle from the the horizontal (East) axis to the starting di-
rection. For example, if unit="degree" and clockwise=FALSE, then start=90
and start="N" are equivalent. The default is to measure angles anti-clockwise
from the horizontal axis (East direction).

clockwise Logical value indicating whether angles increase in the clockwise direction (clockwise=TRUE)
or anti-clockwise, counter-clockwise direction (clockwise=FALSE, the default).

weights Optional vector of numeric weights associated with x.

main Optional main title for the plot.

labels Either a logical value indicating whether to plot labels next to the tick marks, or
a vector of labels for the tick marks.

at Optional vector of angles at which tick marks should be plotted. Set at=numeric(0)
to suppress tick marks.

do.plot Logical value indicating whether to really perform the plot.

Details

A rose diagram or rose of directions is the analogue of a histogram or bar chart for data which
represent angles in two dimensions. The bars of the bar chart are replaced by circular sectors in the
rose diagram.

758 rotmean

The function rose is generic, with a default method for numeric data, and methods for histograms
and function tables.

If x is a numeric vector, it must contain angular values in the range 0 to 360 (if unit="degree") or
in the range 0 to 2 * pi (if unit="radian"). A histogram of the data will first be computed using
hist. Then the rose diagram of this histogram will be plotted by rose.histogram.

If x is an object of class "histogram" produced by the function hist, representing the histogram of
angular data, then the rose diagram of the densities (rather than the counts) in this histogram object
will be plotted.

If x is an object of class "density" produced by circdensity or density.default, representing
a kernel smoothed density estimate of angular data, then the rose diagram of the density estimate
will be plotted.

If x is a function value table (object of class "fv") then the argument of the function will be inter-
preted as an angle, and the value of the function will be interpreted as the radius.

By default, angles are interpreted using the mathematical convention where the zero angle is the
horizontal x axis, and angles increase anti-clockwise. Other conventions can be specified us-
ing the arguments start and clockwise. Standard compass directions are obtained by setting
unit="degree", start="N" and clockwise=TRUE.

Value

A window (class "owin") containing the plotted region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

fv, hist, circdensity, density.default.

Examples

ang <- runif(1000, max=360)
rose(ang, col="grey")
rose(ang, col="grey", start="N", clockwise=TRUE)

rotmean Rotational Average of a Pixel Image

Description

Compute the average pixel value over all rotations of the image about the origin, as a function of
distance from the origin.

rotmean 759

Usage

rotmean(X, ..., origin, padzero=TRUE, Xname, result=c("fv", "im"), adjust=1)

Arguments

X A pixel image.

... Ignored.

origin Optional. Origin about which the rotations should be performed. Either a nu-
meric vector or a character string as described in the help for shift.owin.

padzero Logical. If TRUE (the default), the value of X is assumed to be zero outside
the window of X. If FALSE, the value of X is taken to be undefined outside the
window of X.

Xname Optional name for X to be used in the function labels.

result Character string specifying the kind of result required: either a function object
or a pixel image.

adjust Adjustment factor for bandwidth used in kernel smoothing.

Details

This command computes, for each possible distance r, the average pixel value of the pixels lying at
distance r from the origin. Kernel smoothing is used to obtain a smooth function of r.

If result="fv" (the default) the result is a function object of class "fv" giving the mean pixel value
of X as a function of distance from the origin.

If result="im" the result is a pixel image, with the same dimensions as X, giving the mean value
of X over all pixels lying at the same distance from the origin as the current pixel.

If padzero=TRUE (the default), the value of X is assumed to be zero outside the window of X. The
rotational mean at a given distance r is the average value of the image X over the entire circle of
radius r, including zero values outside the window if the circle lies partly outside the window.

If padzero=FALSE, the value of X is taken to be undefined outside the window of X. The rotational
mean is the average of the X values over the subset of the circle of radius r that lies entirely inside
the window.

Value

An object of class "fv" or "im", with the same coordinate units as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

760 rppm

Examples

if(interactive()) {
Z <- setcov(square(1))
plot(rotmean(Z))
plot(rotmean(Z, result="im"))

} else {
Z <- setcov(square(1), dimyx=32)
f <- rotmean(Z)

}

rppm Recursively Partitioned Point Process Model

Description

Fits a recursive partition model to point pattern data.

Usage

rppm(..., rpargs=list())

Arguments

... Arguments passed to ppm specifying the point pattern data and the explanatory
covariates.

rpargs Optional list of arguments passed to rpart controlling the recursive partitioning
procedure.

Details

This function attempts to find a simple rule for predicting low and high intensity regions of points
in a point pattern, using explanatory covariates.

The arguments ... specify the point pattern data and explanatory covariates in the same way as
they would be in the function ppm.

The recursive partitioning algorithm rpart is then used to find a partitioning rule.

Value

An object of class "rppm". There are methods for print, plot, fitted, predict and prune for
this class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

SatPiece 761

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression
Trees. Wadsworth.

See Also

plot.rppm, predict.rppm, prune.rppm.

Examples

New Zealand trees data: trees planted along border
Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
Gorillas data: factor covariates
(symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit

SatPiece Piecewise Constant Saturated Pairwise Interaction Point Process
Model

Description

Creates an instance of a saturated pairwise interaction point process model with piecewise constant
potential function. The model can then be fitted to point pattern data.

Usage

SatPiece(r, sat)

Arguments

r vector of jump points for the potential function

sat vector of saturation values, or a single saturation value

762 SatPiece

Details

This is a generalisation of the Geyer saturation point process model, described in Geyer, to the case
of multiple interaction distances. It can also be described as the saturated analogue of a pairwise
interaction process with piecewise-constant pair potential, described in PairPiece.

The saturated point process with interaction radii r1, . . . , rk, saturation thresholds s1, . . . , sk, in-
tensity parameter β and interaction parameters γ1, . . . , gammak, is the point process in which each
point xi in the pattern X contributes a factor

βγ
v1(xi,X)
1 . . . gamma

vk(xi,X)
k

to the probability density of the point pattern, where

vj(xi, X) = min(sj , tj(xi, X))

where tj(xi, X) denotes the number of points in the pattern X which lie at a distance between rj−1
and rj from the point xi. We take r0 = 0 so that t1(xi, X) is the number of points of X that lie
within a distance r1 of the point xi.

SatPiece is used to fit this model to data. The function ppm(), which fits point process models to
point pattern data, requires an argument of class "interact" describing the interpoint interaction
structure of the model to be fitted. The appropriate description of the piecewise constant Saturated
pairwise interaction is yielded by the function SatPiece(). See the examples below.

Simulation of this point process model is not yet implemented. This model is not locally stable (the
conditional intensity is unbounded).

The argument r specifies the vector of interaction distances. The entries of r must be strictly
increasing, positive numbers.

The argument sat specifies the vector of saturation parameters. It should be a vector of the same
length as r, and its entries should be nonnegative numbers. Thus sat[1] corresponds to the distance
range from 0 to r[1], and sat[2] to the distance range from r[1] to r[2], etc. Alternatively sat
may be a single number, and this saturation value will be applied to every distance range.

Infinite values of the saturation parameters are also permitted; in this case vj(xi, X) = tj(xi, X)
and there is effectively no ‘saturation’ for the distance range in question. If all the saturation pa-
rameters are set to Inf then the model is effectively a pairwise interaction process, equivalent to
PairPiece (however the interaction parameters γ obtained from SatPiece are the square roots of
the parameters γ obtained from PairPiece).

If r is a single number, this model is virtually equivalent to the Geyer process, see Geyer.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

in collaboration with Hao Wang and Jeff Picka

Saturated 763

See Also

ppm, pairsat.family, Geyer, PairPiece, BadGey.

Examples

SatPiece(c(0.1,0.2), c(1,1))
prints a sensible description of itself
SatPiece(c(0.1,0.2), 1)

ppm(cells ~1, SatPiece(c(0.07, 0.1, 0.13), 2))
fit a stationary piecewise constant Saturated pairwise interaction process

ppm(cells ~polynom(x,y,3), SatPiece(c(0.07, 0.1, 0.13), 2))
nonstationary process with log-cubic polynomial trend

Saturated Saturated Pairwise Interaction model

Description

Experimental.

Usage

Saturated(pot, name)

Arguments

pot An S language function giving the user-supplied pairwise interaction potential.

name Character string.

Details

This is experimental. It constructs a member of the “saturated pairwise” family pairsat.family.

Value

An object of class "interact" describing the interpoint interaction structure of a point process.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, pairsat.family, Geyer, SatPiece, ppm.object

764 scan.test

scan.test Spatial Scan Test

Description

Performs the Spatial Scan Test for clustering in a spatial point pattern, or for clustering of one type
of point in a bivariate spatial point pattern.

Usage

scan.test(X, r, ...,
method = c("poisson", "binomial"),
nsim = 19,
baseline = NULL,
case = 2,
alternative = c("greater", "less", "two.sided"),
verbose = TRUE)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

nsim Number of simulations for computing Monte Carlo p-value.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

verbose Logical. Whether to print progress reports.

Details

The spatial scan test (Kulldorf, 1997) is applied to the point pattern X.

In a nutshell,

• If method="poisson" then a significant result would mean that there is a circle of radius r,
located somewhere in the spatial domain of the data, which contains a significantly higher
than expected number of points of X. That is, the pattern X exhibits spatial clustering.

scan.test 765

• If method="binomial" then X must be a bivariate (two-type) point pattern. By default, the
first type of point is interpreted as a control (non-event) and the second type of point as a case
(event). A significant result would mean that there is a circle of radius r which contains a
significantly higher than expected number of cases. That is, the cases are clustered together,
conditional on the locations of all points.

Following is a more detailed explanation.

• If method="poisson" then the scan test based on Poisson likelihood is performed (Kulldorf,
1997). The dataset X is treated as an unmarked point pattern. By default (if baseline is not
specified) the null hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson
process). The alternative hypothesis is a Poisson process with one intensity β1 inside some
circle of radius r and another intensity β0 outside the circle. If baseline is given, then it
should be a pixel image or a function(x,y). The null hypothesis is an inhomogeneous
Poisson process with intensity proportional to baseline. The alternative hypothesis is an
inhomogeneous Poisson process with intensity beta1 * baseline inside some circle of radius
r, and beta0 * baseline outside the circle.

• If method="binomial" then the scan test based on binomial likelihood is performed (Kulldorf,
1997). The dataset X must be a bivariate point pattern, i.e. a multitype point pattern with two
types. The null hypothesis is that all permutations of the type labels are equally likely. The
alternative hypothesis is that some circle of radius r has a higher proportion of points of the
second type, than expected under the null hypothesis.

The result of scan.test is a hypothesis test (object of class "htest") which can be plotted to report
the results. The component p.value contains the p-value.

The result of scan.test can also be plotted (using the plot method for the class "scan.test").
The plot is a pixel image of the Likelihood Ratio Test Statistic (2 times the log likelihood ratio) as a
function of the location of the centre of the circle. This pixel image can be extracted from the object
using as.im.scan.test. The Likelihood Ratio Test Statistic is computed by scanLRTS.

Value

An object of class "htest" (hypothesis test) which also belongs to the class "scan.test". Printing
this object gives the result of the test. Plotting this object displays the Likelihood Ratio Test Statistic
as a function of the location of the centre of the circle.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

plot.scan.test, as.im.scan.test, relrisk, scanLRTS

766 scanLRTS

Examples

nsim <- if(interactive()) 19 else 2
rr <- if(interactive()) seq(0.5, 1, by=0.1) else c(0.5, 1)
scan.test(redwood, 0.1 * rr, method="poisson", nsim=nsim)
scan.test(chorley, rr, method="binomial", case="larynx", nsim=nsim)

scanLRTS Likelihood Ratio Test Statistic for Scan Test

Description

Calculate the Likelihood Ratio Test Statistic for the Scan Test, at each spatial location.

Usage

scanLRTS(X, r, ...,
method = c("poisson", "binomial"),
baseline = NULL, case = 2,
alternative = c("greater", "less", "two.sided"),
saveopt = FALSE,
Xmask = NULL)

Arguments

X A point pattern (object of class "ppp").

r Radius of circle to use. A single number or a numeric vector.

... Optional. Arguments passed to as.mask to determine the spatial resolution of
the computations.

method Either "poisson" or "binomial" specifying the type of likelihood.

baseline Baseline for the Poisson intensity, if method="poisson". A pixel image or a
function.

case Which type of point should be interpreted as a case, if method="binomial".
Integer or character string.

alternative Alternative hypothesis: "greater" if the alternative postulates that the mean
number of points inside the circle will be greater than expected under the null.

saveopt Logical value indicating to save the optimal value of r at each location.

Xmask Internal use only.

Details

This command computes, for all spatial locations u, the Likelihood Ratio Test Statistic Λ(u) for a
test of homogeneity at the location u, as described below. The result is a pixel image giving the
values of Λ(u) at each pixel.

The maximum value of Λ(u) over all locations u is the scan statistic, which is the basis of the scan
test performed by scan.test.

scanLRTS 767

• If method="poisson" then the test statistic is based on Poisson likelihood. The dataset X
is treated as an unmarked point pattern. By default (if baseline is not specified) the null
hypothesis is complete spatial randomness CSR (i.e. a uniform Poisson process). At the
spatial location u, the alternative hypothesis is a Poisson process with one intensity β1 inside
the circle of radius r centred at u, and another intensity β0 outside the circle. If baseline
is given, then it should be a pixel image or a function(x,y). The null hypothesis is an
inhomogeneous Poisson process with intensity proportional to baseline. The alternative
hypothesis is an inhomogeneous Poisson process with intensity beta1 * baseline inside the
circle, and beta0 * baseline outside the circle.

• If method="binomial" then the test statistic is based on binomial likelihood. The dataset X
must be a bivariate point pattern, i.e. a multitype point pattern with two types. The null hy-
pothesis is that all permutations of the type labels are equally likely. The alternative hypothesis
is that the circle of radius r centred at u has a higher proportion of points of the second type,
than expected under the null hypothesis.

If r is a vector of more than one value for the radius, then the calculations described above are
performed for every value of r. Then the maximum over r is taken for each spatial location u. The
resulting pixel value of scanLRTS at a location u is the profile maximum of the Likelihood Ratio
Test Statistic, that is, the maximum of the Likelihood Ratio Test Statistic for circles of all radii,
centred at the same location u.

If you have already performed a scan test using scan.test, the Likelihood Ratio Test Statistic can
be extracted from the test result using the function as.im.scan.test.

Value

A pixel image (object of class "im") whose pixel values are the values of the (profile) Likelihood
Ratio Test Statistic at each spatial location.

Warning: window size

Note that the result of scanLRTS is a pixel image on a larger window than the original window of X.
The expanded window contains the centre of any circle of radius r that has nonempty intersection
with the original window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods
26, 1481–1496.

See Also

scan.test, as.im.scan.test

768 sdr

Examples

plot(scanLRTS(redwood, 0.1, method="poisson"))
sc <- scanLRTS(chorley, 1, method="binomial", case="larynx")
plot(sc)
scanstatchorley <- max(sc)

sdr Sufficient Dimension Reduction

Description

Given a point pattern and a set of predictors, find a minimal set of new predictors, each constructed
as a linear combination of the original predictors.

Usage

sdr(X, covariates, ...)

S3 method for class 'ppp'
sdr(X, covariates,

method = c("DR", "NNIR", "SAVE", "SIR", "TSE"),
Dim1 = 1, Dim2 = 1, predict=FALSE, ...)

Arguments

X A point pattern (object of class "ppp").

covariates A list of pixel images (objects of class "im") to serve as predictor variables.

method Character string indicating which method to use. See Details.

Dim1 Dimension of the first order Central Intensity Subspace (applicable when method
is "DR", "NNIR", "SAVE" or "TSE").

Dim2 Dimension of the second order Central Intensity Subspace (applicable when
method="TSE").

predict Logical value indicating whether to compute the new predictors as well.

... Additional arguments (ignored by sdr.ppp).

Details

Given a point pattern X and predictor variables Z1, . . . , Zp, Sufficient Dimension Reduction meth-
ods (Guan and Wang, 2010) attempt to find a minimal set of new predictor variables, each con-
structed by taking a linear combination of the original predictors, which explain the dependence
of X on Z1, . . . , Zp. The methods do not assume any particular form of dependence of the point
pattern on the predictors. The predictors are assumed to be Gaussian random fields.

Available methods are:

method="DR" directional regression

sdr 769

method="NNIR" nearest neighbour inverse regression
method="SAVE" sliced average variance estimation
method="SIR" sliced inverse regression
method="TSE" two-step estimation

The result includes a matrix B whose columns are estimates of the basis vectors of the space of new
predictors. That is, the jth column of B expresses the jth new predictor as a linear combination of
the original predictors.

If predict=TRUE, the new predictors are also evaluated. They can also be evaluated using sdrPredict.

Value

A list with components B, M or B, M1, M2 where B is a matrix whose columns are estimates of the
basis vectors for the space, and M or M1,M2 are matrices containing estimates of the kernel.

If predict=TRUE, the result also includes a component Y which is a list of pixel images giving the
values of the new predictors.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

See Also

sdrPredict to compute the new predictors from the coefficient matrix.

dimhat to estimate the subspace dimension.

subspaceDistance

Examples

A <- sdr(bei, bei.extra, predict=TRUE)
A
Y1 <- A$Y[[1]]
plot(Y1)
points(bei, pch=".", cex=2)
investigate likely form of dependence
plot(rhohat(bei, Y1))

770 sdrPredict

sdrPredict Compute Predictors from Sufficient Dimension Reduction

Description

Given the result of a Sufficient Dimension Reduction method, compute the new predictors.

Usage

sdrPredict(covariates, B)

Arguments

covariates A list of pixel images (objects of class "im").

B Either a matrix of coefficients for the covariates, or the result of a call to sdr.

Details

This function assumes that sdr has already been used to find a minimal set of predictors based
on the covariates. The argument B should be either the result of sdr or the coefficient matrix
returned as one of the results of sdr. The columns of this matrix define linear combinations of the
covariates. This function evaluates those linear combinations, and returns a list of pixel images
containing the new predictors.

Value

A list of pixel images (objects of class "im") with one entry for each column of B.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

sdr

Examples

A <- sdr(bei, bei.extra)
Y <- sdrPredict(bei.extra, A)
Y

segregation.test 771

segregation.test Test of Spatial Segregation of Types

Description

Performs a Monte Carlo test of spatial segregation of the types in a multitype point pattern.

Usage

segregation.test(X, ...)

S3 method for class 'ppp'
segregation.test(X, ..., nsim = 19,

permute = TRUE, verbose = TRUE, Xname)

Arguments

X Multitype point pattern (object of class "ppp" with factor-valued marks).

... Additional arguments passed to relrisk.ppp to control the smoothing param-
eter or bandwidth selection.

nsim Number of simulations for the Monte Carlo test.

permute Argument passed to rlabel. If TRUE (the default), randomisation is performed
by randomly permuting the labels of X. If FALSE, randomisation is performing
by resampling the labels with replacement.

verbose Logical value indicating whether to print progress reports.

Xname Optional character string giving the name of the dataset X.

Details

The Monte Carlo test of spatial segregation of types, proposed by Kelsall and Diggle (1995) and
Diggle et al (2005), is applied to the point pattern X. The test statistic is

T =
∑
i

∑
m

(p̂(m | xi)− pm)
2

where p̂(m | xi) is the leave-one-out kernel smoothing estimate of the probability that the i-th data
point has type m, and pm is the average fraction of data points which are of type m. The statistic T
is evaluated for the data and for nsim randomised versions of X, generated by randomly permuting
or resampling the marks.

Note that, by default, automatic bandwidth selection will be performed separately for each ran-
domised pattern. This computation can be very time-consuming but is necessary for the test to be
valid in most conditions. A short-cut is to specify the value of the smoothing bandwidth sigma as
shown in the examples.

Value

An object of class "htest" representing the result of the test.

772 sharpen

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

Diggle, P.J., Zheng, P. and Durr, P. (2005) Non-parametric estimation of spatial segregation in a
multivariate point process: bovine tuberculosis in Cornwall, UK. Applied Statistics 54, 645–658.

See Also

relrisk

Examples

segregation.test(hyytiala, 5)

if(interactive()) segregation.test(hyytiala, hmin=0.05)

sharpen Data Sharpening of Point Pattern

Description

Performs Choi-Hall data sharpening of a spatial point pattern.

Usage

sharpen(X, ...)
S3 method for class 'ppp'
sharpen(X, sigma=NULL, ...,

varcov=NULL, edgecorrect=FALSE)

Arguments

X A marked point pattern (object of class "ppp").

sigma Standard deviation of isotropic Gaussian smoothing kernel.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

edgecorrect Logical value indicating whether to apply edge effect bias correction.

... Arguments passed to density.ppp to control the pixel resolution of the result.

sharpen 773

Details

Choi and Hall (2001) proposed a procedure for data sharpening of spatial point patterns. This pro-
cedure is appropriate for earthquake epicentres and other point patterns which are believed to exhibit
strong concentrations of points along a curve. Data sharpening causes such points to concentrate
more tightly along the curve.

If the original data points are X1, . . . , Xn then the sharpened points are

X̂i =

∑
j Xjk(Xj −Xi)∑
j k(Xj −Xi)

where k is a smoothing kernel in two dimensions. Thus, the new point X̂i is a vector average of the
nearby points X[j].

The function sharpen is generic. It currently has only one method, for two-dimensional point
patterns (objects of class "ppp").

If sigma is given, the smoothing kernel is the isotropic two-dimensional Gaussian density with
standard deviation sigma in each axis. If varcov is given, the smoothing kernel is the Gaussian
density with variance-covariance matrix varcov.

The data sharpening procedure tends to cause the point pattern to contract away from the boundary
of the window. That is, points X_iX[i] that lie ‘quite close to the edge of the window of the point
pattern tend to be displaced inward. If edgecorrect=TRUE then the algorithm is modified to correct
this vector bias.

Value

A point pattern (object of class "ppp") in the same window as the original pattern X, and with the
same marks as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Choi, E. and Hall, P. (2001) Nonparametric analysis of earthquake point-process data. In M. de
Gunst, C. Klaassen and A. van der Vaart (eds.) State of the art in probability and statistics:
Festschrift for Willem R. van Zwet, Institute of Mathematical Statistics, Beachwood, Ohio. Pages
324–344.

See Also

density.ppp, Smooth.ppp.

Examples

data(shapley)
X <- unmark(shapley)

774 simulate.dppm

Y <- sharpen(X, sigma=0.5)
Z <- sharpen(X, sigma=0.5, edgecorrect=TRUE)
opa <- par(mar=rep(0.2, 4))
plot(solist(X, Y, Z), main= " ",

main.panel=c("data", "sharpen", "sharpen, correct"),
pch=".", equal.scales=TRUE, mar.panel=0.2)

par(opa)

simulate.dppm Simulation of Determinantal Point Process Model

Description

Generates simulated realisations from a determinantal point process model.

Usage

S3 method for class 'dppm'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

S3 method for class 'detpointprocfamily'
simulate(object, nsim = 1, seed = NULL, ...,

W = NULL, trunc = 0.99, correction = "periodic", rbord = reach(object))

Arguments

object Determinantal point process model. An object of class "detpointprocfamily"
or "dppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Arguments passed on to rdpp.

W Object specifying the window of simulation (defaults to a unit box if nothing else
is sensible – see Details). Can be any single argument acceptable to as.boxx
(e.g. an "owin", "box3" or "boxx" object).

trunc Numeric value specifying how the model truncation is preformed. See Details.

correction Character string specifying the type of correction to use. The options are "periodic"
(default) and "border". See Details.

rbord Numeric value specifying the extent of the border correction if this correction is
used. See Details.

simulate.dppm 775

Details

These functions are methods for the generic function simulate for the classes "detpointprocfamily"
and "dppm" of determinantal point process models.

The return value is a list of nsim point patterns. It also carries an attribute "seed" that captures
the initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

The exact simulation of a determinantal point process model involves an infinite series, which typ-
ically has no analytical solution. In the implementation a truncation is performed. The truncation
trunc can be specified either directly as a positive integer or as a fraction between 0 and 1. In the
latter case the truncation is chosen such that the expected number of points in a simulation is trunc
times the theoretical expected number of points in the model. The default is 0.99.

The window of the returned point pattern(s) can be specified via the argument W. For a fitted model
(of class "dppm") it defaults to the observation window of the data used to fit the model. For
inhomogeneous models it defaults to the window of the intensity image. Otherwise it defaults to
a unit box. For non-rectangular windows simulation is done in the containing rectangle and then
restricted to the window. For inhomogeneous models a stationary model is first simulated using the
maximum intensity and then the result is obtained by thinning.

The default is to use periodic edge correction for simulation such that opposite edges are glued
together. If border correction is used then the simulation is done in an extended window. Edge
effects are theoretically completely removed by doubling the size of the window in each spatial
dimension, but for practical purposes much less extension may be sufficient. The numeric rbord
determines the extent of the extra space added to the window.

Value

A list of length nsim containing simulated point patterns. If the patterns are two-dimensional, then
they are objects of class "ppp", and the list has class "solist". Otherwise, the patterns are objects
of class "ppx" and the list has class "anylist".

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Lavancier, F. Møller, J. and Rubak, E. (2015) Determinantal point process models and statistical
inference Journal of the Royal Statistical Society, Series B 77, 853–977.

See Also

rdpp, simulate

776 simulate.kppm

Examples

if(interactive()) {
nsim <- 2
lam <- 100

} else {
nsim <- 1
lam <- 30

}
model <- dppGauss(lambda=lam, alpha=.05, d=2)
simulate(model, nsim)

simulate.kppm Simulate a Fitted Cluster Point Process Model

Description

Generates simulated realisations from a fitted cluster point process model.

Usage

S3 method for class 'kppm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL,
n.cond = NULL, w.cond = NULL,
verbose=TRUE, retry=10,
drop=FALSE)

Arguments

object Fitted cluster point process model. An object of class "kppm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Additional arguments passed to the relevant random generator. See Details.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

n.cond Optional. Integer specifying a fixed number of points. See the section on Con-
ditional Simulation.

w.cond Optional. Conditioning region. A window (object of class "owin") specify-
ing the region which must contain exactly n.cond points. See the section on
Conditional Simulation.

verbose Logical. Whether to print progress reports (when nsim > 1).

simulate.kppm 777

retry Number of times to repeat the simulation if it fails (e.g. because of insufficient
memory).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "kppm" of fitted cluster
point process models.

Simulations are performed by rThomas, rMatClust, rCauchy, rVarGamma or rLGCP depending on
the model.

Additional arguments ... are passed to the relevant function performing the simulation. For exam-
ple the argument saveLambda is recognised by all of the simulation functions.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp"). (For conditional
simulation, the length of the result may be shorter than nsim).

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Conditional Simulation

If n.cond is specified, it should be a single integer. Simulation will be conditional on the event
that the pattern contains exactly n.cond points (or contains exactly n.cond points inside the region
w.cond if it is given).

Conditional simulation uses the rejection algorithm described in Section 6.2 of Moller, Syversveen
and Waagepetersen (1998). There is a maximum number of proposals which will be attempted.
Consequently the return value may contain fewer than nsim point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

778 simulate.mppm

See Also

kppm, rThomas, rMatClust, rCauchy, rVarGamma, rLGCP, simulate.ppm, simulate

Examples

if(offline <- !interactive()) {
spatstat.options(npixel=32, ndummy.min=16)

}

fit <- kppm(redwood ~x, "Thomas")
simulate(fit, 2)

simulate(fit, n.cond=60)

if(offline) reset.spatstat.options()

simulate.mppm Simulate a Point Process Model Fitted to Several Point Patterns

Description

Generates simulated realisations from a point process model that was fitted to several point patterns.

Usage

S3 method for class 'mppm'
simulate(object, nsim=1, ..., verbose=TRUE)

Arguments

object Point process model fitted to several point patterns. An object of class "mppm".

nsim Number of simulated realisations (of each original pattern).

... Further arguments passed to simulate.ppm to control the simulation.

verbose Logical value indicating whether to print progress reports.

Details

This function is a method for the generic function simulate for the class "mppm" of fitted point
process models for replicated point pattern data.

The result is a hyperframe with n rows and nsim columns, where n is the number of original point
pattern datasets to which the model was fitted. Each column of the hyperframe contains a simulated
version of the original data.

For each of the original point pattern datasets, the fitted model for this dataset is extracted using
subfits, then nsim simulated realisations of this model are generated using simulate.ppm, and
these are stored in the corresponding row of the output.

simulate.ppm 779

Value

A hyperframe.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

mppm, simulate.ppm.

Examples

H <- hyperframe(Bugs=waterstriders)
fit <- mppm(Bugs ~ id, H)
y <- simulate(fit, nsim=2)
y
plot(y[1,,drop=TRUE], main="Simulations for Waterstriders pattern 1")
plot(y[,1,drop=TRUE], main="Simulation 1 for each Waterstriders pattern")

simulate.ppm Simulate a Fitted Gibbs Point Process Model

Description

Generates simulated realisations from a fitted Gibbs or Poisson point process model.

Usage

S3 method for class 'ppm'
simulate(object, nsim=1, ...,

singlerun = FALSE,
start = NULL,
control = default.rmhcontrol(object, w=w),
w = window,
window = NULL,
project=TRUE, new.coef=NULL,
verbose=FALSE, progress=(nsim > 1),
drop=FALSE)

Arguments

object Fitted point process model. An object of class "ppm".

nsim Number of simulated realisations.

singlerun Logical. Whether to generate the simulated realisations from a single long run
of the Metropolis-Hastings algorithm (singlerun=TRUE) or from separate, in-
dependent runs of the algorithm (singlerun=FALSE, the default).

780 simulate.ppm

start Data determining the initial state of the Metropolis-Hastings algorithm. See
rmhstart for description of these arguments. Defaults to list(n.start=npoints(data.ppm(object)))
meaning that the initial state of the algorithm has the same number of points as
the original dataset.

control Data controlling the running of the Metropolis-Hastings algorithm. See rmhcontrol
for description of these arguments.

w, window Optional. The window in which the model is defined. An object of class "owin".

... Further arguments passed to rmhcontrol, or to rmh.default, or to covariate
functions in the model.

project Logical flag indicating what to do if the fitted model is invalid (in the sense
that the values of the fitted coefficients do not specify a valid point process). If
project=TRUE the closest valid model will be simulated; if project=FALSE an
error will occur.

verbose Logical flag indicating whether to print progress reports from rmh.ppm during
the simulation of each point pattern.

progress Logical flag indicating whether to print progress reports for the sequence of
simulations.

new.coef New values for the canonical parameters of the model. A numeric vector of the
same length as coef(object).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

Details

This function is a method for the generic function simulate for the class "ppm" of fitted point
process models.

Simulations are performed by rmh.ppm.

If singlerun=FALSE (the default), the simulated patterns are the results of independent runs of
the Metropolis-Hastings algorithm. If singlerun=TRUE, a single long run of the algorithm is per-
formed, and the state of the simulation is saved every nsave iterations to yield the simulated pat-
terns.

In the case of a single run, the behaviour is controlled by the parameters nsave,nburn,nrep. These
are described in rmhcontrol. They may be passed in the ... arguments or included in control. It
is sufficient to specify two of the three parameters nsave,nburn,nrep.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp"). It also belongs
to the class "solist", so that it can be plotted, and the class "timed", so that the total computation
time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

simulate.slrm 781

See Also

ppm, simulate.kppm, simulate

Examples

fit <- ppm(japanesepines, ~1, Strauss(0.1))
simulate(fit, 2)
simulate(fit, 2, singlerun=TRUE, nsave=1e4, nburn=1e4)

simulate.slrm Simulate a Fitted Spatial Logistic Regression Model

Description

Generates simulated realisations from a fitted spatial logistic regresson model

Usage

S3 method for class 'slrm'
simulate(object, nsim = 1, seed=NULL, ...,

window=NULL, covariates=NULL, verbose=TRUE, drop=FALSE)

Arguments

object Fitted spatial logistic regression model. An object of class "slrm".

nsim Number of simulated realisations.

seed an object specifying whether and how to initialise the random number gener-
ator. Either NULL or an integer that will be used in a call to set.seed before
simulating the point patterns.

... Ignored.

window Optional. Window (object of class "owin") in which the model should be simu-
lated.

covariates Optional. A named list containing new values for the covariates in the model.

verbose Logical. Whether to print progress reports (when nsim > 1).

drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than
a list containing a point pattern.

782 slrm

Details

This function is a method for the generic function simulate for the class "slrm" of fitted spatial
logistic regression models.

Simulations are performed by rpoispp after the intensity has been computed by predict.slrm.

The return value is a list of point patterns. It also carries an attribute "seed" that captures the
initial state of the random number generator. This follows the convention used in simulate.lm
(see simulate). It can be used to force a sequence of simulations to be repeated exactly, as shown
in the examples for simulate.

Value

A list of length nsim containing simulated point patterns (objects of class "ppp").

The return value also carries an attribute "seed" that captures the initial state of the random number
generator. See Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

slrm, rpoispp, simulate.ppm, simulate.kppm, simulate

Examples

X <- copper$SouthPoints
fit <- slrm(X ~ 1)
simulate(fit, 2)
fitxy <- slrm(X ~ x+y)
simulate(fitxy, 2, window=square(2))

slrm Spatial Logistic Regression

Description

Fits a spatial logistic regression model to a spatial point pattern.

Usage

slrm(formula, ..., data = NULL, offset = TRUE, link = "logit",
dataAtPoints=NULL, splitby=NULL)

slrm 783

Arguments

formula The model formula. See Details.

... Optional arguments passed to as.mask determining the pixel resolution for the
discretisation of the point pattern.

data Optional. A list containing data required in the formula. The names of entries in
the list should correspond to variable names in the formula. The entries should
be point patterns, pixel images or windows.

offset Logical flag indicating whether the model formula should be augmented by an
offset equal to the logarithm of the pixel area.

link The link function for the regression model. A character string, specifying a link
function for binary regression.

dataAtPoints Optional. Exact values of the covariates at the data points. A data frame, with
column names corresponding to variables in the formula, with one row for each
point in the point pattern dataset.

splitby Optional. Character string identifying a window. The window will be used to
split pixels into sub-pixels.

Details

This function fits a Spatial Logistic Regression model (Tukey, 1972; Agterberg, 1974) to a spatial
point pattern dataset. The logistic function may be replaced by another link function.

The formula specifies the form of the model to be fitted, and the data to which it should be fitted.
The formula must be an R formula with a left and right hand side.

The left hand side of the formula is the name of the point pattern dataset, an object of class "ppp".

The right hand side of the formula is an expression, in the usual R formula syntax, representing
the functional form of the linear predictor for the model.

Each variable name that appears in the formula may be

• one of the reserved names x and y, referring to the Cartesian coordinates;

• the name of an entry in the list data, if this argument is given;

• the name of an object in the parent environment, that is, in the environment where the call to
slrm was issued.

Each object appearing on the right hand side of the formula may be

• a pixel image (object of class "im") containing the values of a covariate;

• a window (object of class "owin"), which will be interpreted as a logical covariate which is
TRUE inside the window and FALSE outside it;

• a function in the R language, with arguments x,y, which can be evaluated at any location to
obtain the values of a covariate.

See the Examples below.

The fitting algorithm discretises the point pattern onto a pixel grid. The value in each pixel is 1 if
there are any points of the point pattern in the pixel, and 0 if there are no points in the pixel. The
dimensions of the pixel grid will be determined as follows:

784 slrm

• The pixel grid will be determined by the extra arguments ... if they are specified (for example
the argument dimyx can be used to specify the number of pixels).

• Otherwise, if the right hand side of the formula includes the names of any pixel images
containing covariate values, these images will determine the pixel grid for the discretisation.
The covariate image with the finest grid (the smallest pixels) will be used.

• Otherwise, the default pixel grid size is given by spatstat.options("npixel").

The covariates are evaluated at the centre of each pixel. If dataAtPoints is given, then the covariate
values at the corresponding pixels are overwritten by the entries of dataAtPoints (and the spatial
coordinates are overwritten by the exact spatial coordinates of the data points).

If link="logit" (the default), the algorithm fits a Spatial Logistic Regression model. This model
states that the probability p that a given pixel contains a data point, is related to the covariates
through

log
p

1− p
= η

where η is the linear predictor of the model (a linear combination of the covariates, whose form is
specified by the formula).

If link="cloglog" then the algorithm fits a model stating that

log(− log(1− p)) = η

.

If offset=TRUE (the default), the model formula will be augmented by adding an offset term equal
to the logarithm of the pixel area. This ensures that the fitted parameters are approximately indepen-
dent of pixel size. If offset=FALSE, the offset is not included, and the traditional form of Spatial
Logistic Regression is fitted.

Value

An object of class "slrm" representing the fitted model.

There are many methods for this class, including methods for print, fitted, predict, anova,
coef, logLik, terms, update, formula and vcov. Automated stepwise model selection is possible
using step. Confidence intervals for the parameters can be computed using confint.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>.

References

Agterberg, F.P. (1974) Automatic contouring of geological maps to detect target areas for mineral
exploration. Journal of the International Association for Mathematical Geology 6, 373–395.

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

Tukey, J.W. (1972) Discussion of paper by F.P. Agterberg and S.C. Robinson. Bulletin of the In-
ternational Statistical Institute 44 (1) p. 596. Proceedings, 38th Congress, International Statistical
Institute.

Smooth 785

See Also

anova.slrm, coef.slrm, fitted.slrm, logLik.slrm, plot.slrm, predict.slrm, vcov.slrm

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32)

X <- copper$SouthPoints
slrm(X ~ 1)
slrm(X ~ x+y)

slrm(X ~ x+y, link="cloglog")
specify a grid of 2-km-square pixels
slrm(X ~ 1, eps=2)

Y <- copper$SouthLines
Z <- distmap(Y)
slrm(X ~ Z)
slrm(X ~ Z, dataAtPoints=list(Z=nncross(X,Y,what="dist")))

mur <- murchison
mur$dfault <- distfun(mur$faults)
slrm(gold ~ dfault, data=mur)
slrm(gold ~ dfault + greenstone, data=mur)
slrm(gold ~ dfault, data=mur, splitby="greenstone")

if(offline) spatstat.options(op)

Smooth Spatial smoothing of data

Description

Generic function to perform spatial smoothing of spatial data.

Usage

Smooth(X, ...)

Arguments

X Some kind of spatial data

... Arguments passed to methods.

786 Smooth.fv

Details

This generic function calls an appropriate method to perform spatial smoothing on the spatial dataset
X.

Methods for this function include

• Smooth.ppp for point patterns
• Smooth.msr for measures
• Smooth.fv for function value tables

Value

An object containing smoothed values of the input data, in an appropriate format. See the docu-
mentation for the methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth.ppp, Smooth.im, Smooth.msr, Smooth.fv.

Smooth.fv Apply Smoothing to Function Values

Description

Applies smoothing to the values in selected columns of a function value table.

Usage

S3 method for class 'fv'
Smooth(X, which = "*", ...,

method=c("smooth.spline", "loess"),
xinterval=NULL)

Arguments

X Values to be smoothed. A function value table (object of class "fv", see fv.object).
which Character vector identifying which columns of the table should be smoothed.

Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.

... Extra arguments passed to smooth.spline or loess to control the smoothing.
method Smoothing algorithm. A character string, partially matched to either "smooth.spline"

or "loess".
xinterval Optional. Numeric vector of length 2 specifying a range of x values. Smoothing

will be performed only on the part of the function corresponding to this range.

Smooth.msr 787

Details

The command Smooth.fv applies smoothing to the function values in a function value table (object
of class "fv").

Smooth.fv is a method for the generic function Smooth.

The smoothing is performed either by smooth.spline or by loess.

Smoothing is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding smooth interpolated function
values.

The optional argument which specifies which of the columns of function values in x will be smoothed.
The default (indicated by the wildcard which="*") is to smooth all function values, i.e.\ all columns
except the function argument. Alternatively which="." designates the subset of function values that
are displayed in the default plot. Alternatively which can be a character vector containing the names
of columns of x.

If the argument xinterval is given, then smoothing will be performed only in the specified range
of x values.

Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

Smooth, with.fv, fv.object, smooth.spline, smooth.spline

Examples

data(cells)
G <- Gest(cells)
plot(G)
plot(Smooth(G, df=9), add=TRUE)

Smooth.msr Smooth a Signed or Vector-Valued Measure

Description

Apply kernel smoothing to a signed measure or vector-valued measure.

788 Smooth.msr

Usage

S3 method for class 'msr'
Smooth(X, ..., drop=TRUE)

Arguments

X Object of class "msr" representing a signed measure or vector-valued measure.
... Arguments passed to density.ppp controlling the smoothing bandwidth and

the pixel resolution.
drop Logical. If TRUE (the default), the result of smoothing a scalar-valued measure

is a pixel image. If FALSE, the result of smoothing a scalar-valued measure is a
list containing one pixel image.

Details

This function applies kernel smoothing to a signed measure or vector-valued measure X. The Gaus-
sian kernel is used.

The object X would typically have been created by residuals.ppm or msr.

Value

A pixel image or a list of pixel images. For scalar-valued measures, a pixel image (object of class
"im") provided drop=TRUE. For vector-valued measures (or if drop=FALSE), a list of pixel images;
the list also belongs to the class "solist" so that it can be printed and plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

See Also

Smooth, msr, plot.msr

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")
rs <- residuals(fit, type="score")

plot(Smooth(rp))
plot(Smooth(rs))

Smooth.ppp 789

Smooth.ppp Spatial smoothing of observations at irregular points

Description

Performs spatial smoothing of numeric values observed at a set of irregular locations. Uses kernel
smoothing and least-squares cross-validated bandwidth selection.

Usage

S3 method for class 'ppp'
Smooth(X, sigma=NULL,

...,
weights = rep(1, npoints(X)),
at="pixels",
adjust=1, varcov=NULL,
edge=TRUE, diggle=FALSE,
kernel="gaussian", scalekernel=is.character(kernel),
geometric=FALSE)

markmean(X, ...)

markvar(X, sigma=NULL, ..., weights=NULL, varcov=NULL)

Arguments

X A marked point pattern (object of class "ppp").

sigma Smoothing bandwidth. A single positive number, a numeric vector of length 2,
or a function that selects the bandwidth automatically. See density.ppp.

... Further arguments passed to bw.smoothppp and density.ppp to control the
kernel smoothing and the pixel resolution of the result.

weights Optional weights attached to the observations. A numeric vector, a function(x,y),
a pixel image, or an expression. See density.ppp.

at String specifying whether to compute the smoothed values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

edge,diggle Arguments passed to density.ppp to determine the edge correction.

adjust Optional. Adjustment factor for the bandwidth sigma.

varcov Variance-covariance matrix. An alternative to sigma. See density.ppp.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian", "epanechnikov", "quartic" or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

790 Smooth.ppp

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

geometric Logical value indicating whether to perform geometric mean smoothing instead
of arithmetic mean smoothing. See Details.

Details

The function Smooth.ppp performs spatial smoothing of numeric values observed at a set of irreg-
ular locations. The functions markmean and markvar are wrappers for Smooth.ppp which compute
the spatially-varying mean and variance of the marks of a point pattern.

Smooth.ppp is a method for the generic function Smooth for the class "ppp" of point patterns. Thus
you can type simply Smooth(X).

Smoothing is performed by kernel weighting, using the Gaussian kernel by default. If the observed
values are v1, . . . , vn at locations x1, . . . , xn respectively, then the smoothed value at a location u
is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)vi∑
i k(u− xi)

where k is the kernel (a Gaussian kernel by default). This is known as the Nadaraya-Watson
smoother (Nadaraya, 1964, 1989; Watson, 1964). By default, the smoothing kernel bandwidth
is chosen by least squares cross-validation (see below).

The argument X must be a marked point pattern (object of class "ppp", see ppp.object). The points
of the pattern are taken to be the observation locations xi, and the marks of the pattern are taken to
be the numeric values vi observed at these locations.

The marks are allowed to be a data frame (in Smooth.ppp and markmean). Then the smoothing
procedure is applied to each column of marks.

The numerator and denominator are computed by density.ppp. The arguments ... control the
smoothing kernel parameters and determine whether edge correction is applied. The smoothing
kernel bandwidth can be specified by either of the arguments sigma or varcov which are passed to
density.ppp. If neither of these arguments is present, then by default the bandwidth is selected by
least squares cross-validation, using bw.smoothppp.

The optional argument weights allows numerical weights to be applied to the data. If a weight wi
is associated with location xi, then the smoothed function is (ignoring edge corrections)

g(u) =

∑
i k(u− xi)viwi∑
i k(u− xi)wi

If geometric=TRUE then geometric mean smoothing is performed instead of arithmetic mean smooth-
ing. The mark values must be non-negative numbers. The logarithm of the mark values is computed;
these logarithmic values are kernel-smoothed as described above; then the exponential function is
applied to the smoothed values.

An alternative to kernel smoothing is inverse-distance weighting, which is performed by idw.

Smooth.ppp 791

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image (object of class "im"). Pixel values
are values of the interpolated function.

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images (object of class "im").
There is one image for each column of marks. This list also belongs to the class "solist",
for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attributes "sigma" and "varcov" which report the smoothing bandwidth that
was used.

Very small bandwidth

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to
nearest-neighbour interpolation; the result will be computed by nnmark. This is unless at="points"
and leaveoneout=FALSE, when the original mark values are returned.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Applications 9,
141–142.

Nadaraya, E.A. (1989) Nonparametric estimation of probability densities and regression curves.
Kluwer, Dordrecht.

Watson, G.S. (1964) Smooth regression analysis. Sankhya A 26, 359–372.

See Also

Smooth,

density.ppp, bw.smoothppp, nnmark, ppp.object, im.object.

See idw for inverse-distance weighted smoothing.

To perform interpolation, see also the akima package.

792 Smooth.ssf

Examples

Longleaf data - tree locations, marked by tree diameter
Local smoothing of tree diameter (automatic bandwidth selection)
Z <- Smooth(longleaf)
Kernel bandwidth sigma=5
plot(Smooth(longleaf, 5))
mark variance
plot(markvar(longleaf, sigma=5))
data frame of marks: trees marked by diameter and height
plot(Smooth(finpines, sigma=2))
head(Smooth(finpines, sigma=2, at="points"))

Smooth.ssf Smooth a Spatially Sampled Function

Description

Applies kernel smoothing to a spatially sampled function.

Usage

S3 method for class 'ssf'
Smooth(X, ...)

Arguments

X Object of class "ssf".

... Arguments passed to Smooth.ppp to control the smoothing.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points.

The function values will be smoothed using a Gaussian kernel.

Value

A pixel image or a list of pixel images.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, Smooth.ppp

Smoothfun.ppp 793

Examples

f <- ssf(redwood, nndist(redwood))
Smooth(f, sigma=0.1)

Smoothfun.ppp Smooth Interpolation of Marks as a Spatial Function

Description

Perform spatial smoothing of numeric values observed at a set of irregular locations, and return the
result as a function of spatial location.

Usage

Smoothfun(X, ...)

S3 method for class 'ppp'
Smoothfun(X, sigma = NULL, ...,

weights = NULL, edge = TRUE, diggle = FALSE)

Arguments

X Marked point pattern (object of class "ppp").

sigma Smoothing bandwidth, or bandwidth selection function, passed to Smooth.ppp.

... Additional arguments passed to Smooth.ppp.

weights Optional vector of weights associated with the points of X.

edge,diggle Logical arguments controlling the edge correction. Arguments passed to Smooth.ppp.

Details

The commands Smoothfun and Smooth both perform kernel-smoothed spatial interpolation of nu-
meric values observed at irregular spatial locations. The difference is that Smooth returns a pixel im-
age, containing the interpolated values at a grid of locations, while Smoothfun returns a function(x,y)
which can be used to compute the interpolated value at any spatial location. For purposes such as
model-fitting it is more accurate to use Smoothfun to interpolate data.

Value

A function with arguments x,y. The function also belongs to the class "Smoothfun" which has
methods for print and as.im. It also belongs to the class "funxy" which has methods for plot,
contour and persp.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

794 Softcore

See Also

Smooth

Examples

f <- Smoothfun(longleaf)
f
f(120, 80)
plot(f)

Softcore The Soft Core Point Process Model

Description

Creates an instance of the Soft Core point process model which can then be fitted to point pattern
data.

Usage

Softcore(kappa, sigma0=NA)

Arguments

kappa The exponent κ of the Soft Core interaction

sigma0 Optional. Initial estimate of the parameter σ. A positive number.

Details

The (stationary) Soft Core point process with parameters β and σ and exponent κ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points contributes a factor

exp

{
−
(σ
d

)2/κ}
to the density, where d is the distance between the two points. See the Examples for a plot of this
interaction curve.

Thus the process has probability density

f(x1, . . . , xn) = αβn(x) exp

−∑
i<j

(
σ

||xi − xj ||

)2/κ


where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern, α
is the normalising constant, and the sum on the right hand side is over all unordered pairs of points
of the pattern.

This model describes an “ordered” or “inhibitive” process, with the strength of inhibition decreasing
smoothly with distance. The interaction is controlled by the parameters σ and κ.

Softcore 795

• The spatial scale of interaction is controlled by the parameter σ, which is a positive real
number interpreted as a distance, expressed in the same units of distance as the spatial data.
The parameter σ is the distance at which the pair potential reaches the threshold value 0.37.

• The shape of the interaction function is controlled by the exponent κ which is a dimensionless
number in the range (0, 1), with larger values corresponding to a flatter shape (or a more
gradual decay rate). The process is well-defined only for κ in (0, 1). The limit of the model
as κ→ 0 is the hard core process with hard core distance h = σ.

• The “strength” of the interaction is determined by both of the parameters σ and κ. The larger
the value of κ, the wider the range of distances over which the interaction has an effect. If σ
is very small, the interaction is very weak for all practical purposes (theoretically if σ = 0 the
model reduces to the Poisson point process).

The nonstationary Soft Core process is similar except that the contribution of each individual point
xi is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument
of class "interact" describing the interpoint interaction structure of the model to be fitted. The
appropriate description of the Soft Core process pairwise interaction is yielded by the function
Softcore(). See the examples below.

The main argument is the exponent kappa. When kappa is fixed, the model becomes an exponential
family with canonical parameters log β and

log γ =
2

κ
log σ

The canonical parameters are estimated by ppm(), not fixed in Softcore().

The optional argument sigma0 can be used to improve numerical stability. If sigma0 is given, it
should be a positive number, and it should be a rough estimate of the parameter σ.

Value

An object of class "interact" describing the interpoint interaction structure of the Soft Core pro-
cess with exponent κ.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

References

Ogata, Y, and Tanemura, M. (1981). Estimation of interaction potentials of spatial point patterns
through the maximum likelihood procedure. Annals of the Institute of Statistical Mathematics, B
33, 315–338.

Ogata, Y, and Tanemura, M. (1984). Likelihood analysis of spatial point patterns. Journal of the
Royal Statistical Society, series B 46, 496–518.

See Also

ppm, pairwise.family, ppm.object

796 spatcov

Examples

fit the stationary Soft Core process to `cells'
fit5 <- ppm(cells ~1, Softcore(kappa=0.5), correction="isotropic")

study shape of interaction and explore effect of parameters
fit2 <- update(fit5, Softcore(kappa=0.2))
fit8 <- update(fit5, Softcore(kappa=0.8))
plot(fitin(fit2), xlim=c(0, 0.4),

main="Pair potential (sigma = 0.1)",
xlab=expression(d), ylab=expression(h(d)), legend=FALSE)

plot(fitin(fit5), add=TRUE, col=4)
plot(fitin(fit8), add=TRUE, col=3)
legend("bottomright", col=c(1,4,3), lty=1,

legend=expression(kappa==0.2, kappa==0.5, kappa==0.8))

spatcov Estimate the Spatial Covariance Function of a Random Field

Description

Given a pixel image, calculate an estimate of the spatial covariance function. Given two pixel
images, calculate an estimate of their spatial cross-covariance function.

Usage

spatcov(X, Y=X, ..., correlation=FALSE, isotropic = TRUE,
clip = TRUE, pooling=TRUE)

Arguments

X A pixel image (object of class "im").

Y Optional. Another pixel image.

correlation Logical value specifying whether to standardise so that the spatial correlation
function is returned.

isotropic Logical value specifying whether to assume the covariance is isotropic, so that
the result is a function of the lag distance.

clip Logical value specifying whether to restrict the results to the range of spatial
lags where the estimate is reliable.

pooling Logical value specifying the estimation method when isotropic=TRUE.

... Ignored.

spatcov 797

Details

In normal usage, only the first argument X is given. Then the pixel image X is treated as a realisation
of a stationary random field, and its spatial covariance function is estimated.

Alternatively if Y is given, then X and Y are assumed to be jointly stationary random fields, and their
spatial cross-covariance function is estimated.

For any random field X, the spatial covariance is defined for any two spatial locations u and v by

C(u, v) = cov(X(u), X(v))

where X(u) and X(v) are the values of the random field at those locations. Herecov denotes
the statistical covariance, defined for any random variables A and B by cov(A,B) = E(AB) −
E(A)E(B) where E(A) denotes the expected value of A.

If the random field is assumed to be stationary (at least second-order stationary) then the spatial
covariance C(u, v) depends only on the lag vector v − u:

C(u, v) = C2(v − u)

C(u, v) = C2(v − u)

where C2 is a function of a single vector argument.

If the random field is stationary and isotropic, then the spatial covariance depends only on the lag
distance ‖v − u‖:

C2(v − u) = C1(‖v − u‖)
where C1 is a function of distance.

The function spatcov computes estimates of the covariance function C1 or C2 as follows:

• If isotropic=FALSE, an estimate of the covariance function C2 is computed, assuming the
random field is stationary, using the naive moment estimator, C2 = imcov(X-mean(X))/setcov(Window(X)).
The result is a pixel image.

• If isotropic=TRUE (the default) an estimate of the covariance function C1 is computed, as-
suming the random field is stationary and isotropic.

– When pooling=FALSE, the estimate of C1 is the rotational average of the naive estimate
of C2.

– When pooling=TRUE (the default), the estimate of C1 is the ratio of the rotational aver-
ages of the numerator and denominator which form the naive estimate of C2.

The result is a function object (class "fv").

If the argument Y is given, it should be a pixel image compatible with X. An estimate of the spatial
cross-covariance function between X and Y will be computed.

Value

If isotropic=TRUE (the default), the result is a function value table (object of class "fv") giving the
estimated values of the covariance function or spatial correlation function for a sequence of values
of the spatial lag distance r.

If isotropic=FALSE, the result is a pixel image (object of class "im") giving the estimated values
of the spatial covariance function or spatial correlation function for a grid of values of the spatial
lag vector.

798 spatialcdf

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

imcov, setcov

Examples

if(offline <- !interactive()) op <- spatstat.options(npixel=32)

D <- density(cells)
plot(spatcov(D))

if(offline) spatstat.options(op)

spatialcdf Spatial Cumulative Distribution Function

Description

Compute the spatial cumulative distribution function of a spatial covariate, optionally using spatially-
varying weights.

Usage

spatialcdf(Z, weights = NULL, normalise = FALSE, ..., W = NULL, Zname = NULL)

Arguments

Z Spatial covariate. A pixel image or a function(x,y,...)

weights Spatial weighting for different locations. A pixel image, a function(x,y,...),
a window, a constant value, or a fitted point process model (object of class "ppm"
or "kppm").

normalise Logical. Whether the weights should be normalised so that they sum to 1.

... Arguments passed to as.mask to determine the pixel resolution, or extra argu-
ments passed to Z if it is a function.

W Optional window (object of class "owin") defining the spatial domain.

Zname Optional character string for the name of the covariate Z used in plots.

spatialcdf 799

Details

If weights is missing or NULL, it defaults to 1. The values of the covariate Z are computed on a
grid of pixels. The weighted cumulative distribution function of Z values is computed, taking each
value with weight equal to the pixel area. The resulting function F is such that F (t) is the area of
the region of space where Z ≤ t.

If weights is a pixel image or a function, then the values of weights and of the covariate Z are
computed on a grid of pixels. The weights are multiplied by the pixel area. Then the weighted
empirical cumulative distribution function of Z values is computed using ewcdf. The resulting
function F is such that F (t) is the total weight (or weighted area) of the region of space where
Z ≤ t.

If weights is a fitted point process model, then it should be a Poisson process. The fitted intensity
of the model, and the value of the covariate Z, are evaluated at the quadrature points used to fit the
model. The weights are multiplied by the weights of the quadrature points. Then the weighted
empirical cumulative distribution of Z values is computed using ewcdf. The resulting function F is
such that F (t) is the expected number of points in the point process that will fall in the region of
space where Z ≤ t.

If normalise=TRUE, the function is normalised so that its maximum value equals 1, so that it gives
the cumulative fraction of weight or cumulative fraction of points.

The result can be printed, plotted, and used as a function.

Value

A cumulative distribution function object belonging to the classes "spatialcdf", "ewcdf", "ecdf"
(only if normalise=TRUE) and "stepfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ewcdf, cdf.test

Examples

with(bei.extra, {
plot(spatialcdf(grad))
fit <- ppm(bei ~ elev)
plot(spatialcdf(grad, predict(fit)))
plot(A <- spatialcdf(grad, fit))
A(0.1)

})
plot(spatialcdf("x", W=letterR))

800 split.msr

split.msr Divide a Measure into Parts

Description

Decomposes a measure into components, each component being a measure.

Usage

S3 method for class 'msr'
split(x, f, drop = FALSE, ...)

Arguments

x Measure (object of class "msr") to be decomposed.

f Factor or tessellation determining the decomposition. Argument passed to split.ppp.
See Details.

drop Logical value indicating whether empty components should be retained in the
list (drop=FALSE, the default) or deleted (drop=TRUE).

... Ignored.

Details

An object of class "msr" represents a signed (i.e. real-valued) or vector-valued measure in the
spatstat package. See msr for explanation.

This function is a method for the generic split. It divides the measure x into components, each of
which is a measure.

A measure x is represented in spatstat by a finite set of sample points with values attached to them.
The function split.msr divides this pattern of sample points into several sub-patterns of points
using split.ppp. For each sub-pattern, the values attached to these points are extracted from x,
and these values and sample points determine a measure, which is a component or piece of the
original x.

The argument f can be missing, if the sample points of x are multitype points. In this case, x repre-
sents a measure associated with marked spatial locations, and the command split(x) separates x
into a list of component measures, one for each possible mark.

Otherwise the argument f is passed to split.ppp. It should be either a factor (of length equal to
the number of sample points of x) or a tessellation (object of class "tess" representing a division
of space into tiles) as documented under split.ppp.

Value

A list, each of whose entries is a measure (object of class "msr").

ssf 801

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

msr, [.msr, with.msr

Examples

split by tessellation
a <- residuals(ppm(cells ~ x))
aa <- split(a, dirichlet(runifpoint(4)))
aa
sapply(aa, integral)

split by type of point
b <- residuals(ppm(amacrine ~ marks + x))
bb <- split(b)
bb

ssf Spatially Sampled Function

Description

Create an object that represents a spatial function which has been evaluated or sampled at an irreg-
ular set of points.

Usage

ssf(loc, val)

Arguments

loc The spatial locations at which the function has been evaluated. A point pattern
(object of class "ppp").

val The function values at these locations. A numeric vector with one entry for each
point of loc, or a data frame with one row for each point of loc.

Details

An object of class "ssf" represents a real-valued or vector-valued function that has been evaluated
or sampled at an irregular set of points. An example would be a spatial covariate that has only been
measured at certain locations.

An object of this class also inherits the class "ppp", and is essentially the same as a marked point
pattern, except for the class membership which enables it to be handled in a different way.

There are methods for plot, print etc; see plot.ssf and methods.ssf.

Use unmark to extract only the point locations, and marks.ssf to extract only the function values.

802 stieltjes

Value

Object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

plot.ssf, methods.ssf, Smooth.ssf, with.ssf, [.ssf.

Examples

ssf(cells, nndist(cells, k=1:3))

stieltjes Compute Integral of Function Against Cumulative Distribution

Description

Computes the Stieltjes integral of a function f with respect to a function M .

Usage

stieltjes(f, M, ...)

Arguments

f The integrand. A function in the R language.

M The cumulative function against which f will be integrated. An object of class
"fv" or "stepfun".

... Additional arguments passed to f.

Details

This command computes the Stieltjes integral

I =

∫
f(x)dM(x)

of a real-valued function f(x) with respect to a nondecreasing function M(x).

One common use of the Stieltjes integral is to find the mean value of a random variable from its
cumulative distribution function F (x). The mean value is the Stieltjes integral of f(x) = x with
respect to F (x).

The argument f should be a function in the R language. It should accept a numeric vector argu-
ment x and should return a numeric vector of the same length.

stienen 803

The argument M should be either a step function (object of class "stepfun") or a function value
table (object of class "fv", see fv.object). Objects of class "stepfun" are returned by ecdf,
ewcdf, spatialcdf and other utilities. Objects of class "fv" are returned by the commands Kest,
Gest, etc.

Value

A list containing the value of the Stieltjes integral computed using each of the versions of the
function M.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

fv.object, Gest

Examples

estimate cdf of nearest neighbour distance in redwood data
G <- Gest(redwood)
compute estimate of mean nearest neighbour distance
stieltjes(function(x){x}, G)
estimated probability of a distance in the interval [0.1,0.2]
stieltjes(function(x,a,b){ (x >= a) & (x <= b)}, G, a=0.1, b=0.2)

stepfun example
H <- spatialcdf(bei.extra$elev, normalise=TRUE)
stieltjes(function(x){x}, H)

stienen Stienen Diagram

Description

Draw the Stienen diagram of a point pattern, or compute the region covered by the Stienen diagram.

Usage

stienen(X, ..., bg = "grey", border = list(bg = NULL))
stienenSet(X, edge=TRUE)

804 stienen

Arguments

X Point pattern (object of class "ppp").

... Arguments passed to plot.ppp to control the plot.

bg Fill colour for circles.

border Either a list of arguments passed to plot.ppp to control the display of circles at
the border of the diagram, or the value FALSE indicating that the border circles
should not be plotted.

edge Logical value indicating whether to include the circles at the border of the dia-
gram.

Details

The Stienen diagram of a point pattern (Stienen, 1982) is formed by drawing a circle around each
point of the pattern, with diameter equal to the nearest-neighbour distance for that point. These
circles do not overlap. If two points are nearest neighbours of each other, then the corresponding
circles touch.

stienenSet(X) computes the union of these circles and returns it as a window (object of class
"owin").

stienen(X) generates a plot of the Stienen diagram of the point pattern X. By default, circles are
shaded in grey if they lie inside the window of X, and are not shaded otherwise.

Value

The plotting function stienen returns NULL.

The return value of stienenSet is a window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

References

Stienen, H. (1982) Die Vergroeberung von Karbiden in reinen Eisen-Kohlenstoff Staehlen. Disser-
tation, RWTH Aachen.

See Also

nndist, plot.ppp

Examples

Y <- stienenSet(cells)
stienen(redwood)
stienen(redwood, border=list(bg=NULL, lwd=2, cols="red"))

Strauss 805

Strauss The Strauss Point Process Model

Description

Creates an instance of the Strauss point process model which can then be fitted to point pattern data.

Usage

Strauss(r)

Arguments

r The interaction radius of the Strauss process

Details

The (stationary) Strauss process with interaction radius r and parameters β and γ is the pairwise
interaction point process in which each point contributes a factor β to the probability density of the
point pattern, and each pair of points closer than r units apart contributes a factor γ to the density.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Strauss process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Strauss process pairwise interaction is yielded by the function Strauss().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Strauss().

Value

An object of class "interact" describing the interpoint interaction structure of the Strauss process
with interaction radius r.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

806 StraussHard

References

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

Examples

Strauss(r=0.1)
prints a sensible description of itself

ppm(cells ~1, Strauss(r=0.07))
fit the stationary Strauss process to `cells'

ppm(cells ~polynom(x,y,3), Strauss(r=0.07))
fit a nonstationary Strauss process with log-cubic polynomial trend

StraussHard The Strauss / Hard Core Point Process Model

Description

Creates an instance of the “Strauss/ hard core” point process model which can then be fitted to point
pattern data.

Usage

StraussHard(r, hc=NA)

Arguments

r The interaction radius of the Strauss interaction

hc The hard core distance. Optional.

Details

A Strauss/hard core process with interaction radius r, hard core distance h < r, and parameters β
and γ, is a pairwise interaction point process in which

• distinct points are not allowed to come closer than a distance h apart

• each pair of points closer than r units apart contributes a factor γ to the probability density.

StraussHard 807

This is a hybrid of the Strauss process and the hard core process.

The probability density is zero if any pair of points is closer than h units apart, and otherwise equals

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than r units apart, and α is
the normalising constant.

The interaction parameter γ may take any positive value (unlike the case for the Strauss process).
If γ < 1, the model describes an “ordered” or “inhibitive” pattern. If γ > 1, the model is “ordered”
or “inhibitive” up to the distance h, but has an “attraction” between points lying at distances in the
range between h and r.

If γ = 1, the process reduces to a classical hard core process with hard core distance h. If γ = 0,
the process reduces to a classical hard core process with hard core distance r.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The ap-
propriate description of the Strauss/hard core process pairwise interaction is yielded by the function
StraussHard(). See the examples below.

The canonical parameter log(γ) is estimated by ppm(), not fixed in StraussHard().

If the hard core distance argument hc is missing or NA, it will be estimated from the data when
ppm is called. The estimated value of hc is the minimum nearest neighbour distance multiplied by
n/(n+ 1), where n is the number of data points.

Value

An object of class "interact" describing the interpoint interaction structure of the “Strauss/hard
core” process with Strauss interaction radius r and hard core distance hc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

ppm, pairwise.family, ppm.object

808 studpermu.test

Examples

StraussHard(r=1,hc=0.02)
prints a sensible description of itself

data(cells)

ppm(cells, ~1, StraussHard(r=0.1, hc=0.05))
fit the stationary Strauss/hard core process to `cells'

ppm(cells, ~ polynom(x,y,3), StraussHard(r=0.1, hc=0.05))
fit a nonstationary Strauss/hard core process
with log-cubic polynomial trend

studpermu.test Studentised Permutation Test

Description

Perform a studentised permutation test for a difference between groups of point patterns.

Usage

studpermu.test(X, formula, summaryfunction = Kest,
..., rinterval = NULL, nperm = 999,
use.Tbar = FALSE, minpoints = 20, rsteps = 128,
r = NULL, arguments.in.data = FALSE)

Arguments

X Data. Either a hyperframe or a list of lists of point patterns.

formula Formula describing the grouping, when X is a hyperframe. The left side of the
formula identifies which column of X contains the point patterns. The right side
identifies the grouping factor. If the formula is missing, the grouping variable is
taken to be the first column of X that contains a factor, and the point patterns are
taken from the first column that contains point patterns.

summaryfunction

Summary function applicable to point patterns.

... Additional arguments passed to summaryfunction.

rinterval Interval of distance values r over which the summary function should be eval-
uated and over which the test statistic will be integrated. If NULL, the default
range of the summary statistic is used (taking the intersection of these ranges
over all patterns).

nperm Number of random permutations for the test.

use.Tbar Logical value indicating choice of test statistic. If TRUE, use the alternative test
statistic, which is appropriate for summary functions with roughly constant vari-
ance, such as K(r)/r or L(r).

studpermu.test 809

minpoints Minimum permissible number of points in a point pattern for inclusion in the
test calculation.

rsteps Number of discretisation steps in the rinterval.

r Optional vector of distance values as the argument for summaryfunction. Should
not usually be given. There is a sensible default.

arguments.in.data

Logical. If TRUE, individual extra arguments to summaryfunction will be taken
from X (which must be a hyperframe). This assumes that the first argument of
summaryfunction is the point pattern dataset.

Details

This function performs the studentized permutation test of Hahn (2012) for a difference between
groups of point patterns.

The first argument X should be either

a list of lists of point patterns. Each element of X will be interpreted as a group of point patterns,
assumed to be replicates of the same point process.

a hyperframe: One column of the hyperframe should contain point patterns, and another column
should contain a factor indicating the grouping. The argument formula should be a formula
in the R language specifying the grouping: it should be of the form P ~ G where P is the name
of the column of point patterns, and G is the name of the factor.

A group needs to contain at least two point patterns with at least minpoints points in each pattern.

The function returns an object of class "htest" and "studpermutest" that can be printed and
plotted. The printout shows the test result and p-value. The plot shows the summary functions for
the groups (and the group means if requested).

Value

Object of class "studpermutest".

Author(s)

Ute Hahn.

Modified for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Hahn, U. (2012) A studentized permutation test for the comparison of spatial point patterns. Journal
of the American Statistical Association 107 (498), 754–764.

See Also

plot.studpermutest

810 subfits

Examples

np <- if(interactive()) 99 else 19
testpyramidal <- studpermu.test(pyramidal, Neurons ~ group, nperm=np)
testpyramidal

subfits Extract List of Individual Point Process Models

Description

Takes a Gibbs point process model that has been fitted to several point patterns simultaneously, and
produces a list of fitted point process models for the individual point patterns.

Usage

subfits(object, what="models", verbose=FALSE, new.coef=NULL)
subfits.old(object, what="models", verbose=FALSE, new.coef=NULL)
subfits.new(object, what="models", verbose=FALSE)

Arguments

object An object of class "mppm" representing a point process model fitted to several
point patterns.

what What should be returned. Either "models" to return the fitted models, or "interactions"
to return the fitted interactions only.

verbose Logical flag indicating whether to print progress reports.

new.coef Advanced use only. Numeric vector or matrix of coefficients to replaced the
fitted coefficients coef(object).

Details

object is assumed to have been generated by mppm. It represents a point process model that has
been fitted to a list of several point patterns, with covariate data.

For each of the individual point pattern datasets, this function derives the corresponding fitted model
for that dataset only (i.e. a point process model for the ith point pattern, that is consistent with
object).

If what="models", the result is a list of point process models (a list of objects of class "ppm"), one
model for each point pattern dataset in the original fit. If what="interactions", the result is a list
of fitted interpoint interactions (a list of objects of class "fii").

Two different algorithms are provided, as subfits.old and subfits.new. Currently subfits is
the same as the old algorithm subfits.old because the newer algorithm is too memory-hungry.

Value

A list of point process models (a list of objects of class "ppm") or a list of fitted interpoint interac-
tions (a list of objects of class "fii").

subspaceDistance 811

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented in spatstat by Adrian
Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz> and
Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

mppm, ppm

Examples

H <- hyperframe(Wat=waterstriders)
fit <- mppm(Wat~x, data=H)
subfits(fit)

H$Wat[[3]] <- rthin(H$Wat[[3]], 0.1)
fit2 <- mppm(Wat~x, data=H, random=~1|id)
subfits(fit2)

subspaceDistance Distance Between Linear Spaces

Description

Evaluate the distance between two linear subspaces using the measure proposed by Li, Zha and
Chiaromonte (2005).

Usage

subspaceDistance(B0, B1)

Arguments

B0 Matrix whose columns are a basis for the first subspace.

B1 Matrix whose columns are a basis for the second subspace.

Details

This algorithm calculates the maximum absolute value of the eigenvalues of P1−P0 where P0, P1
are the projection matrices onto the subspaces generated by B0,B1. This measure of distance was
proposed by Li, Zha and Chiaromonte (2005). See also Xia (2007).

812 suffstat

Value

A single numeric value.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

Li, B., Zha, H. and Chiaromonte, F. (2005) Contour regression: a general approach to dimension
reduction. Annals of Statistics 33, 1580–1616.

Xia, Y. (2007) A constructive approach to the estimation of dimension reduction directions. Annals
of Statistics 35, 2654–2690.

suffstat Sufficient Statistic of Point Process Model

Description

The canonical sufficient statistic of a point process model is evaluated for a given point pattern.

Usage

suffstat(model, X=data.ppm(model))

Arguments

model A fitted point process model (object of class "ppm").

X A point pattern (object of class "ppp").

Details

The canonical sufficient statistic of model is evaluated for the point pattern X. This computation is
useful for various Monte Carlo methods.

Here model should be a point process model (object of class "ppm", see ppm.object), typically
obtained from the model-fitting function ppm. The argument X should be a point pattern (object of
class "ppp").

Every point process model fitted by ppm has a probability density of the form

f(x) = Z(θ) exp(θTS(x))

where x denotes a typical realisation (i.e. a point pattern), θ is the vector of model coefficients,
Z(θ) is a normalising constant, and S(x) is a function of the realisation x, called the “canonical
sufficient statistic” of the model.

suffstat 813

For example, the stationary Poisson process has canonical sufficient statistic S(x) = n(x), the
number of points in x. The stationary Strauss process with interaction range r (and fitted with no
edge correction) has canonical sufficient statistic S(x) = (n(x), s(x)) where s(x) is the number of
pairs of points in x which are closer than a distance r to each other.

suffstat(model, X) returns the value of S(x), where S is the canonical sufficient statistic associ-
ated with model, evaluated when x is the given point pattern X. The result is a numeric vector, with
entries which correspond to the entries of the coefficient vector coef(model).

The sufficient statistic S does not depend on the fitted coefficients of the model. However it does
depend on the irregular parameters which are fixed in the original call to ppm, for example, the
interaction range r of the Strauss process.

The sufficient statistic also depends on the edge correction that was used to fit the model. For
example in a Strauss process,

• If the model is fitted with correction="none", the sufficient statistic is S(x) = (n(x), s(x))
where n(x) is the number of points and s(x) is the number of pairs of points which are closer
than r units apart.

• If the model is fitted with correction="periodic", the sufficient statistic is the same as
above, except that distances are measured in the periodic sense.

• If the model is fitted with correction="translate", then n(x) is unchanged but s(x) is
replaced by a weighted sum (the sum of the translation correction weights for all pairs of
points which are closer than r units apart).

• If the model is fitted with correction="border" (the default), then points lying less than r
units from the boundary of the observation window are treated as fixed. Thus n(x) is replaced
by the number nr(x) of points lying at least r units from the boundary of the observation win-
dow, and s(x) is replaced by the number sr(x) of pairs of points, which are closer than r units
apart, and at least one of which lies more than r units from the boundary of the observation
window.

Non-finite values of the sufficient statistic (NA or -Inf) may be returned if the point pattern X is not
a possible realisation of the model (i.e. if X has zero probability of occurring under model for all
values of the canonical coefficients θ).

Value

A numeric vector of sufficient statistics. The entries correspond to the model coefficients coef(model).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppm

814 summary.dppm

Examples

fitS <- ppm(swedishpines~1, Strauss(7))
suffstat(fitS)
X <- rpoispp(intensity(swedishpines), win=Window(swedishpines))
suffstat(fitS, X)

summary.dppm Summarizing a Fitted Determinantal Point Process Model

Description

summary method for class "dppm".

Usage

S3 method for class 'dppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.dppm'
print(x, ...)

Arguments

object A fitted determinantal point process model (object of class "dppm").

quick Logical value controlling the scope of the summary.

... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-
ment of the trend component of the model.

x Object of class "summary.dppm" as returned by summary.dppm.

Details

This is a method for the generic summary for the class "dppm". An object of class "dppm" describes
a fitted determinantal point process model. See dppm.

summary.dppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.dppm prints this information in a comprehensible format.

In normal usage, print.summary.dppm is invoked implicitly when the user calls summary.dppm
without assigning its value to anything. See the examples.

Value

summary.dppm returns an object of class "summary.dppm", while print.summary.dppm returns
NULL.

The result of summary.dppm includes at least the following components:

Xname character string name of the original point pattern data

summary.kppm 815

stationary logical value indicating whether the model is stationary

trend Object of class summary.ppm summarising the trend

repul Repulsiveness index

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

jpines <- residualspaper$Fig1

fit <- dppm(jpines ~ 1, dppGauss)
summary(fit)

summary.kppm Summarizing a Fitted Cox or Cluster Point Process Model

Description

summary method for class "kppm".

Usage

S3 method for class 'kppm'
summary(object, ..., quick=FALSE)

S3 method for class 'summary.kppm'
print(x, ...)

Arguments

object A fitted Cox or cluster point process model (object of class "kppm").

quick Logical value controlling the scope of the summary.

... Arguments passed to summary.ppm or print.summary.ppm controlling the treat-
ment of the trend component of the model.

x Object of class "summary.kppm" as returned by summary.kppm.

Details

This is a method for the generic summary for the class "kppm". An object of class "kppm" describes
a fitted Cox or cluster point process model. See kppm.

summary.kppm extracts information about the type of model that has been fitted, the data to which
the model was fitted, and the values of the fitted coefficients.

print.summary.kppm prints this information in a comprehensible format.

816 summary.ppm

In normal usage, print.summary.kppm is invoked implicitly when the user calls summary.kppm
without assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

Value

summary.kppm returns an object of class "summary.kppm", while print.summary.kppm returns
NULL.

The result of summary.kppm includes at least the following components:

Xname character string name of the original point pattern data
stationary logical value indicating whether the model is stationary
clusters the clusters argument to kppm

modelname character string describing the model
isPCP TRUE if the model is a Poisson cluster process, FALSE if it is a log-Gaussian Cox

process
lambda Estimated intensity: numeric value, or pixel image
mu Mean cluster size: numeric value, pixel image, or NULL
clustpar list of fitted parameters for the cluster model
clustargs list of fixed parameters for the cluster model, if any
callstring character string representing the original call to kppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

Examples

fit <- kppm(redwood ~ 1, "Thomas")
summary(fit)
coef(summary(fit))

summary.ppm Summarizing a Fitted Point Process Model

Description

summary method for class "ppm".

Usage

S3 method for class 'ppm'
summary(object, ..., quick=FALSE, fine=FALSE)
S3 method for class 'summary.ppm'

print(x, ...)

summary.ppm 817

Arguments

object A fitted point process model.

... Ignored.

quick Logical flag controlling the scope of the summary.

fine Logical value passed to vcov.ppm determining whether to compute the quick,
coarse estimate of variance (fine=FALSE, the default) or the slower, finer esti-
mate (fine=TRUE).

x Object of class "summary.ppm" as returned by summary.ppm.

Details

This is a method for the generic summary for the class "ppm". An object of class "ppm" describes a
fitted point process model. See ppm.object) for details of this class.

summary.ppm extracts information about the type of model that has been fitted, the data to which the
model was fitted, and the values of the fitted coefficients. (If quick=TRUE then only the information
about the type of model is extracted.)

print.summary.ppm prints this information in a comprehensible format.

In normal usage, print.summary.ppm is invoked implicitly when the user calls summary.ppm with-
out assigning its value to anything. See the examples.

You can also type coef(summary(object)) to extract a table of the fitted coefficients of the point
process model object together with standard errors and confidence limits.

Value

summary.ppm returns an object of class "summary.ppm", while print.summary.ppm returns NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

invent some data
X <- rpoispp(42)
fit a model to it
fit <- ppm(X ~ x, Strauss(r=0.1))
summarize the fitted model
summary(fit)
`quick' option
summary(fit, quick=TRUE)
coefficients with standard errors and CI
coef(summary(fit))
coef(summary(fit, fine=TRUE))

save the full summary
s <- summary(fit)

818 thomas.estK

print it
print(s)
s
extract stuff
names(s)
coef(s)
s$args$correction
s$name
s$trend$value

multitype pattern
data(demopat)
fit <- ppm(demopat, ~marks, Poisson())
summary(fit)

model with external covariates
fitX <- ppm(X, ~Z, covariates=list(Z=function(x,y){x+y}))
summary(fitX)

thomas.estK Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the K function.

Usage

thomas.estK(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

thomas.estK 819

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the K function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical K function of the Thomas process and the
observed K function. For a more detailed explanation of the Method of Minimum Contrast, see
mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical K-function of the Thomas process is

K(r) = πr2 +
1

κ
(1− exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

820 thomas.estpcf

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Rasmus Waagepetersen <rw@math.auc.dk> Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, lgcp.estK, matclust.estK, mincontrast, Kest, rThomas to simulate the fitted model.

Examples

data(redwood)
u <- thomas.estK(redwood, c(kappa=10, scale=0.1))
u
plot(u)

thomas.estpcf Fit the Thomas Point Process by Minimum Contrast

Description

Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using
the pair correlation function.

Usage

thomas.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())

thomas.estpcf 821

Arguments

X Data to which the Thomas model will be fitted. Either a point pattern or a
summary statistic. See Details.

startpar Vector of starting values for the parameters of the Thomas process.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Thomas point process model to a point pattern dataset by the Method of
Minimum Contrast, using the pair correlation function pcf.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Thomas point process to X, by finding the parameters of the Thomas model
which give the closest match between the theoretical pair correlation function of the Thomas pro-
cess and the observed pair correlation function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Thomas point process is described in Møller and Waagepetersen (2003, pp. 61–62). It is
a cluster process formed by taking a pattern of parent points, generated according to a Poisson
process with intensity κ, and around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson random variable with mean µ,
and the locations of the offspring points of one parent are independent and isotropically Normally
distributed around the parent point with standard deviation σ which is equal to the parameter scale.
The named vector of stating values can use either sigma2 (σ2) or scale as the name of the second
component, but the latter is recommended for consistency with other cluster models.

The theoretical pair correlation function of the Thomas process is

g(r) = 1 +
1

4πκσ2
exp(− r2

4σ2
)).

The theoretical intensity of the Thomas process is λ = κµ.

In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the pa-
rameters κ and σ2. Then the remaining parameter µ is inferred from the estimated intensity λ.

822 thomas.estpcf

If the argument lambda is provided, then this is used as the value of λ. Otherwise, if X is a point
pattern, then λ will be estimated from X. If X is a summary statistic and lambda is missing, then the
intensity λ cannot be estimated, and the parameter µ will be returned as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The Thomas process can be simulated, using rThomas.

Homogeneous or inhomogeneous Thomas process models can also be fitted using the function kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.
fit Function value table (object of class "fv") containing the observed values of the

summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC, Boca Raton.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

thomas.estK mincontrast, pcf, rThomas to simulate the fitted model.

Examples

data(redwood)
u <- thomas.estpcf(redwood, c(kappa=10, scale=0.1))
u
plot(u, legendpos="topright")
u2 <- thomas.estpcf(redwood, c(kappa=10, scale=0.1),

pcfargs=list(stoyan=0.12))

thresholdCI 823

thresholdCI Confidence Interval for Threshold of Numerical Predictor

Description

Given a point pattern and a spatial covariate that has some predictive value for the point pattern,
compute a confidence interval for the optimal value of the threshold that should be used to convert
the covariate to a binary predictor.

Usage

thresholdCI(X, Z, confidence = 0.95, nsim = 1000, parametric = FALSE)

Arguments

X Point pattern (object of class "ppp").

Z Spatial covariate with numerical values. Either a pixel image (object of class
"im"), a distance function (object of class "distfun") or a function(x,y) in
the R language.

confidence Confidence level. A number between 0 and 1.

nsim Number of bootstrap simulations to perform.

parametric Logical value specifying whether to use the parametric bootstrap.

Details

The spatial covariate Z is assumed to have some utility as a predictor of the point pattern X.

This code computes a bootstrap confidence interval for the best threshold value z for converting the
numerical predictor to a binary predictor, for use in techniques such as Weights of Evidence.

Value

A matrix containing upper and lower limits for the threshold z and the corresponding upper and
lower limits for the fraction of area of the study region.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Brown, W., Milne, R.K., Nair, G., Rakshit, S., Lawrence, T., Phatak, A. and Fu, S.C.
(2021) Optimal thresholding of predictors in mineral prospectivity analysis. Natural Resources
Research 30 923–969.

See Also

thresholdSelect

824 thresholdSelect

Examples

gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
thresholdCI(gold, distfault, nsim=100)

thresholdSelect Select Threshold to Convert Numerical Predictor to Binary Predictor

Description

Given a point pattern and a spatial covariate that has some predictive value for the point pattern,
determine the optimal value of the threshold for converting the covariate to a binary predictor.

Usage

thresholdSelect(X, Z, method = c("Y", "LL", "AR", "t", "C"), Zname)

Arguments

X Point pattern (object of class "ppp").

Z Spatial covariate with numerical values. Either a pixel image (object of class
"im"), a distance function (object of class "distfun") or a function(x,y) in
the R language.

method Character string (partially matched) specifying the method to be used to select
the optimal threshold value. See Details.

Zname Optional character string giving a short name for the covariate.

Details

The spatial covariate Z is assumed to have some utility as a predictor of the point pattern X.

This code chooses the best threshold value v for converting the numerical predictor Z to a binary
predictor, for use in techniques such as Weights of Evidence.

The best threshold is selected by maximising the criterion specified by the argument method. Op-
tions are:

• method="Y" (the default): the Youden criterion

• method="LL": log-likelihood

• method="AR": the Akman-Raftery criterion

• method="t": the Studentised Weights-of-Evidence contrast

• method="C": the Weights-of-Evidence contrast

These criteria are explained in Baddeley et al (2021).

transect.im 825

Value

A numerical value giving the selected threshold. The result also belongs to the class "bw.optim"
which can be plotted (the plot shows the criterion used to select the threshold).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Brown, W., Milne, R.K., Nair, G., Rakshit, S., Lawrence, T., Phatak, A. and Fu, S.C.
(2021) Optimal thresholding of predictors in mineral prospectivity analysis. Natural Resources
Research 30 923–969.

See Also

thresholdCI

Examples

gold <- rescale(murchison$gold, 1000, "km")
faults <- rescale(murchison$faults, 1000, "km")
distfault <- distfun(faults)
z <- thresholdSelect(gold, distfault)
z
plot(z, xlim=c(0, 20))

transect.im Pixel Values Along a Transect

Description

Extract the pixel values of a pixel image at each point along a linear transect.

Usage

transect.im(X, ..., from="bottomleft", to="topright",
nsample=512, click=FALSE, add=FALSE, curve=NULL)

Arguments

X A pixel image (object of class "im").

... Ignored.

from,to Optional. Start point and end point of the transect. Pairs of (x, y) coordinates
in a format acceptable to xy.coords, or keywords "bottom", "left", "top",
"right", "bottomleft" etc.

nsample Integer. Number of sample locations along the transect.

826 transect.im

click Optional. Logical value. If TRUE, the linear transect is determined interactively
by the user, who clicks two points on the current plot.

add Logical. If click=TRUE, this argument determines whether to perform interac-
tive tasks on the current plot (add=TRUE) or to start by plotting X (add=FALSE).

curve Optional. A specification of a curved transect. See the section on Curved Tran-
sect.

Details

The pixel values of the image X along a line segment will be extracted. The result is a function table
("fv" object) which can be plotted directly.

If click=TRUE, then the user is prompted to click two points on the plot of X. These endpoints define
the transect.

Otherwise, the transect is defined by the endpoints from and to. The default is a diagonal transect
from bottom left to top right of the frame.

Value

An object of class "fv" which can be plotted.

Curved Transect

If curve is given, then the transect will be a curve. The argument curve should be a list with the
following arguments:

f A function in the R language with one argument t.

tlim A numeric vector of length 2 giving the range of values of the argument t. tname(Optional) a
character string giving the symbolic name of the function argument t; defaults to "t".

tdescrip (Optional) a character string giving a short description of the function argument t; defaults
to "curve parameter".

The function f must return a 2-column matrix or data frame specifying the spatial coordinates (x,y)
of locations along the curve, determined by the values of the input argument t.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <r.turner@auckland.ac.nz>

See Also

im

Examples

Z <- bei.extra$elev
plot(transect.im(Z))

triplet.family 827

triplet.family Triplet Interaction Family

Description

An object describing the family of all Gibbs point processes with interaction order equal to 3.

Details

Advanced Use Only!

This structure would not normally be touched by the user. It describes the interaction structure of
Gibbs point processes which have infinite order of interaction, such as the triplet interaction process
Triplets.

Anyway, triplet.family is an object of class "isf" containing a function triplet.family$eval
for evaluating the sufficient statistics of a Gibbs point process model taking an exponential family
form.

Value

Object of class "isf", see isf.object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

Triplets to create the triplet interaction process structure.

Other families: pairwise.family, pairsat.family, inforder.family, ord.family.

828 Triplets

Triplets The Triplet Point Process Model

Description

Creates an instance of Geyer’s triplet interaction point process model which can then be fitted to
point pattern data.

Usage

Triplets(r)

Arguments

r The interaction radius of the Triplets process

Details

The (stationary) Geyer triplet process (Geyer, 1999) with interaction radius r and parameters β and
γ is the point process in which each point contributes a factor β to the probability density of the
point pattern, and each triplet of close points contributes a factor γ to the density. A triplet of close
points is a group of 3 points, each pair of which is closer than r units apart.

Thus the probability density is

f(x1, . . . , xn) = αβn(x)γs(x)

where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of unordered triples of points that are closer than r units apart, and α is the
normalising constant.

The interaction parameter γ must be less than or equal to 1 so that this model describes an “ordered”
or “inhibitive” pattern.

The nonstationary Triplets process is similar except that the contribution of each individual point xi
is a function β(xi) of location, rather than a constant beta.

The function ppm(), which fits point process models to point pattern data, requires an argument of
class "interact" describing the interpoint interaction structure of the model to be fitted. The appro-
priate description of the Triplets process pairwise interaction is yielded by the function Triplets().
See the examples below.

Note the only argument is the interaction radius r. When r is fixed, the model becomes an expo-
nential family. The canonical parameters log(β) and log(γ) are estimated by ppm(), not fixed in
Triplets().

Value

An object of class "interact" describing the interpoint interaction structure of the Triplets process
with interaction radius r.

Tstat 829

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

ppm, triplet.family, ppm.object

Examples

Triplets(r=0.1)
prints a sensible description of itself

ppm(cells ~1, Triplets(r=0.2))
fit the stationary Triplets process to `cells'

ppm(cells ~polynom(x,y,3), Triplets(r=0.2))
fit a nonstationary Triplets process with log-cubic polynomial trend

Tstat Third order summary statistic

Description

Computes the third order summary statistic T (r) of a spatial point pattern.

Usage

Tstat(X, ..., r = NULL, rmax = NULL,
correction = c("border", "translate"), ratio = FALSE, verbose=TRUE)

Arguments

X The observed point pattern, from which an estimate of T (r) will be computed.
An object of class "ppp", or data in any format acceptable to as.ppp().

... Ignored.

r Optional. Vector of values for the argument r at which T (r) should be evaluated.
Users are advised not to specify this argument; there is a sensible default.

rmax Optional. Numeric. The maximum value of r for which T (r) should be esti-
mated.

830 Tstat

correction Optional. A character vector containing any selection of the options "none",
"border", "bord.modif", "translate", "translation", or "best". It spec-
ifies the edge correction(s) to be applied. Alternatively correction="all" se-
lects all options.

ratio Logical. If TRUE, the numerator and denominator of each edge-corrected esti-
mate will also be saved, for use in analysing replicated point patterns.

verbose Logical. If TRUE, an estimate of the computation time is printed.

Details

This command calculates the third-order summary statistic T (r) for a spatial point patterns, defined
by Schladitz and Baddeley (2000).

The definition of T (r) is similar to the definition of Ripley’s K function K(r), except that K(r)
counts pairs of points while T (r) counts triples of points. Essentially T (r) is a rescaled cumulative
distribution function of the diameters of triangles in the point pattern. The diameter of a triangle is
the length of its longest side.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Computation time

If the number of points is large, the algorithm can take a very long time to inspect all possible
triangles. A rough estimate of the total computation time will be printed at the beginning of the
calculation. If this estimate seems very large, stop the calculation using the user interrupt signal,
and call Tstat again, using rmax to restrict the range of r values, thus reducing the number of
triangles to be inspected.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Schladitz, K. and Baddeley, A. (2000) A third order point process characteristic. Scandinavian
Journal of Statistics 27 (2000) 657–671.

See Also

Kest

Examples

plot(Tstat(redwood))

unitname 831

unitname Name for Unit of Length

Description

Inspect or change the name of the unit of length in a spatial dataset.

Usage

S3 method for class 'dppm'
unitname(x)
S3 method for class 'kppm'
unitname(x)
S3 method for class 'minconfit'
unitname(x)
S3 method for class 'ppm'
unitname(x)
S3 method for class 'slrm'
unitname(x)
S3 replacement method for class 'dppm'
unitname(x) <- value
S3 replacement method for class 'kppm'
unitname(x) <- value
S3 replacement method for class 'minconfit'
unitname(x) <- value
S3 replacement method for class 'ppm'
unitname(x) <- value
S3 replacement method for class 'slrm'
unitname(x) <- value

Arguments

x A spatial dataset. Either a point pattern (object of class "ppp"), a line segment
pattern (object of class "psp"), a window (object of class "owin"), a pixel im-
age (object of class "im"), a tessellation (object of class "tess"), a quadrature
scheme (object of class "quad"), or a fitted point process model (object of class
"ppm" or "kppm" or "slrm" or "dppm" or "minconfit").

value Name of the unit of length. See Details.

Details

Spatial datasets in the spatstat package may include the name of the unit of length. This name is
used when printing or plotting the dataset, and in some other applications.

unitname(x) extracts this name, and unitname(x) <- value sets the name to value.

A valid name is either

• a single character string

832 unstack.msr

• a vector of two character strings giving the singular and plural forms of the unit name

• a list of length 3, containing two character strings giving the singular and plural forms of the
basic unit, and a number specifying the multiple of this unit.

Note that re-setting the name of the unit of length does not affect the numerical values in x. It
changes only the string containing the name of the unit of length. To rescale the numerical values,
use rescale.

Value

The return value of unitname is an object of class "unitname" containing the name of the unit of
length in x. There are methods for print, summary, as.character, rescale and compatible.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rescale, owin, ppp

Examples

X <- runifrect(20)

if the unit of length is 1 metre:
unitname(X) <- c("metre", "metres")

if the unit of length is 6 inches:
unitname(X) <- list("inch", "inches", 6)

unstack.msr Separate a Vector Measure into its Scalar Components

Description

Converts a vector-valued measure into a list of scalar-valued measures.

Usage

S3 method for class 'msr'
unstack(x, ...)

Arguments

x A measure (object of class "msr").

... Ignored.

update.detpointprocfamily 833

Details

This is a method for the generic unstack for the class "msr" of measures.

If x is a vector-valued measure, then y <- unstack(x) is a list of scalar-valued measures defined
by the components of x. The jth entry of the list, y[[j]], is equivalent to the jth component of the
vector measure x.

If x is a scalar-valued measure, then the result is a list consisting of one entry, which is x.

Value

A list of measures, of class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.ppp

split.msr.

Examples

fit <- ppm(cells ~ x)
m <- residuals(fit, type="score")
m
unstack(m)

update.detpointprocfamily

Set Parameter Values in a Determinantal Point Process Model

Description

Set parameter values in a determinantal point process model object.

Usage

S3 method for class 'detpointprocfamily'
update(object, ...)

Arguments

object object of class "detpointprocfamily".

... arguments of the form tag=value specifying the parameters values to set.

834 update.interact

Value

Another object of class "detpointprocfamily".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

update.interact Update an Interpoint Interaction

Description

This command updates the object using the arguments given.

Usage

S3 method for class 'interact'
update(object, ...)

Arguments

object Interpoint interaction (object of class "interact").

... Additional or replacement values of parameters of object.

Details

This is a method for the generic function update for the class "interact" of interpoint interactions.
It updates the object using the parameters given in the extra arguments

The extra arguments must be given in the form name=value and must be recognisable to the inter-
action object. They override any parameters of the same name in object.

Value

Another object of class "interact", equivalent to object except for changes in parameter values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

update.ppm

update.kppm 835

Examples

Str <- Strauss(r=1)
Str
update(Str, r=2)

M <- MultiStrauss(radii=matrix(1,2,2))
update(M, types=c("on", "off"))

update.kppm Update a Fitted Cluster Point Process Model

Description

update method for class "kppm".

Usage

S3 method for class 'kppm'
update(object, ..., evaluate=TRUE,

envir=environment(terms(object)))

Arguments

object Fitted cluster point process model. An object of class "kppm", obtained from
kppm.

... Arguments passed to kppm.

evaluate Logical value indicating whether to return the updated fitted model (evaluate=TRUE,
the default) or just the updated call to kppm (evaluate=FALSE).

envir Environment in which to re-evaluate the call to ppm.

Details

object should be a fitted cluster point process model, obtained from the model-fitting function
kppm. The model will be updated according to the new arguments provided.

If the argument trend is provided, it determines the intensity in the updated model. It should be an
R formula (with or without a left hand side). It may include the symbols + or - to specify addition
or deletion of terms in the current model formula, as shown in the Examples below. The symbol .
refers to the current contents of the formula.

The intensity in the updated model is determined by the argument trend if it is provided, or other-
wise by any unnamed argument that is a formula, or otherwise by the formula of the original model,
formula(object).

The spatial point pattern data to which the new model is fitted is determined by the left hand side
of the updated model formula, if this is present. Otherwise it is determined by the argument X if it
is provided, or otherwise by any unnamed argument that is a point pattern or a quadrature scheme.

The model is refitted using kppm.

836 update.ppm

Value

Another fitted cluster point process model (object of class "kppm".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

kppm, plot.kppm, predict.kppm, simulate.kppm, methods.kppm, vcov.kppm

Examples

fit <- kppm(redwood ~1, "Thomas")
fitx <- update(fit, ~ . + x)
fitM <- update(fit, clusters="MatClust")
fitC <- update(fit, cells)
fitCx <- update(fit, cells ~ x)

update.ppm Update a Fitted Point Process Model

Description

update method for class "ppm".

Usage

S3 method for class 'ppm'
update(object, ..., fixdummy=TRUE, use.internal=NULL,

envir=environment(terms(object)))

Arguments

object An existing fitted point process model, typically produced by ppm.

... Arguments to be updated in the new call to ppm.

fixdummy Logical flag indicating whether the quadrature scheme for the call to ppm should
use the same set of dummy points as that in the original call.

use.internal Optional. Logical flag indicating whether the model should be refitted using the
internally saved data (use.internal=TRUE) or by re-evaluating these data in the
current frame (use.internal=FALSE).

envir Environment in which to re-evaluate the call to ppm.

update.ppm 837

Details

This is a method for the generic function update for the class "ppm". An object of class "ppm"
describes a fitted point process model. See ppm.object) for details of this class.

update.ppm will modify the point process model specified by object according to the new argu-
ments given, then re-fit it. The actual re-fitting is performed by the model-fitting function ppm.

If you are comparing several model fits to the same data, or fits of the same model to different data,
it is strongly advisable to use update.ppm rather than trying to fit them by hand. This is because
update.ppm re-fits the model in a way which is comparable to the original fit.

The arguments ... are matched to the formal arguments of ppm as follows.

First, all the named arguments in ... are matched with the formal arguments of ppm. Use name=NULL
to remove the argument name from the call.

Second, any unnamed arguments in ... are matched with formal arguments of ppm if the matching
is obvious from the class of the object. Thus ... may contain

• exactly one argument of class "ppp" or "quad", which will be interpreted as the named argu-
ment Q;

• exactly one argument of class "formula", which will be interpreted as the named argument
trend (or as specifying a change to the trend formula);

• exactly one argument of class "interact", which will be interpreted as the named argument
interaction;

• exactly one argument of class "data.frame", which will be interpreted as the named argu-
ment covariates.

The trend argument can be a formula that specifies a change to the current trend formula. For
example, the formula ~ . + Z specifies that the additional covariate Z will be added to the right hand
side of the trend formula in the existing object.

The argument fixdummy=TRUE ensures comparability of the objects before and after updating.
When fixdummy=FALSE, calling update.ppm is exactly the same as calling ppm with the updated
arguments. However, the original and updated models are not strictly comparable (for example,
their pseudolikelihoods are not strictly comparable) unless they used the same set of dummy points
for the quadrature scheme. Setting fixdummy=TRUE ensures that the re-fitting will be performed
using the same set of dummy points. This is highly recommended.

The value of use.internal determines where to find data to re-evaluate the model (data for the ar-
guments mentioned in the original call to ppm that are not overwritten by arguments to update.ppm).

If use.internal=FALSE, then arguments to ppm are re-evaluated in the frame where you call
update.ppm. This is like the behaviour of the other methods for update. This means that if you
have changed any of the objects referred to in the call, these changes will be taken into account.
Also if the original call to ppm included any calls to random number generators, these calls will be
recomputed, so that you will get a different outcome of the random numbers.

If use.internal=TRUE, then arguments to ppm are extracted from internal data stored inside the
current fitted model object. This is useful if you don’t want to re-evaluate anything. It is also
necessary if if object has been restored from a dump file using load or source. In such cases, we
have lost the environment in which object was fitted, and data cannot be re-evaluated.

By default, if use.internal is missing, update.ppm will re-evaluate the arguments if this is pos-
sible, and use internal data if not.

838 update.ppm

Value

Another fitted point process model (object of class "ppm").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

Examples

data(nztrees)
data(cells)

fit the stationary Poisson process
fit <- ppm(nztrees, ~ 1)

fit a nonstationary Poisson process
fitP <- update(fit, trend=~x)
fitP <- update(fit, ~x)

change the trend formula: add another term to the trend
fitPxy <- update(fitP, ~ . + y)
change the trend formula: remove the x variable
fitPy <- update(fitPxy, ~ . - x)

fit a stationary Strauss process
fitS <- update(fit, interaction=Strauss(13))
fitS <- update(fit, Strauss(13))

refit using a different edge correction
fitS <- update(fitS, correction="isotropic")

re-fit the model to a subset
of the original point pattern
nzw <- owin(c(0,148),c(0,95))
nzsub <- nztrees[,nzw]
fut <- update(fitS, Q=nzsub)
fut <- update(fitS, nzsub)

WARNING: the point pattern argument is called 'Q'

ranfit <- ppm(rpoispp(42), ~1, Poisson())
ranfit
different random data!
update(ranfit)
the original data
update(ranfit, use.internal=TRUE)

valid 839

valid Check Whether Point Process Model is Valid

Description

Determines whether a point process model object corresponds to a valid point process.

Usage

valid(object, ...)

Arguments

object Object of some class, describing a point process model.

... Additional arguments passed to methods.

Details

The function valid is generic, with methods for the classes "ppm" and "dppmodel".

An object representing a point process is called valid if all its parameter values are known (for
example, no parameter takes the value NA or NaN) and the parameter values correspond to a well-
defined point process (for example, the parameter values satisfy all the constraints that are imposed
by mathematical theory.)

See the methods for further details.

Value

A logical value, or NA.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid.ppm, valid.detpointprocfamily

840 valid.detpointprocfamily

valid.detpointprocfamily

Check Validity of a Determinantal Point Process Model

Description

Checks the validity of a determinantal point process model.

Usage

S3 method for class 'detpointprocfamily'
valid(object, ...)

Arguments

object Model of class "detpointprocfamily".

... Ignored.

Value

Logical

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <r.turner@auckland.ac.nz>

and Ege Rubak <rubak@math.aau.dk>

See Also

valid

Examples

model1 <- dppMatern(lambda=100, alpha=.01, nu=1, d=2)
valid(model1)
model2 <- dppMatern(lambda=100, alpha=1, nu=1, d=2)
valid(model2)

valid.ppm 841

valid.ppm Check Whether Point Process Model is Valid

Description

Determines whether a fitted point process model satisfies the integrability conditions for existence
of the point process.

Usage

S3 method for class 'ppm'
valid(object, warn=TRUE, ...)

Arguments

object Fitted point process model (object of class "ppm").
warn Logical value indicating whether to issue a warning if the validity of the model

cannot be checked (due to unavailability of the required code).
... Ignored.

Details

This is a method for the generic function valid for Poisson and Gibbs point process models (class
"ppm").

The model-fitting function ppm fits Gibbs point process models to point pattern data. By default,
ppm does not check whether the fitted model actually exists as a point process. This checking is
done by valid.ppm.

Unlike a regression model, which is well-defined for any values of the fitted regression coefficients,
a Gibbs point process model is only well-defined if the fitted interaction parameters satisfy some
constraints. A famous example is the Strauss process (see Strauss) which exists only when the
interaction parameter γ is less than or equal to 1. For values γ > 1, the probability density is not
integrable and the process does not exist (and cannot be simulated).

By default, ppm does not enforce the constraint that a fitted Strauss process (for example) must
satisfy γ ≤ 1. This is because a fitted parameter value of γ > 1 could be useful information for data
analysis, as it indicates that the Strauss model is not appropriate, and suggests a clustered model
should be fitted.

The function valid.ppm checks whether the fitted model object specifies a well-defined point
process. It returns TRUE if the model is well-defined.

Another possible reason for invalid models is that the data may not be adequate for estimation of
the model parameters. In this case, some of the fitted coefficients could be NA or infinite values. If
this happens then valid.ppm returns FALSE.

Use the function project.ppm to force the fitted model to be valid.

Value

A logical value, or NA.

842 valid.slrm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

ppm, project.ppm

Examples

fit1 <- ppm(cells, ~1, Strauss(0.1))
valid(fit1)
fit2 <- ppm(redwood, ~1, Strauss(0.1))
valid(fit2)

valid.slrm Check Whether Spatial Logistic Regression Model is Valid

Description

Determines whether a fitted spatial logistic regression model is a well-defined model.

Usage

S3 method for class 'slrm'
valid(object, warn=TRUE, ...)

Arguments

object Fitted spatial logistic regression model (object of class "slrm").

warn Logical value indicating whether to issue a warning if the validity of the model
cannot be checked (due to unavailability of the required code).

... Ignored.

Details

This is a method for the generic function valid for spatial logistic regression models (class "slrm").

In a model fitted by slrm, some of the fitted coefficients may be NA or infinite values. This can
occur if the data are not adequate for estimation of the model parameters. The model is said to be
unidentifiable or confounded.

The function valid.slrm checks whether the fitted coefficients of object specify a well-defined
model. It returns TRUE if the model is well-defined, and FALSE otherwise.

Use the function emend.slrm to force the fitted model to be valid.

Value

A logical value, or NA.

varblock 843

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

slrm, emend.slrm

Examples

fit1 <- slrm(cells ~ x)
valid(fit1)
fit2 <- slrm(cells ~ x + I(x))
valid(fit2)

varblock Estimate Variance of Summary Statistic by Subdivision

Description

This command estimates the variance of any summary statistic (such as the K-function) by spatial
subdivision of a single point pattern dataset.

Usage

varblock(X, fun = Kest,
blocks = quadrats(X, nx = nx, ny = ny),
...,
nx = 3, ny = nx,
confidence=0.95)

Arguments

X Point pattern dataset (object of class "ppp").

fun Function that computes the summary statistic.

blocks Optional. A tessellation that specifies the division of the space into blocks.

... Arguments passed to fun.

nx,ny Optional. Number of rectangular blocks in the x and y directions. Incompatible
with blocks.

confidence Confidence level, as a fraction between 0 and 1.

844 varblock

Details

This command computes an estimate of the variance of the summary statistic fun(X) from a single
point pattern dataset X using a subdivision method. It can be used to plot confidence intervals for
the true value of a summary function such as the K-function.

The window containing X is divided into pieces by an nx * ny array of rectangles (or is divided into
pieces of more general shape, according to the argument blocks if it is present). The summary
statistic fun is applied to each of the corresponding sub-patterns of X as described below. Then the
pointwise sample mean, sample variance and sample standard deviation of these summary statis-
tics are computed. Then pointwise confidence intervals are computed, for the specified level of
confidence, defaulting to 95 percent.

The variance is estimated by equation (4.21) of Diggle (2003, page 52). This assumes that the point
pattern X is stationary. For further details see Diggle (2003, pp 52–53).

The estimate of the summary statistic from each block is computed as follows. For most functions
fun, the estimate from block B is computed by finding the subset of X consisting of points that fall
inside B, and applying fun to these points, by calling fun(X[B]).

However if fun is the K-function Kest, or any function which has an argument called domain, the
estimate for each block B is computed by calling fun(X, domain=B). In the case of the K-function
this means that the estimate from block B is computed by counting pairs of points in which the first
point lies in B, while the second point may lie anywhere.

Value

A function value table (object of class "fv") that contains the result of fun(X) as well as the sample
mean, sample variance and sample standard deviation of the block estimates, together with the upper
and lower two-standard-deviation confidence limits.

Errors

If the blocks are too small, there may be insufficient data in some blocks, and the function fun may
report an error. If this happens, you need to take larger blocks.

An error message about incompatibility may occur. The different function estimates may be incom-
patible in some cases, for example, because they use different default edge corrections (typically
because the tiles of the tessellation are not the same kind of geometric object as the window of X, or
because the default edge correction depends on the number of points). To prevent this, specify the
choice of edge correction, in the correction argument to fun, if it has one.

An alternative to varblock is Loh’s mark bootstrap lohboot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

References

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

varcount 845

See Also

tess, quadrats for basic manipulation.

lohboot for an alternative bootstrap technique.

Examples

v <- varblock(amacrine, Kest, nx=4, ny=2)
v <- varblock(amacrine, Kcross, nx=4, ny=2)
if(interactive()) plot(v, iso ~ r, shade=c("hiiso", "loiso"))

varcount Predicted Variance of the Number of Points

Description

Given a fitted point process model, calculate the predicted variance of the number of points in a
nominated set B.

Usage

varcount(model, B=Window(model), ..., dimyx = NULL)

Arguments

model A fitted point process model (object of class "ppm", "kppm" or "dppm").

B A window (object of class "owin" specifying the region in which the points
are counted. Alternatively a pixel image (object of class "im") or a function of
spatial coordinates specifying a numerical weight for each random point. The
default is the window of the original point pattern data to which the model was
fitted.

... Additional arguments passed to B when it is a function.

dimyx Spatial resolution for the calculations. Argument passed to as.mask.

Details

This command calculates the variance of the number of points falling in a specified window B
according to the model. It can also calculate the variance of a sum of weights attached to each
random point.

The model should be a fitted point process model (object of class "ppm", "kppm" or "dppm").

• If B is a window, this command calculates the variance of the number of points falling in B,
according to the fitted model.
If the model depends on spatial covariates other than the Cartesian coordinates, then B should
be a subset of the domain in which these covariates are defined.

846 vargamma.estK

• If B is a pixel image, this command calculates the variance of T =
∑
iB(xi), the sum of the

values of B over all random points falling in the domain of the image.
If the model depends on spatial covariates other than the Cartesian coordinates, then the do-
main of the pixel image, as.owin(B), should be a subset of the domain in which these covari-
ates are defined.

• If B is a function(x,y) or function(x,y,...) this command calculates the variance of
T =

∑
iB(xi), the sum of the values of B over all random points falling inside the window

W=as.owin(model), the window in which the original data were observed.

The variance calculation involves the intensity and the pair correlation function of the model. The
calculation is exact (up to discretisation error) for models of class "kppm" and "dppm", and for
Poisson point process models of class "ppm". For Gibbs point process models of class "ppm" the
calculation depends on the Poisson-saddlepoint approximations to the intensity and pair correlation
function, which are rough approximations. The approximation is not yet implemented for some
Gibbs models.

Value

A single number.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>

See Also

predict.ppm, predict.kppm, predict.dppm

Examples

fitT <- kppm(redwood ~ 1, "Thomas")
B <- owin(c(0, 0.5), c(-0.5, 0))
varcount(fitT, B)

fitS <- ppm(swedishpines ~ 1, Strauss(9))
BS <- square(50)
varcount(fitS, BS)

vargamma.estK Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast.

vargamma.estK 847

Usage

vargamma.estK(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL, ...)

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the K
function.

The argument X can be either

a point pattern: An object of class "ppp" representing a point pattern dataset. The K function of
the point pattern will be computed using Kest, and the method of minimum contrast will be
applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the K function, and this
object should have been obtained by a call to Kest or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoreticalK function
of the model and the observed K function. For a more detailed explanation of the Method of
Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf - 1)/2. This syntax is still supported

848 vargamma.estK

but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estpcf, lgcp.estK, thomas.estK, cauchy.estK, mincontrast, Kest, Kmodel.

rVarGamma to simulate the model.

vargamma.estpcf 849

Examples

if(interactive()) {
u <- vargamma.estK(redwood)
print(u)
plot(u)

}

vargamma.estpcf Fit the Neyman-Scott Cluster Point Process with Variance Gamma ker-
nel

Description

Fits the Neyman-Scott cluster point process, with Variance Gamma kernel, to a point pattern dataset
by the Method of Minimum Contrast, using the pair correlation function.

Usage

vargamma.estpcf(X, startpar=c(kappa=1,scale=1), nu = -1/4, lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL,
..., pcfargs = list())

Arguments

X Data to which the model will be fitted. Either a point pattern or a summary
statistic. See Details.

startpar Vector of starting values for the parameters of the model.

nu Numerical value controlling the shape of the tail of the clusters. A number
greater than -1/2.

lambda Optional. An estimate of the intensity of the point process.

q,p Optional. Exponents for the contrast criterion.

rmin, rmax Optional. The interval of r values for the contrast criterion.

... Optional arguments passed to optim to control the optimisation algorithm. See
Details.

pcfargs Optional list containing arguments passed to pcf.ppp to control the smoothing
in the estimation of the pair correlation function.

Details

This algorithm fits the Neyman-Scott Cluster point process model with Variance Gamma kernel
(Jalilian et al, 2013) to a point pattern dataset by the Method of Minimum Contrast, using the pair
correlation function.

The argument X can be either

850 vargamma.estpcf

a point pattern: An object of class "ppp" representing a point pattern dataset. The pair correlation
function of the point pattern will be computed using pcf, and the method of minimum contrast
will be applied to this.

a summary statistic: An object of class "fv" containing the values of a summary statistic, com-
puted for a point pattern dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to pcf or one of its relatives.

The algorithm fits the Neyman-Scott Cluster point process with Variance Gamma kernel to X, by
finding the parameters of the model which give the closest match between the theoretical pair cor-
relation function of the model and the observed pair correlation function. For a more detailed
explanation of the Method of Minimum Contrast, see mincontrast.

The Neyman-Scott cluster point process with Variance Gamma kernel is described in Jalilian et
al (2013). It is a cluster process formed by taking a pattern of parent points, generated according
to a Poisson process with intensity κ, and around each parent point, generating a random number
of offspring points, such that the number of offspring of each parent is a Poisson random variable
with mean µ, and the locations of the offspring points of one parent have a common distribution
described in Jalilian et al (2013).

The shape of the kernel is determined by the dimensionless index nu. This is the parameter ν′ =
α/2 − 1 appearing in equation (12) on page 126 of Jalilian et al (2013). In previous versions of
spatstat instead of specifying nu (called nu.ker at that time) the user could specify nu.pcf which
is the parameter ν = α− 1 appearing in equation (13), page 127 of Jalilian et al (2013). These are
related by nu.pcf = 2 * nu.ker + 1 and nu.ker = (nu.pcf - 1)/2. This syntax is still supported
but not recommended for consistency across the package. In that case exactly one of nu.ker or
nu.pcf must be specified.

If the argument lambda is provided, then this is used as the value of the point process intensity λ.
Otherwise, if X is a point pattern, then λ will be estimated from X. If X is a summary statistic and
lambda is missing, then the intensity λ cannot be estimated, and the parameter µ will be returned
as NA.

The remaining arguments rmin,rmax,q,p control the method of minimum contrast; see mincontrast.

The corresponding model can be simulated using rVarGamma.

The parameter eta appearing in startpar is equivalent to the scale parameter omega used in
rVarGamma.

Homogeneous or inhomogeneous Neyman-Scott/VarGamma models can also be fitted using the
function kppm and the fitted models can be simulated using simulate.kppm.

The optimisation algorithm can be controlled through the additional arguments "..." which are
passed to the optimisation function optim. For example, to constrain the parameter values to a
certain range, use the argument method="L-BFGS-B" to select an optimisation algorithm that re-
spects box constraints, and use the arguments lower and upper to specify (vectors of) minimum
and maximum values for each parameter.

Value

An object of class "minconfit". There are methods for printing and plotting this object. It contains
the following main components:

par Vector of fitted parameter values.

vcov.kppm 851

fit Function value table (object of class "fv") containing the observed values of the
summary statistic (observed) and the theoretical values of the summary statistic
computed from the fitted model parameters.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Jalilian, A., Guan, Y. and Waagepetersen, R. (2013) Decomposition of variance for spatial Cox
processes. Scandinavian Journal of Statistics 40, 119-137.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

kppm, vargamma.estK, lgcp.estpcf, thomas.estpcf, cauchy.estpcf, mincontrast, pcf, pcfmodel.

rVarGamma to simulate the model.

Examples

u <- vargamma.estpcf(redwood)
u
plot(u, legendpos="topright")

vcov.kppm Variance-Covariance Matrix for a Fitted Cluster Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted cluster point
process model.

Usage

S3 method for class 'kppm'
vcov(object, ...,

what=c("vcov", "corr", "fisher", "internals"),
fast = NULL, rmax = NULL, eps.rmax = 0.01,
verbose = TRUE)

852 vcov.kppm

Arguments

object A fitted cluster point process model (an object of class "kppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" for the Fisher information matrix.

fast Logical specifying whether tapering (using sparse matrices from Matrix) should
be used to speed up calculations. Warning: This is expected to underestimate
the true asymptotic variances/covariances.

rmax Optional. The dependence range. Not usually specified by the user. Only used
when fast=TRUE.

eps.rmax Numeric. A small positive number which is used to determine rmax from the
tail behaviour of the pair correlation function when fast option (fast=TRUE) is
used. Namely rmax is the smallest value of r at which (g(r) − 1)/(g(0) − 1)
falls below eps.rmax. Only used when fast=TRUE. Ignored if rmax is provided.

verbose Logical value indicating whether to print progress reports during very long cal-
culations.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
(regression) parameters in the cluster point process model object. It is a method for the generic
function vcov.

The result is an n * n matrix where n = length(coef(model)).

To calculate a confidence interval for a regression parameter, use confint as shown in the examples.

Value

A square matrix.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Ported to spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
and Ege Rubak <rubak@math.aau.dk>.

References

Waagepetersen, R. (2007) Estimating functions for inhomogeneous spatial point processes with
incomplete covariate data. Biometrika 95, 351–363.

See Also

kppm, vcov, vcov.ppm

vcov.mppm 853

Examples

fit <- kppm(redwood ~ x + y)
vcov(fit)
vcov(fit, what="corr")

confidence interval
confint(fit)
cross-check the confidence interval by hand:
sd <- sqrt(diag(vcov(fit)))
t(coef(fit) + 1.96 * outer(sd, c(lower=-1, upper=1)))

vcov.mppm Calculate Variance-Covariance Matrix for Fitted Multiple Point Pro-
cess Model

Description

Given a fitted multiple point process model, calculate the variance-covariance matrix of the param-
eter estimates.

Usage

S3 method for class 'mppm'
vcov(object, ..., what="vcov", err="fatal")

Arguments

object A multiple point process model (object of class "mppm").

... Arguments recognised by vcov.ppm.

what Character string indicating which quantity should be calculated. Options include
"vcov" for the variance-covariance matrix, "corr" for the correlation matrix,
and "fisher" for the Fisher information matrix.

err Character string indicating what action to take if an error occurs. Either "fatal",
"warn" or "null".

Details

This is a method for the generic function vcov.

The argument object should be a fitted multiple point process model (object of class "mppm")
generated by mppm.

The variance-covariance matrix of the parameter estimates is computed using asymptotic theory for
maximum likelihood (for Poisson processes) or estimating equations (for other Gibbs models).

If what="vcov" (the default), the variance-covariance matrix is returned. If what="corr", the
variance-covariance matrix is normalised to yield a correlation matrix, and this is returned. If
what="fisher", the Fisher information matrix is returned instead.

854 vcov.ppm

In all three cases, the rows and columns of the matrix correspond to the parameters (coefficients) in
the same order as in coef{model}.

If errors or numerical problems occur, the argument err determines what will happen. If err="fatal"
an error will occur. If err="warn" a warning will be issued and NA will be returned. If err="null",
no warning is issued, but NULL is returned.

Value

A numeric matrix (or NA or NULL).

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix of one of the models was either too large or too small for reliable
numerical calculation. See vcov.ppm for suggestions on how to handle this.

Author(s)

Adrian Baddeley, Ida-Maria Sintorn and Leanne Bischoff. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz> and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. London: Chapman and Hall/CRC Press.

See Also

vcov, vcov.ppm, mppm

Examples

fit <- mppm(Wat ~x, data=hyperframe(Wat=waterstriders))
vcov(fit)

vcov.ppm Variance-Covariance Matrix for a Fitted Point Process Model

Description

Returns the variance-covariance matrix of the estimates of the parameters of a fitted point process
model.

vcov.ppm 855

Usage

S3 method for class 'ppm'
vcov(object, ..., what = "vcov", verbose = TRUE,

fine=FALSE,
gam.action=c("warn", "fatal", "silent"),
matrix.action=c("warn", "fatal", "silent"),
logi.action=c("warn", "fatal", "silent"),
nacoef.action=c("warn", "fatal", "silent"),
hessian=FALSE)

Arguments

object A fitted point process model (an object of class "ppm".)

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

fine Logical value indicating whether to use a quick estimate (fine=FALSE, the de-
fault) or a slower, more accurate estimate (fine=TRUE).

verbose Logical. If TRUE, a message will be printed if various minor problems are en-
countered.

gam.action String indicating what to do if object was fitted by gam.

matrix.action String indicating what to do if the matrix is ill-conditioned (so that its inverse
cannot be calculated).

logi.action String indicating what to do if object was fitted via the logistic regression ap-
proximation using a non-standard dummy point process.

nacoef.action String indicating what to do if some of the fitted coefficients are NA (so that
variance cannot be calculated).

hessian Logical. Use the negative Hessian matrix of the log pseudolikelihood instead of
the Fisher information.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "ppm", typically produced by ppm.

The canonical parameters of the fitted model object are the quantities returned by coef.ppm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates

what="corr" return the correlation matrix of the parameter estimates

what="fisher" return the observed Fisher information matrix.

856 vcov.ppm

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.ppm(object). The row and column names of the matrix
are also identical to the names in coef.ppm(object).

For models fitted by the Berman-Turner approximation (Berman and Turner, 1992; Baddeley and
Turner, 2000) to the maximum pseudolikelihood (using the default method="mpl" in the call to
ppm), the implementation works as follows.

• If the fitted model object is a Poisson process, the calculations are based on standard asymp-
totic theory for the maximum likelihood estimator (Kutoyants, 1998). The observed Fisher in-
formation matrix of the fitted model object is first computed, by summing over the Berman-
Turner quadrature points in the fitted model. The asymptotic variance-covariance matrix is
calculated as the inverse of the observed Fisher information. The correlation matrix is then
obtained by normalising.

• If the fitted model is not a Poisson process (i.e. it is some other Gibbs point process) then
the calculations are based on Coeurjolly and Rubak (2012). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If
required, the Fisher information is calculated as the inverse of the variance-covariance matrix.

For models fitted by the Huang-Ogata method (method="ho" in the call to ppm), the implementation
uses the Monte Carlo estimate of the Fisher information matrix that was computed when the original
model was fitted.

For models fitted by the logistic regression approximation to the maximum pseudolikelihood (method="logi"
in the call to ppm), calculations are based on (Baddeley et al., 2013). A consistent estimator of the
variance-covariance matrix is computed by summing terms over all pairs of data points. If required,
the Fisher information is calculated as the inverse of the variance-covariance matrix. In this case the
calculations depend on the type of dummy pattern used, and currently only the types "stratrand",
"binomial" and "poisson" as generated by quadscheme.logi are implemented. For other types
the behavior depends on the argument logi.action. If logi.action="fatal" an error is pro-
duced. Otherwise, for types "grid" and "transgrid" the formulas for "stratrand" are used
which in many cases should be conservative. For an arbitrary user specified dummy pattern (type
"given") the formulas for "poisson" are used which in many cases should be conservative. If
logi.action="warn" a warning is issued otherwise the calculation proceeds without a warning.

The argument verbose makes it possible to suppress some diagnostic messages.

The asymptotic theory is not correct if the model was fitted using gam (by calling ppm with use.gam=TRUE).
The argument gam.action determines what to do in this case. If gam.action="fatal", an error
is generated. If gam.action="warn", a warning is issued and the calculation proceeds using the
incorrect theory for the parametric case, which is probably a reasonable approximation in many
applications. If gam.action="silent", the calculation proceeds without a warning.

If hessian=TRUE then the negative Hessian (second derivative) matrix of the log pseudolikelihood,
and its inverse, will be computed. For non-Poisson models, this is not a valid estimate of variance,
but is useful for other calculations.

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Value

A square matrix.

vcov.ppm 857

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.

If this message occurs, try repeating the calculation using fine=TRUE.

Singularity can occur because of numerical overflow or collinearity in the covariates. To check this,
rescale the coordinates of the data points and refit the model. See the Examples.

In a Gibbs model, a singular matrix may also occur if the fitted model is a hard core process: this is
a feature of the variance estimator.

Author(s)

Original code for Poisson point process was written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz> . New code for stationary Gibbs point processes
was generously contributed by Ege Rubak <rubak@math.aau.dk> and Jean-Francois Coeurjolly.
New code for generic Gibbs process written by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.
New code for logistic method contributed by Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Coeurjolly, J.-F., Rubak, E. and Waagepetersen, R. (2014) Logistic regression for
spatial Gibbs point processes. Biometrika 101 (2) 377–392.

Coeurjolly, J.-F. and Rubak, E. (2013) Fast covariance estimation for innovations computed from a
spatial Gibbs point process. Scandinavian Journal of Statistics 40 669–684.

Kutoyants, Y.A. (1998) Statistical Inference for Spatial Poisson Processes, Lecture Notes in
Statistics 134. New York: Springer 1998.

See Also

vcov for the generic,

ppm for information about fitted models,

confint for confidence intervals.

Examples

X <- rpoispp(42)
fit <- ppm(X, ~ x + y)
vcov(fit)
vcov(fit, what="Fish")

example of singular system
m <- ppm(demopat ~polynom(x,y,2))
Not run:

try(v <- vcov(m))

End(Not run)
rescale x, y coordinates to range [0,1] x [0,1] approximately
demopatScale <- rescale(demopat, 10000)

858 vcov.slrm

m <- ppm(demopatScale ~ polynom(x,y,2))
v <- vcov(m)

Gibbs example
fitS <- ppm(swedishpines ~1, Strauss(9))
coef(fitS)
sqrt(diag(vcov(fitS)))

vcov.slrm Variance-Covariance Matrix for a Fitted Spatial Logistic Regression

Description

Returns the variance-covariance matrix of the estimates of the parameters of a point process model
that was fitted by spatial logistic regression.

Usage

S3 method for class 'slrm'
vcov(object, ...,

what=c("vcov", "corr", "fisher", "Fisher"))

Arguments

object A fitted point process model of class "slrm".

... Ignored.

what Character string (partially-matched) that specifies what matrix is returned. Op-
tions are "vcov" for the variance-covariance matrix, "corr" for the correlation
matrix, and "fisher" or "Fisher" for the Fisher information matrix.

Details

This function computes the asymptotic variance-covariance matrix of the estimates of the canonical
parameters in the point process model object. It is a method for the generic function vcov.

object should be an object of class "slrm", typically produced by slrm. It represents a Poisson
point process model fitted by spatial logistic regression.

The canonical parameters of the fitted model object are the quantities returned by coef.slrm(object).
The function vcov calculates the variance-covariance matrix for these parameters.

The argument what provides three options:

what="vcov" return the variance-covariance matrix of the parameter estimates

what="corr" return the correlation matrix of the parameter estimates

what="fisher" return the observed Fisher information matrix.

vcov.slrm 859

In all three cases, the result is a square matrix. The rows and columns of the matrix correspond to
the canonical parameters given by coef.slrm(object). The row and column names of the matrix
are also identical to the names in coef.slrm(object).

Note that standard errors and 95% confidence intervals for the coefficients can also be obtained
using confint(object) or coef(summary(object)).

Standard errors for the fitted intensity can be obtained using predict.slrm.

Value

A square matrix.

Error messages

An error message that reports system is computationally singular indicates that the determinant of
the Fisher information matrix was either too large or too small for reliable numerical calculation.
This can occur because of numerical overflow or collinearity in the covariates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz> .

References

Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R.
and Turner, R. (2010) Spatial logistic regression and change-of-support for spatial Poisson point
processes. Electronic Journal of Statistics 4, 1151–1201. DOI: 10.1214/10-EJS581

See Also

vcov for the generic,

slrm for information about fitted models,

predict.slrm for other kinds of calculation about the model,

confint for confidence intervals.

Examples

X <- rpoispp(42)
fit <- slrm(X ~ x + y)
vcov(fit)
vcov(fit, what="corr")
vcov(fit, what="f")

860 Window.ppm

Window.ppm Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

Usage

S3 method for class 'ppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'kppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'dppm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'slrm'
Window(X, ..., from=c("points", "covariates"))

S3 method for class 'msr'
Window(X, ...)

S3 method for class 'quadrattest'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

from Character string. See Details.

Details

These are methods for the generic function Window which extract the spatial window in which
the object X is defined. The argument from applies when X is a fitted two-dimensional point pro-
cess model (object of class "ppm", "kppm", "slrm" or "dppm"). If from="data" (the default),
Window extracts the window of the original point pattern data to which the model was fitted. If
from="covariates" then Window returns the window in which the spatial covariates of the model
were provided.

with.fv 861

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

A <- ppm(cells ~ 1)
Window(A)

with.fv Evaluate an Expression in a Function Table

Description

Evaluate an R expression in a function value table (object of class "fv").

Usage

S3 method for class 'fv'
with(data, expr, ..., fun = NULL, enclos=NULL)

Arguments

data A function value table (object of class "fv") in which the expression will be
evaluated.

expr The expression to be evaluated. An R language expression, which may involve
the names of columns in data, the special abbreviations ., .x and .y, and global
constants or functions.

... Ignored.

fun Logical value, specifying whether the result should be interpreted as another
function (fun=TRUE) or simply returned as a numeric vector or array (fun=FALSE).
See Details.

enclos An environment in which to search for variables that are not found in data.
Defaults to parent.frame().

862 with.fv

Details

This is a method for the generic command with for an object of class "fv" (function value table).

An object of class "fv" is a convenient way of storing and plotting several different estimates of
the same function. It is effectively a data frame with extra attributes. See fv.object for further
explanation.

This command makes it possible to perform computations that involve different estimates of the
same function. For example we use it to compute the arithmetic difference between two different
edge-corrected estimates of the K function of a point pattern.

The argument expr should be an R language expression. The expression may involve

• the name of any column in data, referring to one of the estimates of the function;

• the symbol . which stands for all the available estimates of the function;

• the symbol .y which stands for the recommended estimate of the function (in an "fv" object,
one of the estimates is always identified as the recommended estimate);

• the symbol .x which stands for the argument of the function;

• global constants or functions.

See the Examples. The expression should be capable of handling vectors and matrices.

The interpretation of the argument fun is as follows:

• If fun=FALSE, the result of evaluating the expression expr will be returned as a numeric vector,
matrix or data frame.

• If fun=TRUE, then the result of evaluating expr will be interpreted as containing the values of
a new function. The return value will be an object of class "fv". (This can only happen if the
result has the right dimensions.)

• The default is fun=TRUE if the result of evaluating expr has more than one column, and
fun=FALSE otherwise.

To perform calculations involving several objects of class "fv", use eval.fv.

Value

A function value table (object of class "fv") or a numeric vector or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <r.turner@auckland.ac.nz>

See Also

with, fv.object, eval.fv, Kest

with.msr 863

Examples

compute 4 estimates of the K function
X <- runifrect(42)
K <- Kest(X)
plot(K)

derive 4 estimates of the L function L(r) = sqrt(K(r)/pi)
L <- with(K, sqrt(./pi))
plot(L)

compute 4 estimates of V(r) = L(r)/r
V <- with(L, ./.x)
plot(V)

compute the maximum absolute difference between
the isotropic and translation correction estimates of K(r)
D <- with(K, max(abs(iso - trans)))

with.msr Evaluate Expression Involving Components of a Measure

Description

An expression involving the names of components of a measure is evaluated.

Usage

S3 method for class 'msr'
with(data, expr, ...)

Arguments

data A measure (object of class "msr").

expr An expression to be evaluated.

... Ignored.

Details

This is a method for the generic function with for the class "msr". The argument data should be
an object of class "msr" representing a measure (a function which assigns a value to each subset of
two-dimensional space).

This function can be used to extract the components of the measure, or to perform more complicated
manipulations of the components.

The argument expr should be an un-evaluated expression in the R language. The expression may
involve any of the variable names listed below with their corresponding meanings.

qlocations (point pattern) all quadrature locations

864 with.ssf

qweights (numeric) all quadrature weights
density (numeric) density value at each quadrature point
discrete (numeric) discrete mass at each quadrature point
continuous (numeric) increment of continuous component
increment (numeric) increment of measure
is.atom (logical) whether quadrature point is an atom
atoms (point pattern) locations of atoms
atommass (numeric) massess of atoms

The measure is the sum of discrete and continuous components. The discrete component assigns
non-zero mass to several points called atoms. The continuous component has a density which
should be integrated over a region to determine the value for that region.

An object of class "msr" approximates the continuous component by a sum over quadrature points.
The quadrature points are chosen so that they include the atoms of the measure. In the list above,
we have increment = continuous + discrete, continuous = density * qweights, is.atom =
(discrete > 0), atoms = qlocations[is.atom] and atommass = discrete[is.atom].

Value

The result of evaluating the expression could be an object of any kind.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>.

See Also

msr, split.msr, measureContinuous, measurePositive

Examples

X <- rpoispp(function(x,y) { exp(3+3*x) })
fit <- ppm(X, ~x+y)
rp <- residuals(fit, type="pearson")

with(rp, atoms)
with(rp, qlocations %mark% continuous)

with.ssf Evaluate Expression in a Spatially Sampled Function

Description

Given a spatially sampled function, evaluate an expression involving the function values.

with.ssf 865

Usage

apply.ssf(X, ...)

S3 method for class 'ssf'
with(data, ...)

Arguments

X, data A spatially sampled function (object of class "ssf").

... Arguments passed to with.default or apply specifying what to compute.

Details

An object of class "ssf" represents a function (real- or vector-valued) that has been sampled at a
finite set of points. It contains a data frame which provides the function values at the sample points.

In with.ssf, the expression specified by ... will be evaluated in this dataframe. In apply.ssf,
the dataframe will be subjected to the apply operator using the additional arguments

If the result of evaluation is a data frame with one row for each data point, or a numeric vector
with one entry for each data point, then the result will be an object of class "ssf" containing this
information. Otherwise, the result will be a numeric vector.

Value

An object of class "ssf" or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf

Examples

a <- ssf(cells, data.frame(d=nndist(cells), i=1:npoints(cells)))
with(a, i/d)

866 zclustermodel

zclustermodel Cluster Point Process Model

Description

Experimental code. Creates an object representing a cluster point process model. Typically used
for theoretical calculations about such a model.

Usage

zclustermodel(name = "Thomas", ..., mu, kappa, scale)

Arguments

name Name of the cluster process. One of "Thomas", "MatClust", "VarGamma" or
"Cauchy".

... Other arguments needed for the model.

mu Mean cluster size. A single number, or a pixel image.

kappa Parent intensity. A single number.

scale Cluster scale parameter of the model.

Details

Experimental.

Value

Object of the experimental class "zclustermodel".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

methods.zclustermodel

Examples

m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)

zgibbsmodel 867

zgibbsmodel Gibbs Model

Description

Experimental code. Creates an object representing a Gibbs point process model. Typically used for
theoretical calculations about such a model.

Usage

zgibbsmodel(beta = 1, interaction = NULL, icoef = NULL)

Arguments

beta First order trend term. A numeric value, numeric vector, pixel image, function,
or a list of such objects.

interaction Object of class "interact" specifying the interpoint interaction structure, or
NULL representing the Poisson process.

icoef Numeric vector of coefficients for the interpoint interaction.

Details

Experimental.

Value

Object belonging to the experimental class zgibbsmodel.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

methods.zgibbsmodel

Examples

m <- zgibbsmodel(10, Strauss(0.1), -0.5)

868 [.ssf

[.ssf Subset of spatially sampled function

Description

Extract a subset of the data for a spatially sampled function.

Usage

S3 method for class 'ssf'
x[i, j, ..., drop]

Arguments

x Object of class "ssf".

i Subset index applying to the locations where the function is sampled.

j Subset index applying to the columns (variables) measured at each location.

..., drop Ignored.

Details

This is the subset operator for the class "ssf".

Value

Another object of class "ssf".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ssf, with.ssf

Examples

f <- ssf(cells, data.frame(d=nndist(cells), i=1:42))
f
f[1:10,]
f[,1]

Index

∗ Cox point process
ic.kppm, 325
kppm, 417

∗ Gibbs point process
ppm, 647
ppm.ppp, 655

∗ Neyman-Scott cluster process
ic.kppm, 325
kppm, 417

∗ Poisson point process
ppm, 647
ppm.ppp, 655

∗ Prospectivity
rhohat, 743

∗ Resource Selection Function
rhohat, 743

∗ algebra
dimhat, 183
subspaceDistance, 811

∗ arith
polynom, 637

∗ array
dimhat, 183

∗ attribute
bind.fv, 62
fasp.object, 250
fv.object, 276
ppm.object, 653

∗ classes
fv, 273

∗ classif
clusterset, 113
nnclean, 546

∗ cluster process
ic.kppm, 325
kppm, 417

∗ datagen
rdpp, 713
rmh.ppm, 749

rmhmodel.ppm, 752
simulate.dppm, 774
ssf, 801

∗ determinantal point process
dppm, 194

∗ diagnostics
leverage.ppm, 443
leverage.slrm, 445

∗ fit model
improve.kppm, 330

∗ hplot
bits.envelope, 64
dg.envelope, 165
diagnose.ppm, 174
envelope, 219
envelope.envelope, 230
envelope.pp3, 232
lurking, 479
lurking.mppm, 483
markmarkscatter, 493
methods.objsurf, 511
pairs.im, 565
panel.contour, 570
plot.bermantest, 602
plot.cdftest, 603
plot.envelope, 606
plot.fasp, 607
plot.fv, 609
plot.laslett, 615
plot.mppm, 619
plot.msr, 620
plot.plotppm, 622
plot.ppm, 624
plot.profilepl, 626
plot.quadrattest, 628
plot.rppm, 629
plot.slrm, 631
plot.ssf, 632
plot.studpermutest, 634

869

870 INDEX

pool.envelope, 640
pool.fasp, 641
pool.fv, 642
qqplot.ppm, 695
rose, 756

∗ htest
berman.test, 60
bits.envelope, 64
bits.test, 66
cdf.test, 94
cdf.test.mppm, 98
clarkevans.test, 104
dclf.progress, 131
dclf.sigtrace, 133
dclf.test, 135
dg.envelope, 165
dg.progress, 167
dg.sigtrace, 170
dg.test, 172
envelope, 219
envelope.envelope, 230
envelope.pp3, 232
hopskel, 319
plot.quadrattest, 628
plot.scan.test, 630
plot.studpermutest, 634
pool.envelope, 640
pool.fasp, 641
pool.fv, 642
pool.quadrattest, 644
quadrat.test, 701
quadrat.test.mppm, 706
quadrat.test.splitppp, 708
scan.test, 764
scanLRTS, 766
segregation.test, 771
studpermu.test, 808

∗ iplot
transect.im, 825

∗ iteration
bits.envelope, 64
dg.envelope, 165
envelope, 219
envelope.envelope, 230
envelope.pp3, 232
envelopeArray, 235
pool.envelope, 640
pool.fasp, 641

pool.fv, 642
∗ manip

[.ssf, 868
as.data.frame.envelope, 41
as.function.leverage.ppm, 44
as.fv, 46
as.layered.msr, 50
as.owin.ppm, 51
blur, 68
collapse.fv, 119
compatible.fasp, 123
compatible.fv, 124
data.ppm, 130
domain.ppm, 187
eval.fasp, 236
eval.fv, 238
Extract.fasp, 242
Extract.fv, 243
Extract.influence.ppm, 245
Extract.leverage.ppm, 246
Extract.msr, 247
fvnames, 277
harmonise.fv, 309
harmonise.msr, 310
is.dppm, 344
is.marked.ppm, 346
is.multitype.ppm, 348
is.ppm, 349
laslett, 431
methods.influence.ppm, 507
methods.leverage.ppm, 510
PPversion, 667
quad.ppm, 700
rat, 712
response, 739
split.msr, 800
stienen, 803
transect.im, 825
unitname, 831
unstack.msr, 832
Window.ppm, 860
with.fv, 861
with.msr, 863
with.ssf, 864

∗ math
bc.ppm, 58
closepaircounts, 106
deriv.fv, 158

INDEX 871

distcdf, 184
dummify, 203
hotbox, 321
increment.fv, 332
integral.msr, 335
LambertW, 430
measureContinuous, 502
measureVariation, 503
pairMean, 561
range.fv, 711
rex, 740
rotmean, 758
stieltjes, 802
stienen, 803

∗ methods
adaptive.density, 25
anova.mppm, 33
anova.ppm, 35
anova.slrm, 38
as.function.fv, 42
as.function.rhohat, 45
bw.CvL, 72
bw.diggle, 75
bw.frac, 77
bw.pcf, 78
bw.ppl, 80
bw.relrisk, 83
bw.scott, 85
bw.smoothppp, 86
bw.stoyan, 88
coef.mppm, 115
coef.ppm, 117
coef.slrm, 118
density.ppp, 139
density.psp, 144
density.splitppp, 146
densityAdaptiveKernel, 148
densityfun.ppp, 150
densityVoronoi, 156
dkernel, 185
fitted.ppm, 263
fitted.slrm, 265
fixef.mppm, 266
formula.fv, 269
formula.ppm, 270
idw, 326
kernel.factor, 385
kernel.moment, 386

kernel.squint, 387
logLik.slrm, 475
methods.dppm, 504
methods.fii, 506
methods.kppm, 509
methods.rho2hat, 513
methods.rhohat, 514
methods.slrm, 516
methods.ssf, 517
nndensity.ppp, 551
Ops.msr, 556
predict.slrm, 679
quantile.density, 709
ranef.mppm, 710
relrisk.ppp, 726
residuals.dppm, 731
residuals.kppm, 732
residuals.ppm, 734
residuals.slrm, 737
Smooth, 785
Smooth.ppp, 789
Smooth.ssf, 792
Smoothfun.ppp, 793
summary.dppm, 814
summary.kppm, 815
summary.ppm, 816
update.ppm, 836
vcov.kppm, 851
vcov.mppm, 853
vcov.ppm, 854
vcov.slrm, 858

∗ models
addvar, 26
anova.mppm, 33
anova.ppm, 35
anova.slrm, 38
AreaInter, 39
as.interact, 48
as.ppm, 53
BadGey, 56
bc.ppm, 58
cauchy.estK, 89
cauchy.estpcf, 91
clusterfit, 109
coef.mppm, 115
coef.ppm, 117
coef.slrm, 118
compareFit, 121

872 INDEX

Concom, 127
data.ppm, 130
detpointprocfamilyfun, 160
dfbetas.ppm, 162
dffit.ppm, 164
diagnose.ppm, 174
DiggleGatesStibbard, 180
DiggleGratton, 181
dim.detpointprocfamily, 182
dppeigen, 192
dppkernel, 194
dppm, 194
dppparbounds, 200
dppspecden, 202
dppspecdenrange, 203
dummy.ppm, 204
eem, 209
effectfun, 211
emend, 215
emend.ppm, 216
emend.slrm, 217
exactMPLEstrauss, 240
Fiksel, 256
fitin.ppm, 260
fitted.mppm, 262
fitted.ppm, 263
fitted.slrm, 265
fixef.mppm, 266
Gcom, 280
Geyer, 293
Gres, 303
Hardcore, 305
hardcoredist, 306
harmonic, 307
HierHard, 313
hierpair.family, 315
HierStrauss, 316
HierStraussHard, 317
Hybrid, 322
hybrid.family, 324
ic.kppm, 325
influence.ppm, 333
inforder.family, 335
intensity.dppm, 337
intensity.ppm, 338
intensity.slrm, 339
interactionorder, 341
ippm, 342

is.dppm, 344
is.hybrid, 345
is.marked.ppm, 346
is.multitype.ppm, 348
is.ppm, 349
is.stationary.ppm, 350
Kcom, 368
Kmodel, 406
Kmodel.kppm, 408
Kmodel.ppm, 409
kppm, 417
Kres, 424
LennardJones, 440
leverage.ppm, 443
leverage.slrm, 445
lgcp.estK, 446
lgcp.estpcf, 449
logLik.dppm, 467
logLik.kppm, 469
logLik.mppm, 471
logLik.ppm, 473
logLik.slrm, 475
lurking, 479
lurking.mppm, 483
matclust.estK, 497
matclust.estpcf, 500
methods.zclustermodel, 519
methods.zgibbsmodel, 521
mincontrast, 522
model.depends, 526
model.frame.ppm, 527
model.images, 529
model.matrix.mppm, 531
model.matrix.ppm, 532
model.matrix.slrm, 534
mppm, 535
msr, 538
MultiHard, 541
MultiStrauss, 542
MultiStraussHard, 544
objsurf, 555
Ord, 557
ord.family, 559
OrdThresh, 560
PairPiece, 563
pairsat.family, 567
Pairwise, 568
pairwise.family, 570

INDEX 873

parameters, 572
parres, 573
Penttinen, 600
plot.dppm, 605
plot.influence.ppm, 613
plot.kppm, 614
plot.leverage.ppm, 616
plot.mppm, 619
plot.plotppm, 622
plot.ppm, 624
plot.profilepl, 626
plot.rppm, 629
plot.slrm, 631
Poisson, 636
ppm, 647
ppm.ppp, 655
ppmInfluence, 665
predict.dppm, 668
predict.kppm, 669
predict.mppm, 670
predict.ppm, 672
predict.rppm, 677
predict.slrm, 679
print.ppm, 680
profilepl, 681
prune.rppm, 684
pseudoR2, 685
psib, 687
psst, 688
psstA, 690
psstG, 693
qqplot.ppm, 695
quad.ppm, 700
ranef.mppm, 710
rdpp, 713
reach, 714
reach.dppm, 717
reach.kppm, 718
relrisk.ppm, 724
repul.dppm, 729
residuals.dppm, 731
residuals.kppm, 732
residuals.mppm, 733
residuals.ppm, 734
residuals.slrm, 737
response, 739
rho2hat, 742
rhohat, 743

rmh.ppm, 749
rppm, 760
SatPiece, 761
Saturated, 763
simulate.dppm, 774
simulate.kppm, 776
simulate.mppm, 778
simulate.ppm, 779
simulate.slrm, 781
slrm, 782
Smooth.msr, 787
Softcore, 794
Strauss, 805
StraussHard, 806
subfits, 810
suffstat, 812
summary.dppm, 814
summary.kppm, 815
summary.ppm, 816
thomas.estK, 818
thomas.estpcf, 820
thresholdCI, 823
thresholdSelect, 824
triplet.family, 827
Triplets, 828
update.detpointprocfamily, 833
update.interact, 834
update.kppm, 835
update.ppm, 836
valid, 839
valid.detpointprocfamily, 840
valid.ppm, 841
valid.slrm, 842
varcount, 845
vargamma.estK, 846
vargamma.estpcf, 849
vcov.kppm, 851
vcov.mppm, 853
vcov.ppm, 854
vcov.slrm, 858
zclustermodel, 866
zgibbsmodel, 867

∗ multivariate
dimhat, 183
sdr, 768
subspaceDistance, 811

∗ nonparametric
allstats, 28

874 INDEX

alltypes, 30
blur, 68
bw.abram, 70
CDF, 93
circdensity, 101
clarkevans, 102
clarkevans.test, 104
compileK, 125
cov.im, 129
deriv.fv, 158
dkernel, 185
edge.Ripley, 206
edge.Trans, 207
Emark, 212
envelopeArray, 235
F3est, 248
Fest, 252
Finhom, 258
FmultiInhom, 267
fryplot, 271
G3est, 278
Gcross, 283
Gdot, 286
Gest, 289
Gfox, 294
Ginhom, 296
Gmulti, 299
GmultiInhom, 301
Hest, 311
hopskel, 319
Iest, 328
increment.fv, 332
Jcross, 353
Jdot, 355
Jest, 358
Jinhom, 361
Jmulti, 363
K3est, 366
kaplan.meier, 367
Kcross, 372
Kcross.inhom, 375
Kdot, 379
Kdot.inhom, 381
kernel.factor, 385
kernel.moment, 386
kernel.squint, 387
Kest, 388
Kest.fft, 393

Kinhom, 394
km.rs, 399
Kmark, 400
Kmeasure, 403
Kmulti, 410
Kmulti.inhom, 413
Kscaled, 425
Ksector, 428
Lcross, 433
Lcross.inhom, 435
Ldot, 437
Ldot.inhom, 438
Lest, 442
Linhom, 452
localK, 454
localKcross, 456
localKcross.inhom, 458
localKdot, 460
localKinhom, 462
localpcf, 464
lohboot, 476
markconnect, 485
markcorr, 487
markcrosscorr, 491
markvario, 496
miplot, 524
nncorr, 548
nnorient, 552
npfun, 554
pairorient, 562
pcf, 576
pcf.fasp, 578
pcf.fv, 580
pcf.ppp, 582
pcf3est, 585
pcfcross, 587
pcfcross.inhom, 590
pcfdot, 592
pcfdot.inhom, 594
pcfinhom, 596
pcfmulti, 598
pool.anylist, 639
pool.rat, 645
PPversion, 667
quantile.density, 709
rectcontact, 719
reduced.sample, 720
rhohat, 743

INDEX 875

sdrPredict, 770
sharpen, 772
Smooth.fv, 786
spatcov, 796
spatialcdf, 798
thresholdCI, 823
thresholdSelect, 824
Tstat, 829
varblock, 843

∗ optimize
bc.ppm, 58
rex, 740

∗ package
spatstat.core-package, 12

∗ point process model
dppm, 194
ic.kppm, 325
kppm, 417
ppm, 647
ppm.ppp, 655

∗ print
print.ppm, 680

∗ programming
eval.fasp, 236
eval.fv, 238
marktable, 494
with.fv, 861
with.ssf, 864

∗ smooth
adaptive.density, 25
bw.CvL, 72
bw.CvLHeat, 74
bw.diggle, 75
bw.frac, 77
bw.pcf, 78
bw.ppl, 80
bw.pplHeat, 82
bw.relrisk, 83
bw.scott, 85
bw.smoothppp, 86
bw.stoyan, 88
circdensity, 101
density.ppp, 139
density.psp, 144
density.splitppp, 146
densityAdaptiveKernel, 148
densityfun.ppp, 150
densityHeat, 152

densityHeat.ppp, 153
densityVoronoi, 156
dkernel, 185
idw, 326
kernel.factor, 385
kernel.moment, 386
kernel.squint, 387
nndensity.ppp, 551
relrisk.ppp, 726
Smooth, 785
Smooth.ppp, 789
Smooth.ssf, 792
Smoothfun.ppp, 793

∗ spatial
[.ssf, 868
adaptive.density, 25
addvar, 26
allstats, 28
alltypes, 30
anova.mppm, 33
anova.ppm, 35
anova.slrm, 38
AreaInter, 39
as.data.frame.envelope, 41
as.function.fv, 42
as.function.leverage.ppm, 44
as.function.rhohat, 45
as.fv, 46
as.interact, 48
as.layered.msr, 50
as.owin.ppm, 51
as.ppm, 53
auc, 55
BadGey, 56
bc.ppm, 58
berman.test, 60
bind.fv, 62
bits.envelope, 64
bits.test, 66
blur, 68
bw.abram, 70
bw.CvL, 72
bw.CvLHeat, 74
bw.diggle, 75
bw.frac, 77
bw.pcf, 78
bw.ppl, 80
bw.pplHeat, 82

876 INDEX

bw.relrisk, 83
bw.scott, 85
bw.smoothppp, 86
bw.stoyan, 88
cauchy.estK, 89
cauchy.estpcf, 91
cdf.test, 94
cdf.test.mppm, 98
clarkevans, 102
clarkevans.test, 104
closepaircounts, 106
clusterfield, 107
clusterfit, 109
clusterkernel, 111
clusterradius, 112
clusterset, 113
coef.mppm, 115
coef.ppm, 117
coef.slrm, 118
collapse.fv, 119
compareFit, 121
compatible.fasp, 123
compatible.fv, 124
compileK, 125
Concom, 127
cov.im, 129
data.ppm, 130
dclf.progress, 131
dclf.sigtrace, 133
dclf.test, 135
density.ppp, 139
density.psp, 144
density.splitppp, 146
densityAdaptiveKernel, 148
densityfun.ppp, 150
densityHeat, 152
densityHeat.ppp, 153
densityVoronoi, 156
deriv.fv, 158
detpointprocfamilyfun, 160
dfbetas.ppm, 162
dffit.ppm, 164
dg.envelope, 165
dg.progress, 167
dg.sigtrace, 170
dg.test, 172
diagnose.ppm, 174
DiggleGatesStibbard, 180

DiggleGratton, 181
dim.detpointprocfamily, 182
distcdf, 184
domain.ppm, 187
dppeigen, 192
dppkernel, 194
dppm, 194
dppparbounds, 200
dppspecden, 202
dppspecdenrange, 203
dummy.ppm, 204
edge.Ripley, 206
edge.Trans, 207
eem, 209
effectfun, 211
Emark, 212
emend, 215
emend.ppm, 216
emend.slrm, 217
envelope, 219
envelope.envelope, 230
envelope.pp3, 232
envelopeArray, 235
eval.fasp, 236
eval.fv, 238
exactMPLEstrauss, 240
Extract.fasp, 242
Extract.fv, 243
Extract.influence.ppm, 245
Extract.leverage.ppm, 246
Extract.msr, 247
F3est, 248
fasp.object, 250
Fest, 252
Fiksel, 256
Finhom, 258
fitin.ppm, 260
fitted.mppm, 262
fitted.ppm, 263
fitted.slrm, 265
fixef.mppm, 266
FmultiInhom, 267
formula.fv, 269
formula.ppm, 270
fryplot, 271
fv, 273
fv.object, 276
fvnames, 277

INDEX 877

G3est, 278
Gcom, 280
Gcross, 283
Gdot, 286
Gest, 289
Geyer, 293
Gfox, 294
Ginhom, 296
Gmulti, 299
GmultiInhom, 301
Gres, 303
Hardcore, 305
hardcoredist, 306
harmonic, 307
harmonise.fv, 309
harmonise.msr, 310
Hest, 311
HierHard, 313
hierpair.family, 315
HierStrauss, 316
HierStraussHard, 317
hopskel, 319
Hybrid, 322
hybrid.family, 324
ic.kppm, 325
idw, 326
Iest, 328
improve.kppm, 330
increment.fv, 332
influence.ppm, 333
inforder.family, 335
integral.msr, 335
intensity.dppm, 337
intensity.ppm, 338
intensity.slrm, 339
interactionorder, 341
ippm, 342
is.dppm, 344
is.hybrid, 345
is.marked.ppm, 346
is.multitype.ppm, 348
is.ppm, 349
is.stationary.ppm, 350
isf.object, 352
Jcross, 353
Jdot, 355
Jest, 358
Jinhom, 361

Jmulti, 363
K3est, 366
kaplan.meier, 367
Kcom, 368
Kcross, 372
Kcross.inhom, 375
Kdot, 379
Kdot.inhom, 381
Kest, 388
Kest.fft, 393
Kinhom, 394
km.rs, 399
Kmark, 400
Kmeasure, 403
Kmodel, 406
Kmodel.kppm, 408
Kmodel.ppm, 409
Kmulti, 410
Kmulti.inhom, 413
kppm, 417
Kres, 424
Kscaled, 425
Ksector, 428
laslett, 431
Lcross, 433
Lcross.inhom, 435
Ldot, 437
Ldot.inhom, 438
LennardJones, 440
Lest, 442
leverage.ppm, 443
leverage.slrm, 445
lgcp.estK, 446
lgcp.estpcf, 449
Linhom, 452
localK, 454
localKcross, 456
localKcross.inhom, 458
localKdot, 460
localKinhom, 462
localpcf, 464
logLik.dppm, 467
logLik.kppm, 469
logLik.mppm, 471
logLik.ppm, 473
logLik.slrm, 475
lohboot, 476
lurking, 479

878 INDEX

lurking.mppm, 483
markconnect, 485
markcorr, 487
markcrosscorr, 491
markmarkscatter, 493
marktable, 494
markvario, 496
matclust.estK, 497
matclust.estpcf, 500
measureContinuous, 502
measureVariation, 503
methods.dppm, 504
methods.fii, 506
methods.influence.ppm, 507
methods.kppm, 509
methods.leverage.ppm, 510
methods.objsurf, 511
methods.rho2hat, 513
methods.rhohat, 514
methods.slrm, 516
methods.ssf, 517
methods.zclustermodel, 519
methods.zgibbsmodel, 521
mincontrast, 522
miplot, 524
model.depends, 526
model.frame.ppm, 527
model.images, 529
model.matrix.mppm, 531
model.matrix.ppm, 532
model.matrix.slrm, 534
mppm, 535
msr, 538
MultiHard, 541
MultiStrauss, 542
MultiStraussHard, 544
nnclean, 546
nncorr, 548
nndensity.ppp, 551
nnorient, 552
npfun, 554
objsurf, 555
Ops.msr, 556
Ord, 557
ord.family, 559
OrdThresh, 560
pairMean, 561
pairorient, 562

PairPiece, 563
pairs.im, 565
pairsat.family, 567
Pairwise, 568
pairwise.family, 570
panel.contour, 570
parameters, 572
parres, 573
pcf, 576
pcf.fasp, 578
pcf.fv, 580
pcf.ppp, 582
pcf3est, 585
pcfcross, 587
pcfcross.inhom, 590
pcfdot, 592
pcfdot.inhom, 594
pcfinhom, 596
pcfmulti, 598
Penttinen, 600
plot.bermantest, 602
plot.cdftest, 603
plot.dppm, 605
plot.envelope, 606
plot.fasp, 607
plot.fv, 609
plot.influence.ppm, 613
plot.kppm, 614
plot.laslett, 615
plot.leverage.ppm, 616
plot.mppm, 619
plot.msr, 620
plot.plotppm, 622
plot.ppm, 624
plot.profilepl, 626
plot.quadrattest, 628
plot.rppm, 629
plot.scan.test, 630
plot.slrm, 631
plot.ssf, 632
Poisson, 636
pool, 638
pool.anylist, 639
pool.envelope, 640
pool.fasp, 641
pool.fv, 642
pool.quadrattest, 644
pool.rat, 645

INDEX 879

ppm, 647
ppm.object, 653
ppm.ppp, 655
ppmInfluence, 665
PPversion, 667
predict.dppm, 668
predict.kppm, 669
predict.mppm, 670
predict.ppm, 672
predict.rppm, 677
predict.slrm, 679
print.ppm, 680
profilepl, 681
prune.rppm, 684
pseudoR2, 685
psib, 687
psst, 688
psstA, 690
psstG, 693
qqplot.ppm, 695
quad.ppm, 700
quadrat.test, 701
quadrat.test.mppm, 706
quadrat.test.splitppp, 708
ranef.mppm, 710
range.fv, 711
rat, 712
rdpp, 713
reach, 714
reach.dppm, 717
reach.kppm, 718
rectcontact, 719
reduced.sample, 720
relrisk, 723
relrisk.ppm, 724
relrisk.ppp, 726
repul.dppm, 729
residuals.dppm, 731
residuals.kppm, 732
residuals.mppm, 733
residuals.ppm, 734
residuals.slrm, 737
rho2hat, 742
rhohat, 743
rmh.ppm, 749
rmhmodel.ppm, 752
roc, 754
rose, 756

rotmean, 758
rppm, 760
SatPiece, 761
Saturated, 763
scan.test, 764
scanLRTS, 766
sdr, 768
sdrPredict, 770
segregation.test, 771
sharpen, 772
simulate.dppm, 774
simulate.kppm, 776
simulate.mppm, 778
simulate.ppm, 779
simulate.slrm, 781
slrm, 782
Smooth, 785
Smooth.fv, 786
Smooth.msr, 787
Smooth.ppp, 789
Smooth.ssf, 792
Smoothfun.ppp, 793
Softcore, 794
spatcov, 796
spatialcdf, 798
spatstat.core-package, 12
split.msr, 800
ssf, 801
stieltjes, 802
stienen, 803
Strauss, 805
StraussHard, 806
studpermu.test, 808
subfits, 810
suffstat, 812
summary.dppm, 814
summary.kppm, 815
summary.ppm, 816
thomas.estK, 818
thomas.estpcf, 820
thresholdCI, 823
thresholdSelect, 824
transect.im, 825
triplet.family, 827
Triplets, 828
Tstat, 829
unitname, 831
unstack.msr, 832

880 INDEX

update.detpointprocfamily, 833
update.interact, 834
update.kppm, 835
update.ppm, 836
valid, 839
valid.detpointprocfamily, 840
valid.ppm, 841
valid.slrm, 842
varblock, 843
varcount, 845
vargamma.estK, 846
vargamma.estpcf, 849
vcov.kppm, 851
vcov.mppm, 853
vcov.ppm, 854
vcov.slrm, 858
Window.ppm, 860
with.fv, 861
with.msr, 863
with.ssf, 864
zclustermodel, 866
zgibbsmodel, 867

∗ univar
CDF, 93
cov.im, 129
quantile.density, 709

∗ utilities
dummy.ppm, 204
reload.or.compute, 721

[, 244–246
[.fasp, 251
[.fasp (Extract.fasp), 242
[.fv (Extract.fv), 243
[.im, 246
[.influence.ppm, 508
[.influence.ppm

(Extract.influence.ppm), 245
[.leverage.ppm, 246, 511
[.leverage.ppm (Extract.leverage.ppm),

246
[.msr, 540, 801
[.msr (Extract.msr), 247
[.ppp, 245, 268, 302
[.ssf, 802, 868
[<-.fv (Extract.fv), 243
$<-.fv (Extract.fv), 243

ad.test, 95–97, 100

adaptive.density, 25, 144, 150, 152, 155,
158

add1, 653
addvar, 23, 26, 575
AIC, 18, 20, 471
AIC.dppm (logLik.dppm), 467
AIC.kppm (logLik.kppm), 469
AIC.mppm (logLik.mppm), 471
AIC.ppm, 682
AIC.ppm (logLik.ppm), 473
allstats, 15, 28
alltypes, 16, 30, 123, 236, 237, 250, 251,

487, 577–579, 581, 608, 609, 642
amacrine, 347, 348
anova, 33, 36, 38
anova.glm, 33, 34, 36, 38
anova.mppm, 33
anova.ppm, 20, 23, 35, 475, 653, 705, 708
anova.slrm, 21, 38, 785
anylist, 640
apply, 865
apply.ssf (with.ssf), 864
applynbd, 495
approxfun, 309
AreaInter, 20, 39, 335, 341, 570, 601, 648,

650, 658, 664, 682, 683, 691, 750,
751, 754

as.boxx, 774
as.data.frame, 42
as.data.frame.envelope, 41
as.function, 43, 45, 518
as.function.fv, 42, 46, 275, 276
as.function.leverage.ppm, 44, 444, 511
as.function.rhohat, 44, 45
as.function.ssf (methods.ssf), 517
as.function.tess, 649
as.fv, 46
as.fv.kppm, 423
as.im, 70, 151, 156, 184, 518, 793
as.im.leverage.ppm, 45, 444
as.im.leverage.ppm

(methods.leverage.ppm), 510
as.im.scan.test, 765, 767
as.im.scan.test (plot.scan.test), 630
as.im.ssf (methods.ssf), 517
as.interact, 20, 48, 507, 654
as.interact.fii, 261, 507
as.interact.ppm, 654

INDEX 881

as.interact.zgibbsmodel
(methods.zgibbsmodel), 521

as.isf.zgibbsmodel
(methods.zgibbsmodel), 521

as.layered, 50
as.layered.msr, 50, 540
as.mask, 55, 60, 107, 114, 139, 142, 145, 148,

163, 184, 185, 258, 295, 297, 311,
312, 321, 326, 327, 331, 362, 393,
403, 431, 443, 551, 625, 698, 746,
755, 764, 766, 783, 798, 845

as.matrix, 714
as.owin, 51, 53, 77, 254, 271, 291, 334, 390,

444, 475, 584, 654, 753
as.owin.dppm (as.owin.ppm), 51
as.owin.influence.ppm

(methods.influence.ppm), 507
as.owin.kppm (as.owin.ppm), 51
as.owin.leverage.ppm

(methods.leverage.ppm), 510
as.owin.lpp, 53
as.owin.msr (as.owin.ppm), 51
as.owin.ppm, 51, 654
as.owin.quadrattest (as.owin.ppm), 51
as.owin.rmhmodel, 53
as.owin.slrm (as.owin.ppm), 51
as.ppm, 53, 683, 731, 732
as.ppm.dppm, 198, 505
as.ppm.kppm, 423, 509
as.ppp, 151, 213, 252, 253, 258, 271, 284,

287, 290, 296, 299, 328, 329, 353,
356, 358, 359, 361, 364, 373, 376,
380, 383, 389, 393, 395, 401, 403,
411, 415, 426, 429, 442, 453,
485–487, 489, 492, 496, 518, 525,
829

as.ppp.influence.ppm, 334
as.ppp.influence.ppm

(methods.influence.ppm), 507
as.ppp.ssf (methods.ssf), 517
as.tess, 703
auc, 55, 755, 756

BadGey, 20, 56, 57, 294, 648, 650, 658, 664,
682, 754, 763

bc, 741
bc (bc.ppm), 58
bc.ppm, 58
berman.test, 22, 60, 97, 602, 603, 654

berman.test.ppm, 654
bind.fv, 62, 126, 275, 276
bits.envelope, 22, 64, 65, 68, 166
bits.test, 23, 65, 66, 174
blur, 14, 68, 259, 298, 362, 396, 427
bw.abram, 15, 70, 148, 149
bw.CvL, 15, 72, 76, 78, 81, 86, 141, 144
bw.CvLHeat, 74, 83
bw.diggle, 15, 48, 73, 75, 78, 81, 85, 86, 141,

144, 728
bw.frac, 15, 73, 76, 77, 81, 86
bw.pcf, 78, 585, 598
bw.ppl, 15, 70, 73, 76, 78, 80, 86, 141, 144
bw.pplHeat, 75, 82
bw.relrisk, 15, 78, 83, 89, 727–729
bw.scott, 15, 73, 76, 78, 81, 85, 141, 144
bw.smoothppp, 15, 78, 86, 789–791
bw.stoyan, 15, 78, 84, 88, 585, 596, 598

cauchy.estK, 18, 89, 93, 423, 848
cauchy.estpcf, 18, 91, 91, 423, 851
cbind, 63
cbind.fv, 120, 275, 276, 309, 310
cbind.fv (bind.fv), 62
CDF, 93, 710
cdf.test, 22, 62, 94, 99, 100, 604, 654, 705,

708, 799
cdf.test.mppm, 98
cdf.test.ppm, 654
chisq.test, 704, 705, 708
circdensity, 101, 552, 553, 562, 758
clarkevans, 15, 102, 104, 105, 321
clarkevans.test, 22, 103, 104, 321
closepaircounts, 106
closepairs, 107, 584, 598
clusterfield, 18, 107, 111, 615
clusterfit, 109, 196, 198, 420, 423
clusterkernel, 111, 113
clusterradius, 18, 112
clusterradius.zclustermodel

(methods.zclustermodel), 519
clusterset, 15, 113
coef, 116, 117, 119, 261, 505, 506, 509, 573
coef.dppm (methods.dppm), 504
coef.fii (methods.fii), 506
coef.kppm, 18
coef.kppm (methods.kppm), 509
coef.mppm, 115, 267, 538, 711
coef.ppm, 19, 117, 271, 475, 653, 655, 856

882 INDEX

coef.slrm, 22, 118, 517, 785, 859
coef.summary.fii (methods.fii), 506
coef<-.fii (methods.fii), 506
collapse, 120
collapse.anylist (collapse.fv), 119
collapse.fv, 119, 121, 122, 309
colourmap, 493
compareFit, 23, 121
compatible, 123, 124, 712, 713, 832
compatible.fasp, 123
compatible.fv, 123, 124, 309, 310
compileK, 125
compilepcf (compileK), 125
Concom, 20, 127, 648, 650, 658, 664
confint, 653, 784, 852, 857, 859
contour, 512, 622, 624–626, 633
contour.default, 512, 617, 633
contour.im, 571, 617, 618
contour.leverage.ppm

(plot.leverage.ppm), 616
contour.objsurf (methods.objsurf), 511
contour.ssf (plot.ssf), 632
coplot, 570, 571
cor, 129, 130, 548, 550
cor.im (cov.im), 129
cov, 129, 130
cov.im, 129, 566
crosspaircounts (closepaircounts), 106
cut.ppp, 17, 547
cvm.test, 95–97, 100

data.ppm, 130, 210, 654
dclf.progress, 23, 131, 135, 138, 169
dclf.sigtrace, 133, 172
dclf.test, 22, 66, 68, 132–135, 135, 173,

174, 227
default.dummy, 659
default.expand, 227
default.rmhcontrol, 750, 751
density, 94, 145, 146, 150, 151, 213, 214,

485, 486, 488, 490, 492, 496, 589,
593, 599, 709

density.default, 26, 27, 79, 101, 102, 125,
186, 385–388, 574, 575, 582, 583,
585, 588–590, 592, 593, 595, 596,
599, 600, 745, 747, 758

density.ppp, 14–16, 25, 26, 69–71, 73,
76–78, 80, 81, 85, 86, 107, 108, 139,
146, 147, 150, 152, 155, 156, 158,

176, 258, 259, 297, 298, 328,
361–363, 376, 377, 383, 395, 396,
414, 415, 426, 427, 459, 462, 463,
465, 552, 571, 591, 595, 597, 727,
729, 742, 772, 773, 788–791

density.ppplist (density.splitppp), 146
density.psp, 14, 144
density.splitppp, 146
densityAdaptiveKernel, 25, 26, 148
densityfun (densityfun.ppp), 150
densityfun.ppp, 150
densityHeat, 152, 154
densityHeat.ppp, 14, 16, 74, 75, 82, 83, 152,

153, 322
densityVoronoi, 25, 26, 150, 156
deriv, 159
deriv.fv, 16, 158, 333, 553, 563
detpointprocfamilyfun, 160
deviance, 474, 516
deviance.ppm, 686
deviance.ppm (logLik.ppm), 473
deviance.slrm, 686
deviance.slrm (methods.slrm), 516
dfbetas, 163, 445
dfbetas.ppm, 23, 162, 164, 165, 264, 334,

444, 446, 539, 540, 665, 666
dfbetas.slrm (leverage.slrm), 445
dffit, 445
dffit (dffit.ppm), 164
dffit.ppm, 23, 164, 446, 539, 540
dffit.slrm (leverage.slrm), 445
dg.envelope, 65, 165
dg.progress, 167
dg.sigtrace, 135, 170
dg.test, 23, 68, 167–169, 171, 172, 172
diagnose.ppm, 23, 174, 210, 480–484,

695–697, 699, 735–737
DiggleGatesStibbard, 20, 180, 648, 650,

658, 664, 682, 750, 751, 754
DiggleGratton, 20, 181, 181, 648, 650, 658,

664, 682, 715, 716, 750, 751, 754
dim.detpointprocfamily, 182
dimhat, 183, 769
dirichlet, 156, 158
distcdf, 77, 184, 561
distmap, 312
dkernel, 185, 386–388
domain, 188, 334, 444

INDEX 883

domain.dppm (domain.ppm), 187
domain.influence.ppm

(methods.influence.ppm), 507
domain.kppm (domain.ppm), 187
domain.leverage.ppm

(methods.leverage.ppm), 510
domain.lpp, 188
domain.msr (domain.ppm), 187
domain.ppm, 187
domain.quadrattest (domain.ppm), 187
domain.rmhmodel, 188
domain.slrm (domain.ppm), 187
dppapproxkernel, 188, 194
dppapproxpcf, 189
dppBessel, 190, 192, 193, 195, 196, 198, 200,

202
dppCauchy, 191, 191, 193, 195, 196, 198, 200,

202
dppeigen, 192
dppGauss, 191, 192, 193, 195, 196, 198, 200,

202
dppkernel, 194
dppm, 21, 47, 194, 212, 351, 467, 468, 505,

528, 530, 533, 555, 606, 651, 668,
669, 730, 731, 814

dppMatern, 191–193, 195, 196, 198, 199, 202
dppparbounds, 200
dppPowerExp, 191–193, 195, 196, 198, 200,

201
dppspecden, 202, 203
dppspecdenrange, 202, 203
drop1, 18, 20, 653
dummify, 203
dummy.ppm, 204, 654

ecdf, 803
edge.Ripley, 206, 209
edge.Trans, 207, 207
eem, 177–179, 209, 482, 483, 699, 735
effectfun, 19, 211
Emark, 17, 212
emend, 215, 216–218
emend.ppm, 215, 216, 657, 663, 664
emend.slrm, 217, 842, 843
envelope, 16, 21, 22, 30–32, 42, 64–67, 131,

133, 135–138, 166–168, 170, 173,
219, 230, 231, 234–236, 274, 300,
364, 391, 411, 415, 599, 607, 640,
641, 654, 697

envelope.envelope, 222, 225, 227, 230, 641
envelope.pp3, 14, 17, 222, 232
envelope.ppm, 654
envelopeArray, 235
eval.fasp, 16, 123, 236, 251
eval.fv, 16, 124, 236, 237, 238, 309, 310, 862
eval.im, 729
ewcdf, 96, 99, 799, 803
exactMPLEstrauss, 240
Extract.fasp, 242
Extract.fv, 243
Extract.influence.ppm, 245
Extract.leverage.ppm, 246
Extract.msr, 247
extractAIC, 467, 469, 471, 474
extractAIC.dppm (logLik.dppm), 467
extractAIC.kppm (logLik.kppm), 469
extractAIC.mppm (logLik.mppm), 471
extractAIC.ppm, 271, 653
extractAIC.ppm (logLik.ppm), 473

F3est, 17, 235, 248, 279, 367, 587
fasp, 642
fasp.object, 28, 31, 32, 237, 242, 250,

577–579, 608, 609
Fest, 15, 29, 31, 32, 40, 227, 239, 250, 252,

259, 260, 276, 292, 296, 312, 313,
354, 356–361, 365, 392, 667

fft, 404
Fhazard (Fest), 252
Fiksel, 20, 256, 570, 648, 650, 658, 664, 682,

754
Finhom, 15, 258, 268, 298, 363
fitin, 20, 49, 506, 507, 654, 683, 715
fitin (fitin.ppm), 260
fitin.ppm, 260, 654
fitted, 266, 668, 669, 678
fitted.dppm, 198
fitted.dppm (predict.dppm), 668
fitted.kppm, 18, 423
fitted.kppm (predict.kppm), 669
fitted.mppm, 262, 672
fitted.ppm, 19, 263, 271, 376, 383, 395, 414,

459, 463, 465, 475, 597, 653, 655,
668–670, 677

fitted.rppm (predict.rppm), 677
fitted.slrm, 22, 265, 785
fixef, 267
fixef.mppm, 116, 266, 711

884 INDEX

FmultiInhom, 267
formula, 269, 270, 505, 509, 516, 526, 537
formula.dppm (methods.dppm), 504
formula.fv, 269
formula.kppm, 18
formula.kppm (methods.kppm), 509
formula.ppm, 19, 270, 475, 653
formula.slrm (methods.slrm), 516
formula<- (formula.fv), 269
fourierbasis, 161
Frame, 188
fryplot, 15, 271, 404, 405
frypoints (fryplot), 271
fv, 44, 62, 63, 270, 273, 758
fv.object, 29, 44, 47, 48, 120, 158, 159, 185,

212, 214, 225, 227, 239, 243, 244,
254, 259, 269, 274, 275, 276, 277,
278, 282, 285, 288, 291, 298, 300,
304, 310, 312, 329, 333, 354, 357,
359, 363, 365, 371, 373, 377, 380,
384, 391, 393, 397, 402, 412, 416,
424, 427, 434, 435, 437, 439, 442,
453, 455, 457, 459, 461, 463, 466,
486, 490, 496, 523, 577, 580, 581,
589, 593, 612, 689, 692, 694, 786,
787, 803, 830, 862

fvnames, 43, 44, 46, 120, 277, 611, 667
fvnames<- (fvnames), 277

G3est, 17, 235, 250, 278, 367, 587
gam, 308, 535
gam.control, 536, 657
Gcom, 23, 122, 280, 303, 304, 371
Gcross, 16, 31, 32, 283, 287, 289, 299, 301,

354
Gdot, 16, 31, 32, 284, 286, 286, 299, 301, 354,

357, 365
Gest, 15, 29, 32, 103, 226, 227, 255, 276, 279,

282, 284, 286, 287, 289, 289,
296–301, 304, 358–361, 392, 667,
803

getCall, 471
getCall.mppm (logLik.mppm), 471
Geyer, 20, 57, 58, 293, 293, 294, 341, 567,

568, 570, 648, 650, 658, 664, 682,
694, 715, 716, 750, 751, 754, 762,
763

Gfox, 18, 294
Ginhom, 15, 260, 296, 303, 363

glm, 308, 526, 535, 536, 648, 657, 658
glm.control, 536, 657
Gmulti, 16, 17, 284, 286, 287, 289, 299, 303,

354, 356
GmultiInhom, 301
Gres, 23, 122, 282, 303, 425, 689, 692, 694

Hardcore, 20, 305, 570, 648, 650, 658, 662,
664, 682, 750, 751, 754

hardcoredist, 306
harmonic, 307, 638
harmonise, 309–311
harmonise.fv, 16, 120, 239, 309
harmonise.msr, 310
harmonize.fv (harmonise.fv), 309
has.offset (model.depends), 526
Hest, 18, 295, 296, 311, 719
HierHard, 20, 313, 317, 319, 648, 650, 658,

664
hierpair.family, 315, 352
HierStrauss, 20, 315, 316, 316, 319, 648,

650, 658, 664
HierStraussHard, 20, 315, 317, 317, 648,

650, 658, 664
hist, 253, 284, 288, 290, 300, 365, 411, 415,

757, 758
hist.default, 546, 547
hopskel, 103, 319
hopskel.test, 105
hotbox, 321
hotrod, 321
Hybrid, 20, 21, 58, 294, 322, 324, 345, 346,

648, 650, 658, 664, 750, 751, 754
hybrid.family, 324, 352
hyperframe, 99, 530, 535, 536, 671, 672

ic (ic.kppm), 325
ic.kppm, 325
idw, 326, 790, 791
Iest, 16, 328
im, 71, 530, 566, 826
im.object, 26, 144, 146, 147, 150, 158, 328,

405, 530, 648, 658, 676, 791
image, 512, 622, 624–626, 633
image.default, 633
image.objsurf (methods.objsurf), 511
image.ssf (plot.ssf), 632
imcov, 185, 798
improve.kppm, 18, 330, 332, 418, 419, 423

INDEX 885

increment.fv, 332
influence, 334, 445
influence.measures, 445, 446
influence.ppm, 23, 164, 245, 333, 444, 446,

508, 613, 614, 665, 666
influence.slrm (leverage.slrm), 445
inforder.family, 316, 324, 335, 352, 568,

570, 827
integral, 334, 336, 444, 518
integral.im, 404, 405
integral.influence.ppm

(methods.influence.ppm), 507
integral.leverage.ppm

(methods.leverage.ppm), 510
integral.msr, 335, 540, 736
integral.ssf (methods.ssf), 517
intensity, 338–340, 552
intensity.detpointprocfamily

(intensity.dppm), 337
intensity.dppm, 337
intensity.ppm, 19, 338, 340
intensity.ppp, 339
intensity.quadratcount, 746
intensity.slrm, 339
intensity.zclustermodel

(methods.zclustermodel), 519
intensity.zgibbsmodel

(methods.zgibbsmodel), 521
interactionorder, 341
interactionorder.zgibbsmodel

(methods.zgibbsmodel), 521
interp.im, 69
ippm, 163, 334, 342, 444, 533, 649, 650, 662,

664, 666
is.dppm, 344
is.hybrid, 20, 345
is.kppm (is.ppm), 349
is.lppm (is.ppm), 349
is.marked, 347, 351, 654
is.marked.ppm, 346, 654
is.marked.ppp, 347, 548
is.multitype, 349, 654
is.multitype.ppm, 348, 654
is.multitype.ppp, 349
is.poisson, 654
is.poisson.interact

(is.stationary.ppm), 350
is.poisson.kppm (is.stationary.ppm), 350

is.poisson.ppm, 654
is.poisson.ppm (is.stationary.ppm), 350
is.poisson.slrm (is.stationary.ppm), 350
is.poisson.zgibbsmodel

(methods.zgibbsmodel), 521
is.ppm, 349
is.slrm (is.ppm), 349
is.stationary, 654
is.stationary.detpointprocfamily

(is.stationary.ppm), 350
is.stationary.dppm (is.stationary.ppm),

350
is.stationary.kppm (is.stationary.ppm),

350
is.stationary.ppm, 350, 654
is.stationary.slrm (is.stationary.ppm),

350
is.stationary.zgibbsmodel

(methods.zgibbsmodel), 521
isf.object, 315, 324, 335, 352, 559, 567,

570, 827

Jcross, 16, 31, 32, 353, 356, 357, 364, 365
Jdot, 16, 31, 32, 353, 355, 355, 364, 365
Jest, 15, 29, 31, 32, 227, 255, 276, 292, 296,

328–330, 353–357, 358, 362–365,
392

Jfox, 18
Jfox (Gfox), 294
Jinhom, 16, 260, 298, 361, 361
jitter, 493
Jmulti, 16, 17, 353, 355–357, 363

K3est, 17, 235, 250, 279, 366, 586, 587
kaplan.meier, 255, 292, 361, 367, 399, 400,

721
Kcom, 23, 122, 282, 368, 424, 425
Kcross, 16, 31, 32, 214, 372, 376, 378, 379,

391, 392, 411, 413, 433, 434, 457,
478, 487, 490, 495, 497, 576–581,
589, 593

Kcross.inhom, 17, 375, 384, 416, 435, 436,
478

Kdot, 16, 31, 32, 214, 373, 374, 379, 381, 383,
384, 391, 392, 411, 413, 437, 438,
461, 462, 478, 487, 490, 497,
576–581, 589, 593, 594

Kdot.inhom, 17, 378, 381, 416, 438, 439
kernel.factor, 186, 385, 387, 388

886 INDEX

kernel.moment, 386, 386, 388
kernel.squint, 386, 387
Kest, 15, 29, 31, 32, 43, 44, 75, 89–91, 110,

124, 126, 137, 196, 198, 207, 209,
214, 226, 227, 231, 237–239, 255,
272, 273, 276, 292, 361, 367,
369–371, 373, 374, 377, 379–381,
384, 388, 393, 394, 396, 398, 405,
406, 409–413, 420, 423, 425,
427–430, 442, 443, 447, 449,
453–455, 457, 459, 461, 463, 478,
479, 486, 489, 498, 499, 523, 563,
576–581, 583, 585, 588, 596, 612,
646, 803, 819, 820, 830, 844, 847,
848, 862

Kest.fft, 16, 393
Kinhom, 15, 110, 196, 198, 376, 378, 383, 384,

390, 392, 394, 416, 420, 423, 427,
453, 454, 460, 464, 478, 479,
576–581, 597, 598

km.rs, 255, 292, 361, 368, 399, 721
Kmark, 17, 400, 490
Kmeasure, 16, 272, 273, 393, 394, 403
Kmodel, 91, 406, 408–410, 848
Kmodel.detpointprocfamily

(Kmodel.dppm), 407
Kmodel.dppm, 198, 407
Kmodel.kppm, 18, 406, 408, 410, 423
Kmodel.ppm, 19, 406, 409, 409
Kmodel.zclustermodel

(methods.zclustermodel), 519
Kmulti, 16, 17, 373, 374, 379, 381, 391, 392,

410, 415, 416, 577, 579–581
Kmulti.inhom, 378, 384, 413
kppm, 18, 22, 47, 54, 90–93, 108, 110, 111,

113, 326, 331, 332, 351, 408, 409,
417, 469, 470, 499, 501, 502, 509,
524, 528, 530, 533, 556, 614, 615,
647, 651, 669, 670, 687, 732, 778,
815, 816, 819, 820, 822, 835, 836,
848, 850–852

Kres, 23, 122, 304, 371, 424, 689, 692, 694
ks.test, 95–97, 100
Kscaled, 16, 425
Ksector, 16, 428, 563

labels, 505, 509, 516
labels.dppm (methods.dppm), 504
labels.kppm (methods.kppm), 509

labels.slrm (methods.slrm), 516
LambertW, 430
laslett, 431, 616
layered, 50, 52
Lcross, 16, 31, 32, 433, 435, 436, 438, 457,

478
Lcross.inhom, 17, 435, 439, 478
Ldot, 16, 31, 32, 434, 437, 438, 439, 462, 478
Ldot.inhom, 17, 438
legend, 610
LennardJones, 20, 440, 570, 648, 650, 658,

664, 682, 715, 716, 753, 754
Lest, 15, 31, 32, 132, 137, 169, 434, 438, 442,

454, 455, 478
leverage, 445
leverage (leverage.ppm), 443
leverage.ppm, 23, 44, 164, 246, 247, 334,

443, 446, 511, 616–618, 665, 666
leverage.slrm, 445
lgcp.estK, 18, 91, 423, 446, 452, 499, 502,

523, 524, 820, 848
lgcp.estpcf, 18, 93, 423, 448, 449, 449, 851
lines, 480, 626
Linhom, 15, 435, 436, 438, 439, 452, 460, 463,

464, 478
lm, 308, 526, 536
lme, 535, 537
lmeControl, 536
load, 837
localK, 16, 392, 454, 457, 460, 462–464, 466,

478, 479
localKcross, 17, 456, 459, 478, 479
localKcross.inhom, 17, 457, 458, 478, 479
localKdot, 17, 460, 478, 479
localKinhom, 16, 455, 462, 466, 478, 479
localL, 16, 457, 460, 462–464, 478
localL (localK), 454
localLcross, 17, 459, 478, 479
localLcross (localKcross), 456
localLcross.inhom, 17, 478, 479
localLcross.inhom (localKcross.inhom),

458
localLdot, 17, 478, 479
localLdot (localKdot), 460
localLinhom, 16, 455, 457, 478
localLinhom (localKinhom), 462
localpcf, 16, 464, 477–479
localpcfinhom, 16, 478, 479

INDEX 887

localpcfinhom (localpcf), 464
locfit, 745, 747
loess, 213, 485, 488, 492, 496, 786, 787
logLik, 467, 469, 471, 474, 476
logLik.dppm, 467
logLik.kppm, 469
logLik.mppm, 471
logLik.ppm, 19, 271, 468, 470, 473, 653
logLik.slrm, 22, 475, 785
lohboot, 16, 22, 225, 391, 476, 584, 585, 844,

845
longleaf, 347, 348
Lscaled (Kscaled), 425
lurking, 175, 176, 178, 179, 479, 484, 699
lurking.mppm, 483
lurking.ppm, 484

mad.progress, 23
mad.progress (dclf.progress), 131
mad.sigtrace (dclf.sigtrace), 133
mad.test, 23, 64–66, 68, 132–134, 166, 167,

173, 174, 223, 227
mad.test (dclf.test), 135
markconnect, 16, 214, 485, 490, 497, 589, 594
markcorr, 17, 214, 402, 485, 487, 487, 492,

493, 496, 497
markcorrint (Kmark), 400
markcrosscorr, 17, 490, 491
markmarkscatter, 17, 493
markmean, 17
markmean (Smooth.ppp), 789
marks, 518
marks.ssf, 801
marks.ssf (methods.ssf), 517
marks<-.ssf (methods.ssf), 517
markstat, 495
marktable, 17, 494
markvar, 17
markvar (Smooth.ppp), 789
markvario, 17, 214, 487, 490, 496
matclust.estK, 18, 423, 449, 497, 502, 523,

524, 820
matclust.estpcf, 18, 423, 452, 500
max, 518, 712
max.fv (range.fv), 711
max.ssf (methods.ssf), 517
mctest.progress, 133
mctest.progress (dclf.progress), 131
mctest.sigtrace (dclf.sigtrace), 133

mean.leverage.ppm
(methods.leverage.ppm), 510

measureContinuous, 502, 540, 864
measureDiscrete, 504
measureDiscrete (measureContinuous), 502
measureNegative (measureVariation), 503
measurePositive, 503, 864
measurePositive (measureVariation), 503
measureVariation, 503, 540
methods.dppm, 198, 504
methods.fii, 261, 506
methods.influence.ppm, 507
methods.kppm, 423, 509, 836
methods.leverage.ppm, 510
methods.objsurf, 511, 556
methods.ppm (ppm.object), 653
methods.rho2hat, 513, 743
methods.rhohat, 46, 514, 748
methods.slrm, 516
methods.ssf, 517, 801, 802
methods.zclustermodel, 519, 866
methods.zgibbsmodel, 521, 867
min, 518, 712
min.fv (range.fv), 711
min.ssf (methods.ssf), 517
mincontrast, 18, 47, 90–93, 109, 110, 196,

198, 420, 423, 447–452, 498–502,
522, 556, 819–822, 847, 848, 850,
851

miplot, 15, 524
model.covariates (model.depends), 526
model.depends, 20, 526
model.frame, 528
model.frame.dppm (model.frame.ppm), 527
model.frame.glm, 528
model.frame.kppm (model.frame.ppm), 527
model.frame.ppm, 20, 271, 475, 527, 653
model.frame.slrm (model.frame.ppm), 527
model.images, 20, 529, 533, 535
model.is.additive (model.depends), 526
model.matrix, 204, 526, 527, 530–535
model.matrix.dppm (model.matrix.ppm),

532
model.matrix.ippm (model.matrix.ppm),

532
model.matrix.kppm (model.matrix.ppm),

532
model.matrix.lm, 529–531, 533, 534

888 INDEX

model.matrix.mppm, 531
model.matrix.ppm, 271, 475, 528–530, 532,

653
model.matrix.slrm, 534
mppm, 33, 34, 100, 116, 179, 262, 263, 267,

472, 484, 531, 532, 535, 619, 620,
670, 672, 706, 707, 710, 733, 734,
779, 810, 811, 853, 854

msr, 50, 164, 178, 247, 248, 311, 336, 482,
503, 504, 538, 620, 621, 731, 732,
736, 737, 788, 800, 801, 864

MultiHard, 20, 306, 315, 541, 544, 545, 570,
648, 650, 658, 662, 664

MultiStrauss, 20, 317, 542, 542, 545, 570,
648, 650, 658, 664, 715, 716, 750,
751, 754

MultiStraussHard, 20, 319, 542, 544, 570,
648, 650, 658, 664, 715, 716, 750,
751, 754

nearest.neighbour (Gest), 289
nleqslv, 195, 197, 198, 419, 421, 422
nlm, 342, 343
nnclean, 15, 115, 546
nncorr, 548
nncross, 321
nndensity (nndensity.ppp), 551
nndensity.ppp, 551
nndist, 103, 291, 292, 321, 547, 804
nnmap, 551
nnmark, 328, 633, 791
nnmean, 17
nnmean (nncorr), 548
nnorient, 552, 563
nnvario, 17
nnvario (nncorr), 548
nnwhich, 291, 292
nobs, 467, 469, 474
nobs.dppm (logLik.dppm), 467
nobs.kppm (logLik.kppm), 469
nobs.mppm (logLik.mppm), 471
nobs.ppm, 653
nobs.ppm (logLik.ppm), 473
npfun, 554

objsurf, 512, 555
offset, 526
Ops.msr, 540, 556

optim, 89–92, 109, 195, 198, 240, 419–421,
447, 448, 450, 451, 498–501,
522–524, 818, 819, 821, 822,
847–850

Ord, 20, 557, 559, 570, 648, 650, 658, 664,
715, 716

ord.family, 316, 324, 335, 352, 559, 568,
570, 827

OrdThresh, 20, 558, 559, 560, 570, 648, 650,
658, 664, 682, 715, 716, 753

overlap.owin, 208
owin, 53, 832
owin.object, 51, 53, 861

pairMean, 561
pairorient, 553, 562
PairPiece, 21, 57, 58, 563, 570, 648, 650,

658, 664, 715, 716, 750, 751, 754,
762, 763

pairs, 565, 566, 570, 571
pairs.default, 565, 566, 571
pairs.im, 130, 565, 571
pairsat.family, 58, 316, 324, 335, 352, 559,

567, 570, 763, 827
Pairwise, 21, 182, 568, 570, 601, 648, 650,

658, 664, 715, 716
pairwise.family, 41, 128, 181, 257, 294,

306, 316, 324, 335, 352, 441, 542,
544, 545, 559, 565, 568, 569, 570,
795, 806, 807, 827

panel.contour, 566, 570
panel.histogram (panel.contour), 570
panel.image, 566
panel.image (panel.contour), 570
panel.smooth, 571
par, 566, 608
parameters, 18, 19, 572, 683
parent.frame, 861
parres, 23, 28, 573, 748
pcf, 15, 78, 79, 89, 92, 93, 110, 126, 196, 198,

226, 227, 373, 374, 377, 378, 380,
381, 384, 391, 392, 397, 398, 406,
409, 410, 412, 413, 416, 420, 423,
427, 428, 443, 450, 452, 454, 466,
477–479, 500, 502, 576, 578, 580,
581, 585, 587–589, 592, 594, 598,
821, 822, 850, 851

pcf.fasp, 577, 578
pcf.fv, 427, 577, 580

INDEX 889

pcf.ppp, 79, 80, 91, 450, 500, 576, 577, 581,
582, 589, 591, 594–598, 600, 821,
849

pcf3est, 17, 235, 250, 279, 367, 585
pcfcross, 16, 31, 487, 587, 591, 593, 594,

599, 600
pcfcross.inhom, 17, 590, 596
pcfdot, 16, 589, 592, 596, 600
pcfdot.inhom, 17, 591, 594
pcfinhom, 15, 78–80, 110, 196, 198, 420, 423,

466, 478, 479, 591, 596, 596
pcfmodel, 93, 408, 409, 851
pcfmodel (Kmodel), 406
pcfmodel.detpointprocfamily

(Kmodel.dppm), 407
pcfmodel.dppm, 198
pcfmodel.dppm (Kmodel.dppm), 407
pcfmodel.kppm, 18, 423
pcfmodel.kppm (Kmodel.kppm), 408
pcfmodel.ppm, 19
pcfmodel.ppm (Kmodel.ppm), 409
pcfmodel.zclustermodel

(methods.zclustermodel), 519
pcfmulti, 16, 589, 594, 598
Penttinen, 21, 600, 648, 650, 658, 664, 754
persp, 512, 622, 624–626
persp.default, 512
persp.im, 617, 618
persp.leverage.ppm (plot.leverage.ppm),

616
persp.objsurf (methods.objsurf), 511
pixelcentres, 14
pixellate, 679
pixellate.ppp, 107, 139, 142, 153
pixellate.psp, 145
pixelquad, 660
pkernel (dkernel), 185
plot, 506, 512, 513, 515, 605, 614, 626, 627,

632, 633, 683
plot.anylist, 619
plot.bermantest, 61, 602
plot.cdftest, 96, 97, 603
plot.default, 176, 480, 604, 626
plot.diagppm (diagnose.ppm), 174
plot.dppm, 198, 505, 605, 669
plot.ecdf, 602
plot.envelope, 224, 225, 227, 606
plot.fasp, 29–32, 251, 607

plot.fii (methods.fii), 506
plot.fv, 16, 29, 44, 47, 133, 135, 185, 225,

227, 239, 254, 259, 269, 270,
274–278, 291, 298, 312, 329, 359,
363, 391, 434, 437, 442, 453, 455,
457, 459, 461, 463, 466, 513, 515,
553, 562, 589, 593, 605–609, 609,
614, 615, 634, 635, 668, 830

plot.im, 566, 571, 615–618, 620, 621, 629,
630, 632

plot.influence.ppm, 334, 508, 613
plot.kppm, 18, 423, 509, 614, 670, 836
plot.laslett, 431, 433, 615
plot.leverage.ppm, 444, 511, 616
plot.listof, 620
plot.mppm, 619
plot.msr, 540, 620, 731, 732, 735, 736, 788
plot.objsurf (methods.objsurf), 511
plot.owin, 616
plot.plotppm, 622, 625, 626
plot.ppm, 19, 271, 475, 605, 606, 614, 615,

619, 620, 622, 623, 624, 653, 655,
676, 677, 681

plot.ppp, 493, 613, 616, 620–622, 633, 804
plot.profilepl, 626, 684
plot.qqppm, 698
plot.quadratcount, 629
plot.quadrattest, 628
plot.rho2hat (methods.rho2hat), 513
plot.rhohat (methods.rhohat), 514
plot.rpart, 629
plot.rppm, 629, 678, 685, 761
plot.scan.test, 630, 765
plot.slrm, 22, 517, 631, 785
plot.solist, 29, 530, 616
plot.ssf, 632, 801, 802
plot.studpermutest, 634, 809
plot.tess, 628, 629
points, 566
Poisson, 20, 49, 570, 636, 648, 650, 658, 664,

682, 715, 716, 750, 751, 754
poly, 637, 638, 663
polygon, 757
polynom, 308, 637
pool, 126, 638, 639–646, 713
pool.anylist, 639, 643
pool.envelope, 225, 227, 639, 640, 642
pool.fasp, 639, 641, 641

890 INDEX

pool.fv, 16, 639, 642, 646
pool.quadrattest, 644, 708
pool.rat, 639, 643, 645
pp3, 235, 250, 279, 367, 587
ppm, 19, 22, 27, 34, 36, 37, 39–41, 49, 54, 57,

58, 62, 97, 117, 118, 121, 122, 127,
128, 130, 175, 176, 179–182, 196,
198, 205, 210, 212, 216, 217, 227,
240, 241, 257, 261, 264, 265, 270,
271, 281, 282, 293, 294, 304–306,
308, 314, 316–318, 323, 332,
342–348, 351, 352, 369–371, 409,
410, 419, 423, 425, 440, 441, 474,
475, 480–483, 526–528, 530, 533,
535–538, 541–545, 558, 560, 564,
565, 569, 574, 601, 613, 622, 624,
626, 636, 647, 653–655, 657,
672–675, 677, 680–683, 688,
690–693, 696, 699–701, 715, 716,
726, 735, 737, 748–751, 753, 754,
760, 762, 763, 781, 795, 805–807,
811–813, 828, 829, 835–837, 841,
842, 855–857

ppm.object, 41, 118, 128, 130, 179, 181, 182,
205, 210, 257, 260, 261, 265, 294,
306, 441, 530, 533, 542, 544, 545,
558, 560, 565, 569, 601, 625, 626,
649, 650, 653, 661, 664, 673, 674,
677, 681, 699–701, 737, 749, 750,
763, 795, 806, 807, 812, 817, 829,
837

ppm.ppp, 422, 647, 650, 655
ppm.quad, 647, 649, 650
ppm.quad (ppm.ppp), 655
ppmInfluence, 164, 334, 444, 665
ppp, 227, 650, 664, 832
ppp.object, 130, 144, 147, 205, 253, 290,

327–329, 359, 389, 495, 659, 751,
790, 791

PPversion, 667
predict, 513, 515, 668, 669, 678, 679
predict.dppm, 198, 505, 668, 846
predict.glm, 663, 676
predict.kppm, 18, 423, 509, 669, 836, 846
predict.mppm, 262, 263, 670
predict.ppm, 19, 211, 212, 264, 265, 271,

338, 475, 624–626, 648, 653, 655,
658, 663, 668–670, 672, 678, 681,

725, 846
predict.rho2hat (methods.rho2hat), 513
predict.rhohat (methods.rhohat), 514
predict.rppm, 629, 677, 685, 761
predict.slrm, 22, 340, 517, 632, 679, 782,

785, 859
predict.smooth.spline, 578–581
predict.zclustermodel

(methods.zclustermodel), 519
print, 505, 506, 509, 512, 513, 515, 516, 518,

683
print.dppm (methods.dppm), 504
print.fii (methods.fii), 506
print.kppm (methods.kppm), 509
print.mppm, 116, 538
print.objsurf (methods.objsurf), 511
print.ppm, 19, 118, 323, 626, 648, 653, 655,

658, 677, 680
print.qqppm, 698
print.rho2hat (methods.rho2hat), 513
print.rhohat (methods.rhohat), 514
print.slrm (methods.slrm), 516
print.ssf (methods.ssf), 517
print.summary.dppm (summary.dppm), 814
print.summary.fii (methods.fii), 506
print.summary.kppm (summary.kppm), 815
print.summary.objsurf

(methods.objsurf), 511
print.summary.ppm, 814, 815
print.summary.ppm (summary.ppm), 816
print.zclustermodel

(methods.zclustermodel), 519
print.zgibbsmodel

(methods.zgibbsmodel), 521
profilepl, 54, 257, 344, 626, 627, 649, 650,

662, 664, 681
project.ppm, 20, 650, 841, 842
project.ppm (emend.ppm), 216
prune, 685
prune.rpart, 684, 685
prune.rppm, 684, 761
pseudoR2, 685
psib, 687
psp.object, 146
psst, 23, 122, 282, 304, 371, 425, 554, 688,

692, 694
psstA, 23, 122, 282, 304, 371, 425, 689, 690,

694

INDEX 891

psstG, 23, 122, 282, 304, 371, 425, 689, 692,
693

qkernel (dkernel), 185
qqplot.ppm, 22, 23, 176, 178, 179, 483, 695
QQversion (PPversion), 667
quad.mppm, 262
quad.object, 659, 701
quad.ppm, 264, 482, 528, 533, 539, 654, 662,

700, 735
quadrat.test, 22, 62, 97, 100, 628, 629, 644,

645, 654, 701, 707, 708
quadrat.test.mppm, 706
quadrat.test.ppm, 654, 706
quadrat.test.ppp, 708
quadrat.test.splitppp, 703, 705, 708
quadratcount, 525, 702, 703, 705, 706, 708,

746
quadratresample, 24, 705, 708
quadrats, 705, 708, 845
quadscheme, 36, 281, 369, 539, 650, 659, 664,

688, 690, 691, 693, 735, 736
quadscheme.logi, 856
quantile, 710
quantile.default, 477
quantile.density, 94, 709
quantile.ewcdf, 710
quantile.im, 710
quote, 275

ragsAreaInter, 41
ragsMultiHard, 542
ranef, 710
ranef.lme, 710
ranef.mppm, 116, 710
range, 518, 712
range.fv, 275, 711
range.ssf (methods.ssf), 517
rat, 646, 712
rCauchy, 18, 90–93, 108, 112, 113, 777, 778
rDGS, 181
rdpp, 713, 774, 775
reach, 36, 507, 654, 714
reach.detpointprocfamily (reach.dppm),

717
reach.dppm, 715, 716, 717
reach.fii, 261, 507
reach.kppm, 715, 716, 718
reach.ppm, 654

reach.rmhmodel, 716
reach.zclustermodel

(methods.zclustermodel), 519
rect, 571
rectcontact, 719
rectdistmap, 719
reduced.sample, 255, 292, 361, 368, 392,

399, 400, 720
reload.or.compute, 721
relrisk, 15, 16, 84, 143, 144, 723, 723,

725–727, 765, 772
relrisk.ppm, 723, 724, 729
relrisk.ppp, 723, 726, 726, 771
repul (repul.dppm), 729
repul.dppm, 729
rescale, 662, 832
residuals.dppm, 731
residuals.glm, 738
residuals.kppm, 732
residuals.mppm, 733, 734
residuals.ppm, 19, 177–179, 210, 271, 475,

482, 483, 533, 539, 540, 653, 697,
699, 731–733, 734, 738, 788

residuals.slrm, 737
residualspaper, 23
response, 210, 739
rex, 59, 740
rho2hat, 15, 23, 28, 513, 514, 575, 742, 748
rhohat, 15, 23, 28, 45, 46, 515, 575, 742, 743,

743
rkernel (dkernel), 185
rknn, 16
rlabel, 223, 771
rLGCP, 18, 419, 777, 778
rMatClust, 18, 108, 112, 113, 499, 501, 502,

777, 778
rmax.Ripley (edge.Ripley), 206
rmax.Trans, 207, 209
rmax.Trans (edge.Trans), 207
rmh, 41, 52, 224, 542, 654, 657, 660, 696, 697,

699, 750, 751, 753, 754
rmh.default, 696, 750, 751, 780
rmh.ppm, 19, 21, 22, 565, 654, 749, 780
rmhcontrol, 697–699, 750, 751, 753, 754, 780
rmhmodel, 654, 715, 751, 753, 754
rmhmodel.default, 754
rmhmodel.list, 754
rmhmodel.ppm, 654, 752

892 INDEX

rmhstart, 749–751, 754, 780
RMmodel, 448, 449, 451, 452
rmpoint, 751
rmpoispp, 751
rNeymanScott, 113
rnoise, 14
roc, 15, 55, 56, 754
rose, 102, 553, 562, 756
rotmean, 758
rpart, 760
rpoint, 751
rpoisline, 14
rpoislinetess, 14
rpoispp, 751, 782
rpoispp3, 14, 235
rpoisppx, 15
rppm, 629, 630, 678, 684, 685, 760
rshift, 24
rStrauss, 715
rthin, 24
rThomas, 18, 108, 112, 113, 777, 778, 819,

820, 822
rug, 513, 515
runifpoint3, 14
runifpointx, 14
rVarGamma, 18, 108, 112, 113, 419, 777, 778,

848, 850, 851

SatPiece, 21, 58, 567, 568, 648, 650, 658,
664, 761, 762, 763

Saturated, 21, 567, 568, 570, 648, 650, 658,
664, 715, 716, 763

scan.test, 16, 22, 630, 631, 764, 766, 767
scanLRTS, 631, 765, 766
sdr, 18, 20, 22, 183, 184, 768, 770
sdrPredict, 769, 770
segregation.test, 22, 771
set.seed, 774, 776, 781
setcov, 185, 208, 209, 798
sharpen, 115, 772
sharpen.ppp, 14–16, 144
shift, 334
shift.owin, 759
simulate, 515, 683, 775, 777, 778, 780–782
simulate.detpointprocfamily, 189
simulate.detpointprocfamily

(simulate.dppm), 774
simulate.dppm, 198, 505, 774

simulate.kppm, 18, 22, 90, 92, 224, 423, 509,
776, 781, 782, 836, 848, 850

simulate.mppm, 778
simulate.ppm, 19, 21, 22, 271, 475, 653, 751,

778, 779, 779, 782
simulate.rhohat (methods.rhohat), 514
simulate.slrm, 22, 517, 781
slrm, 21, 38, 119, 210, 218, 266, 351, 476,

516, 517, 528, 530, 534, 535, 632,
679, 680, 738, 782, 782, 842, 843,
858, 859

Smooth, 69, 334, 444, 785, 787, 788, 790, 791,
793, 794

Smooth.fv, 16, 254, 786, 786
Smooth.im, 14, 786
Smooth.im (blur), 68
Smooth.influence.ppm

(methods.influence.ppm), 507
Smooth.leverage.ppm

(methods.leverage.ppm), 510
Smooth.msr, 540, 621, 786, 787
Smooth.ppp, 14–16, 69, 87, 143, 144, 327,

328, 620, 621, 633, 729, 773, 786,
789, 792, 793

smooth.spline, 158, 159, 578–581, 786, 787
Smooth.ssf, 792, 802
Smoothfun, 151
Smoothfun (Smoothfun.ppp), 793
Smoothfun.ppp, 793
Softcore, 21, 570, 648, 650, 658, 664, 682,

715, 716, 750, 751, 754, 794
source, 837
spatcov, 796
spatialcdf, 15, 798, 803
spatstat.core (spatstat.core-package),

12
spatstat.core-package, 12
spatstat.options, 20, 217, 218, 249, 282,

393, 394, 405, 530, 611, 623, 625,
626, 675, 677, 692

split, 800
split.msr, 336, 503, 504, 540, 800, 833, 864
split.ppp, 146, 147, 547, 800
ssf, 519, 634, 792, 801, 865, 868
step, 18, 20, 468, 470, 472, 474, 653, 784
stieltjes, 561, 802
stienen, 803
stienenSet (stienen), 803

INDEX 893

Strauss, 21, 49, 216, 293, 294, 306, 542, 544,
545, 564, 565, 570, 636, 648, 650,
658, 664, 682, 715, 716, 750, 751,
753, 754, 805, 841

StraussHard, 21, 257, 306, 570, 648, 650,
658, 664, 682, 715, 716, 750, 751,
754, 806

studpermu.test, 22, 634, 635, 808
subfits, 179, 619, 778, 810
subspaceDistance, 184, 769, 811
substitute, 275
suffstat, 812
summary, 506, 512, 516, 518, 683, 814, 815,

817
summary.dppm, 814
summary.fii (methods.fii), 506
summary.kppm, 18, 815
summary.mppm, 538
summary.objsurf (methods.objsurf), 511
summary.ppm, 19, 271, 351, 475, 814, 815, 816
summary.slrm (methods.slrm), 516
summary.ssf (methods.ssf), 517
Sweave, 722
symbolmap, 493

table, 495
terms, 270, 471, 505, 509, 516, 526
terms.dppm (methods.dppm), 504
terms.kppm (methods.kppm), 509
terms.mppm (logLik.mppm), 471
terms.ppm, 475, 653
terms.ppm (formula.ppm), 270
terms.slrm (methods.slrm), 516
tess, 845
text.default, 628, 629
text.rpart, 629
thomas.estK, 18, 91, 423, 449, 499, 502, 523,

524, 818, 822, 848
thomas.estpcf, 18, 93, 423, 452, 502, 820,

851
thresholdCI, 823, 825
thresholdSelect, 823, 824
totalVariation (measureVariation), 503
transect.im, 14, 825
triplet.family, 352, 827, 829
Triplets, 21, 341, 648, 650, 658, 664, 754,

827, 828
Tstat, 15, 829

uniroot, 430
unitname, 654, 831
unitname.ppm, 654
unitname<-.dppm (unitname), 831
unitname<-.kppm (unitname), 831
unitname<-.minconfit (unitname), 831
unitname<-.ppm (unitname), 831
unitname<-.slrm (unitname), 831
unmark, 518, 801
unmark.ssf (methods.ssf), 517
unstack, 833
unstack.msr, 540, 832
unstack.ppp, 833
update, 516, 537, 834, 837
update.detpointprocfamily, 833
update.interact, 834
update.kppm, 18, 258, 297, 362, 376, 383,

395, 414, 423, 459, 463, 465, 509,
597, 835

update.ppm, 19, 258, 271, 280, 297, 362, 369,
376, 382, 395, 414, 459, 463, 465,
475, 597, 653, 688, 690, 693, 697,
834, 836

update.rmhcontrol, 750, 751
update.slrm (methods.slrm), 516

valid, 215, 839, 840–842
valid.detpointprocfamily, 839, 840
valid.ppm, 20, 217, 650, 663, 664, 839, 841
valid.slrm, 218, 842
varblock, 16, 22, 225, 391, 478, 479, 843
varcount, 845
vargamma.estK, 18, 91, 423, 846, 851
vargamma.estpcf, 18, 93, 423, 848, 849
vcov, 852–855, 857–859
vcov.kppm, 18, 423, 509, 670, 836, 851
vcov.mppm, 853
vcov.ppm, 19, 33–35, 37, 271, 475, 653, 725,

817, 852–854, 854
vcov.slrm, 22, 517, 785, 858
Vmark, 17
Vmark (Emark), 212

Window, 188, 860, 861
Window.dppm (Window.ppm), 860
Window.influence.ppm

(methods.influence.ppm), 507
Window.kppm (Window.ppm), 860

894 INDEX

Window.leverage.ppm
(methods.leverage.ppm), 510

Window.msr (Window.ppm), 860
Window.ppm, 860
Window.ppp, 861
Window.psp, 861
Window.quadrattest (Window.ppm), 860
Window.slrm (Window.ppm), 860
with, 862, 863
with.default, 865
with.fv, 16, 63, 159, 224, 275, 712, 787, 861
with.msr, 503, 504, 540, 557, 801, 863
with.ssf, 802, 864, 868

xy.coords, 825

zclustermodel, 520, 866
zgibbsmodel, 521, 867

	spatstat.core-package
	adaptive.density
	addvar
	allstats
	alltypes
	anova.mppm
	anova.ppm
	anova.slrm
	AreaInter
	as.data.frame.envelope
	as.function.fv
	as.function.leverage.ppm
	as.function.rhohat
	as.fv
	as.interact
	as.layered.msr
	as.owin.ppm
	as.ppm
	auc
	BadGey
	bc.ppm
	berman.test
	bind.fv
	bits.envelope
	bits.test
	blur
	bw.abram
	bw.CvL
	bw.CvLHeat
	bw.diggle
	bw.frac
	bw.pcf
	bw.ppl
	bw.pplHeat
	bw.relrisk
	bw.scott
	bw.smoothppp
	bw.stoyan
	cauchy.estK
	cauchy.estpcf
	CDF
	cdf.test
	cdf.test.mppm
	circdensity
	clarkevans
	clarkevans.test
	closepaircounts
	clusterfield
	clusterfit
	clusterkernel
	clusterradius
	clusterset
	coef.mppm
	coef.ppm
	coef.slrm
	collapse.fv
	compareFit
	compatible.fasp
	compatible.fv
	compileK
	Concom
	cov.im
	data.ppm
	dclf.progress
	dclf.sigtrace
	dclf.test
	density.ppp
	density.psp
	density.splitppp
	densityAdaptiveKernel
	densityfun.ppp
	densityHeat
	densityHeat.ppp
	densityVoronoi
	deriv.fv
	detpointprocfamilyfun
	dfbetas.ppm
	dffit.ppm
	dg.envelope
	dg.progress
	dg.sigtrace
	dg.test
	diagnose.ppm
	DiggleGatesStibbard
	DiggleGratton
	dim.detpointprocfamily
	dimhat
	distcdf
	dkernel
	domain.ppm
	dppapproxkernel
	dppapproxpcf
	dppBessel
	dppCauchy
	dppeigen
	dppGauss
	dppkernel
	dppm
	dppMatern
	dppparbounds
	dppPowerExp
	dppspecden
	dppspecdenrange
	dummify
	dummy.ppm
	edge.Ripley
	edge.Trans
	eem
	effectfun
	Emark
	emend
	emend.ppm
	emend.slrm
	envelope
	envelope.envelope
	envelope.pp3
	envelopeArray
	eval.fasp
	eval.fv
	exactMPLEstrauss
	Extract.fasp
	Extract.fv
	Extract.influence.ppm
	Extract.leverage.ppm
	Extract.msr
	F3est
	fasp.object
	Fest
	Fiksel
	Finhom
	fitin.ppm
	fitted.mppm
	fitted.ppm
	fitted.slrm
	fixef.mppm
	FmultiInhom
	formula.fv
	formula.ppm
	fryplot
	fv
	fv.object
	fvnames
	G3est
	Gcom
	Gcross
	Gdot
	Gest
	Geyer
	Gfox
	Ginhom
	Gmulti
	GmultiInhom
	Gres
	Hardcore
	hardcoredist
	harmonic
	harmonise.fv
	harmonise.msr
	Hest
	HierHard
	hierpair.family
	HierStrauss
	HierStraussHard
	hopskel
	hotbox
	Hybrid
	hybrid.family
	ic.kppm
	idw
	Iest
	improve.kppm
	increment.fv
	influence.ppm
	inforder.family
	integral.msr
	intensity.dppm
	intensity.ppm
	intensity.slrm
	interactionorder
	ippm
	is.dppm
	is.hybrid
	is.marked.ppm
	is.multitype.ppm
	is.ppm
	is.stationary.ppm
	isf.object
	Jcross
	Jdot
	Jest
	Jinhom
	Jmulti
	K3est
	kaplan.meier
	Kcom
	Kcross
	Kcross.inhom
	Kdot
	Kdot.inhom
	kernel.factor
	kernel.moment
	kernel.squint
	Kest
	Kest.fft
	Kinhom
	km.rs
	Kmark
	Kmeasure
	Kmodel
	Kmodel.dppm
	Kmodel.kppm
	Kmodel.ppm
	Kmulti
	Kmulti.inhom
	kppm
	Kres
	Kscaled
	Ksector
	LambertW
	laslett
	Lcross
	Lcross.inhom
	Ldot
	Ldot.inhom
	LennardJones
	Lest
	leverage.ppm
	leverage.slrm
	lgcp.estK
	lgcp.estpcf
	Linhom
	localK
	localKcross
	localKcross.inhom
	localKdot
	localKinhom
	localpcf
	logLik.dppm
	logLik.kppm
	logLik.mppm
	logLik.ppm
	logLik.slrm
	lohboot
	lurking
	lurking.mppm
	markconnect
	markcorr
	markcrosscorr
	markmarkscatter
	marktable
	markvario
	matclust.estK
	matclust.estpcf
	measureContinuous
	measureVariation
	methods.dppm
	methods.fii
	methods.influence.ppm
	methods.kppm
	methods.leverage.ppm
	methods.objsurf
	methods.rho2hat
	methods.rhohat
	methods.slrm
	methods.ssf
	methods.zclustermodel
	methods.zgibbsmodel
	mincontrast
	miplot
	model.depends
	model.frame.ppm
	model.images
	model.matrix.mppm
	model.matrix.ppm
	model.matrix.slrm
	mppm
	msr
	MultiHard
	MultiStrauss
	MultiStraussHard
	nnclean
	nncorr
	nndensity.ppp
	nnorient
	npfun
	objsurf
	Ops.msr
	Ord
	ord.family
	OrdThresh
	pairMean
	pairorient
	PairPiece
	pairs.im
	pairsat.family
	Pairwise
	pairwise.family
	panel.contour
	parameters
	parres
	pcf
	pcf.fasp
	pcf.fv
	pcf.ppp
	pcf3est
	pcfcross
	pcfcross.inhom
	pcfdot
	pcfdot.inhom
	pcfinhom
	pcfmulti
	Penttinen
	plot.bermantest
	plot.cdftest
	plot.dppm
	plot.envelope
	plot.fasp
	plot.fv
	plot.influence.ppm
	plot.kppm
	plot.laslett
	plot.leverage.ppm
	plot.mppm
	plot.msr
	plot.plotppm
	plot.ppm
	plot.profilepl
	plot.quadrattest
	plot.rppm
	plot.scan.test
	plot.slrm
	plot.ssf
	plot.studpermutest
	Poisson
	polynom
	pool
	pool.anylist
	pool.envelope
	pool.fasp
	pool.fv
	pool.quadrattest
	pool.rat
	ppm
	ppm.object
	ppm.ppp
	ppmInfluence
	PPversion
	predict.dppm
	predict.kppm
	predict.mppm
	predict.ppm
	predict.rppm
	predict.slrm
	print.ppm
	profilepl
	prune.rppm
	pseudoR2
	psib
	psst
	psstA
	psstG
	qqplot.ppm
	quad.ppm
	quadrat.test
	quadrat.test.mppm
	quadrat.test.splitppp
	quantile.density
	ranef.mppm
	range.fv
	rat
	rdpp
	reach
	reach.dppm
	reach.kppm
	rectcontact
	reduced.sample
	reload.or.compute
	relrisk
	relrisk.ppm
	relrisk.ppp
	repul.dppm
	residuals.dppm
	residuals.kppm
	residuals.mppm
	residuals.ppm
	residuals.slrm
	response
	rex
	rho2hat
	rhohat
	rmh.ppm
	rmhmodel.ppm
	roc
	rose
	rotmean
	rppm
	SatPiece
	Saturated
	scan.test
	scanLRTS
	sdr
	sdrPredict
	segregation.test
	sharpen
	simulate.dppm
	simulate.kppm
	simulate.mppm
	simulate.ppm
	simulate.slrm
	slrm
	Smooth
	Smooth.fv
	Smooth.msr
	Smooth.ppp
	Smooth.ssf
	Smoothfun.ppp
	Softcore
	spatcov
	spatialcdf
	split.msr
	ssf
	stieltjes
	stienen
	Strauss
	StraussHard
	studpermu.test
	subfits
	subspaceDistance
	suffstat
	summary.dppm
	summary.kppm
	summary.ppm
	thomas.estK
	thomas.estpcf
	thresholdCI
	thresholdSelect
	transect.im
	triplet.family
	Triplets
	Tstat
	unitname
	unstack.msr
	update.detpointprocfamily
	update.interact
	update.kppm
	update.ppm
	valid
	valid.detpointprocfamily
	valid.ppm
	valid.slrm
	varblock
	varcount
	vargamma.estK
	vargamma.estpcf
	vcov.kppm
	vcov.mppm
	vcov.ppm
	vcov.slrm
	Window.ppm
	with.fv
	with.msr
	with.ssf
	zclustermodel
	zgibbsmodel
	[.ssf
	Index

