
Package ‘ravetools’
August 7, 2022

Type Package

Title Signal Processing Toolbox for Analyzing 'Electrophysiology' Data

Version 0.0.5

Language en-US

Description Implemented fast and memory-efficient 'Notch'-filter,
'Welch-periodogram', and discrete wavelet transform algorithm for hours of
high-resolution signals; providing fundamental toolbox
for 'iEEG' preprocess pipelines.
Documentation and examples about 'RAVE' project are provided at
<https://openwetware.org/wiki/RAVE>, and the paper by John F. Magnotti,
Zhengjia Wang, Michael S. Beauchamp (2020)
<doi:10.1016/j.neuroimage.2020.117341>; see 'citation(``ravetools'')' for
details.

BugReports https://github.com/dipterix/ravetools/issues

URL https://dipterix.org/ravetools/

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.1

Depends R (>= 4.0.0)

SystemRequirements fftw3 (libfftw3-dev (deb), or fftw-devel (rpm))

Imports graphics, stats, filearray (>= 0.1.3), Rcpp (>= 1.0.8),
waveslim (>= 1.8.2), signal (>= 0.7.7), digest (>= 0.6.29)

LinkingTo Rcpp

Suggests fftwtools, bit64, pracma, microbenchmark, testthat

NeedsCompilation yes

Author Zhengjia Wang [aut, cre, cph],
Beauchamp lab [cph],
Karim Rahim [cph] (R package fftwtools),
Prerau Lab [cph] (Multitaper Spectrogram Code),
RcppParallel Authors [cph] (TinyParallel Code comes from RcppParallel),
Marcus Geelnard [cph] (TinyThread library)

1

https://openwetware.org/wiki/RAVE
https://doi.org/10.1016/j.neuroimage.2020.117341
https://github.com/dipterix/ravetools/issues
https://dipterix.org/ravetools/

2 baseline_array

Maintainer Zhengjia Wang <dipterix.wang@gmail.com>

Repository CRAN

Date/Publication 2022-08-07 00:40:02 UTC

R topics documented:

baseline_array . 2
collapse . 5
decimate . 7
detrend . 8
diagnose_channel . 9
fast_cov . 10
matlab_palette . 12
multitaper . 12
notch_filter . 14
parallel-options . 15
pwelch . 16
raw-to-sexp . 18
shift_array . 20
wavelet . 22

Index 24

baseline_array Calculate Contrasts of Arrays in Different Methods

Description

Provides five methods to baseline an array and calculate contrast.

Usage

baseline_array(x, along_dim, unit_dims = seq_along(dim(x))[-along_dim], ...)

S3 method for class 'array'
baseline_array(
x,
along_dim,
unit_dims = seq_along(dim(x))[-along_dim],
method = c("percentage", "sqrt_percentage", "decibel", "zscore", "sqrt_zscore"),
baseline_indexpoints = NULL,
baseline_subarray = NULL,
...

)

baseline_array 3

Arguments

x array (tensor) to calculate contrast

along_dim integer range from 1 to the maximum dimension of x. baseline along this di-
mension, this is usually the time dimension.

unit_dims integer vector, baseline unit: see Details.

... passed to other methods

method character, baseline method options are: "percentage", "sqrt_percentage",
"decibel", "zscore", and "sqrt_zscore"

baseline_indexpoints

integer vector, which index points are counted into baseline window? Each
index ranges from 1 to dim(x)[[along_dim]]. See Details.

baseline_subarray

sub-arrays that should be used to calculate baseline; default is NULL (automati-
cally determined by baseline_indexpoints).

Details

Consider a scenario where we want to baseline a bunch of signals recorded from different locations.
For each location, we record n sessions. For each session, the signal is further decomposed into
frequency-time domain. In this case, we have the input x in the following form:

sessionxfrequencyxtimexlocation

Now we want to calibrate signals for each session, frequency and location using the first 100 time
points as baseline points, then the code will be

baselinearray(x, alongdim = 3, baselinewindow = 1 : 100, unitdims = c(1, 2, 4))

along_dim=3 is dimension of time, in this case, it’s the third dimension of x. baseline_indexpoints=1:100,
meaning the first 100 time points are used to calculate baseline. unit_dims defines the unit signal.
Its value c(1,2,4) means the unit signal is per session (first dimension), per frequency (second)
and per location (fourth).

In some other cases, we might want to calculate baseline across frequencies then the unit signal is
frequencyxtime, i.e. signals that share the same session and location also share the same baseline.
In this case, we assign unit_dims=c(1,4).

There are five baseline methods. They fit for different types of data. Denote z is an unit signal, z0
is its baseline slice. Then these baseline methods are:

"percentage"

z − z̄0
z̄0

× 100%

"sqrt_percentage"

√
z − √̄z0√̄
z0

× 100%

4 baseline_array

"decibel"

10× (log10(z)− ¯log10(z0))

"zscore"

z − z̄0
sd(z0)

"sqrt_zscore"

√
z − √̄z0
sd(
√
z0)

Value

Contrast array with the same dimension as x.

Examples

Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

library(ravetools)
set.seed(1)

Generate sample data
dims = c(10,20,30,2)
x = array(rnorm(prod(dims))^2, dims)

Set baseline window to be arbitrary 10 timepoints
baseline_window = sample(30, 10)

----- baseline percentage change ------

Using base functions
re1 <- aperm(apply(x, c(1,2,4), function(y){

m <- mean(y[baseline_window])
(y/m - 1) * 100

}), c(2,3,1,4))

Using ravetools
re2 <- baseline_array(x, 3, c(1,2,4),

baseline_indexpoints = baseline_window,
method = 'percentage')

Check different, should be very tiny (double precisions)
range(re2 - re1)

Check speed for large dataset
if(interactive()){

collapse 5

ravetools_threads(n_threads = -1)

dims <- c(200,20,300,2)
x <- array(rnorm(prod(dims))^2, dims)
Set baseline window to be arbitrary 10 timepoints
baseline_window <- seq_len(100)
f1 <- function(){

aperm(apply(x, c(1,2,4), function(y){
m <- mean(y[baseline_window])
(y/m - 1) * 100

}), c(2,3,1,4))
}
f2 <- function(){

equivalent as bl = x[,,baseline_window,]
#
baseline_array(x, along_dim = 3,

baseline_indexpoints = baseline_window,
unit_dims = c(1,2,4), method = 'percentage')

}
range(f1() - f2())
microbenchmark::microbenchmark(f1(), f2(), times = 10L)

}

collapse Collapse array

Description

Collapse array

Usage

collapse(x, keep, ...)

S3 method for class 'array'
collapse(
x,
keep,
average = TRUE,
transform = c("asis", "10log10", "square", "sqrt"),
...

)

6 collapse

Arguments

x A numeric multi-mode tensor (array), without NA

keep Which dimension to keep

... passed to other methods

average collapse to sum or mean

transform transform on the data before applying collapsing; choices are 'asis' (no change),
'10log10' (used to calculate decibel), 'square' (sum-squared), 'sqrt' (square-
root and collapse)

Value

a collapsed array with values to be mean or summation along collapsing dimensions

Examples

Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

Example 1
x = matrix(1:16, 4)

Keep the first dimension and calculate sums along the rest
collapse(x, keep = 1)
rowMeans(x) # Should yield the same result

Example 2
x = array(1:120, dim = c(2,3,4,5))
result = collapse(x, keep = c(3,2))
compare = apply(x, c(3,2), mean)
sum(abs(result - compare)) # The same, yield 0 or very small number (1e-10)

if(interactive()){
ravetools_threads(n_threads = -1)

Example 3 (performance)

Small data, no big difference
x = array(rnorm(240), dim = c(4,5,6,2))
microbenchmark::microbenchmark(

result = collapse(x, keep = c(3,2)),
compare = apply(x, c(3,2), mean),
times = 1L, check = function(v){
max(abs(range(do.call('-', v)))) < 1e-10

}
)

large data big difference
x = array(rnorm(prod(300,200,105)), c(300,200,105,1))

decimate 7

microbenchmark::microbenchmark(
result = collapse(x, keep = c(3,2)),
compare = apply(x, c(3,2), mean),
times = 1L , check = function(v){
max(abs(range(do.call('-', v)))) < 1e-10

})

}

decimate Decimate with ’FIR’ or ’IIR’ filter

Description

Decimate with ’FIR’ or ’IIR’ filter

Usage

decimate(x, q, n = if (ftype == "iir") 8 else 30, ftype = "fir")

Arguments

x signal to be decimated

q integer factor to down-sample by

n filter order used in the down-sampling; default is 30 if ftype='fir', or 8 if
ftype='iir'

ftype filter type, choices are 'fir' (default) and 'iir'

Details

This function is migrated from signal package, but with bugs fixed on ’FIR’ filters. The result
agrees with ’Matlab’ decimate function with ’FIR’ filters. Under ’IIR’ filters, the function is
identical with signal::decimate, and is slightly different with ’Matlab’ version.

Value

Decimated signal

Examples

x <- 1:100
y <- decimate(x, 2, ftype = "fir")
y

compare with signal package
z <- signal::decimate(x, 2, ftype = "fir")

8 detrend

Compare decimated results
plot(x, type = 'l')
points(seq(1,100, 2), y, col = "green")
points(seq(1,100, 2), z, col = "red")

detrend Remove the trend for one or more signals

Description

’Detrending’ is often used before the signal power calculation.

Usage

detrend(x, trend = c("constant", "linear"), break_points = NULL)

Arguments

x numerical or complex, a vector or a matrix

trend the trend of the signal; choices are 'constant' and 'linear'

break_points integer vector, or NULL; only used when trend is 'linear' to remove piecewise
linear trend; will throw warnings if trend is 'constant'

Value

The signals with trend removed in matrix form; the number of columns is the number of signals,
and number of rows is length of the signals

Examples

x <- rnorm(100, mean = 1) + c(
seq(0, 5, length.out = 50),
seq(5, 3, length.out = 50))

plot(x)

plot(detrend(x, 'constant'))
plot(detrend(x, 'linear'))
plot(detrend(x, 'linear', 50))

diagnose_channel 9

diagnose_channel Show channel signals with diagnostic plots

Description

The diagnostic plots include ’Welch Periodogram’ (pwelch) and histogram (hist)

Usage

diagnose_channel(
s1,
s2 = NULL,
sc = NULL,
srate,
name = "",
try_compress = TRUE,
max_freq = 300,
window = ceiling(srate * 2),
noverlap = window/2,
std = 3,
cex = 1.5,
lwd = 0.5,
plim = NULL,
nclass = 100,
main = "Channel Inspection",
col = c("black", "red"),
which = NULL,
start_time = 0,
boundary = NULL,
mar = c(5.2, 5.1, 4.1, 2.1),
mai = c(0.6, 0.54, 0.4, 0.1),
...

)

Arguments

s1 the main signal to draw

s2 the comparing signal to draw; usually s1 after some filters; must be in the same
sampling rate with s1; can be NULL

sc decimated s1 to show if srate is too high; will be automatically generated if
NULL

srate sampling rate

name name of s1, or a vector of two names of s1 and s2 if s2 is provided

try_compress whether try to compress (decimate) s1 if srate is too high for performance
concerns

10 fast_cov

max_freq the maximum frequency to display in ’Welch Periodograms’
window, noverlap

see pwelch

std the standard deviation of the channel signals used to determine boundary; de-
fault is plus-minus 3 standard deviation

cex, lwd, mar, mai, ...

graphical parameters; see par

plim the y-axis limit to draw in ’Welch Periodograms’

nclass number of classes to show in histogram (hist)

main the title of the signal plot

col colors of s1 and s2

which NULL or integer from 1 to 4; if NULL, all plots will be displayed; otherwise only
the subplot will be displayed

start_time the starting time of channel (will only be used to draw signals)

boundary a red boundary to show in channel plot; default is to be automatically determined
by std

Value

A list of boundary and y-axis limit used to draw the channel

Examples

library(ravetools)

Generate 20 second data at 2000 Hz
time <- seq(0, 20, by = 1 / 2000)
signal <- sin(120 * pi * time) +

sin(time * 20*pi) +
exp(-time^2) *
cos(time * 10*pi) +
rnorm(length(time))

signal2 <- notch_filter(signal, 2000)

diagnose_channel(signal, signal2, srate = 2000,
name = c("Raw", "Filtered"), cex = 1)

fast_cov Calculate massive covariance matrix in parallel

Description

Speed up covariance calculation for large matrices. The default behavior is the same as cov
('pearson', no NA handling).

fast_cov 11

Usage

fast_cov(x, y = NULL, col_x = NULL, col_y = NULL, df = NA)

Arguments

x a numeric vector, matrix or data frame; a matrix is highly recommended to max-
imize the performance

y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x; the default is equivalent to y = x

col_x integers indicating the subset indices (columns) of x to calculate the covariance,
or NULL to include all the columns; default is NULL

col_y integers indicating the subset indices (columns) of y to calculate the covariance,
or NULL to include all the columns; default is NULL

df a scalar indicating the degrees of freedom; default is nrow(x)-1

Value

A covariance matrix of x and y. Note that there is no NA handling. Any missing values will lead to
NA in the resulting covariance matrices.

Examples

Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

x <- matrix(rnorm(400), nrow = 100)

Call `cov(x)` to compare
fast_cov(x)

Calculate covariance of subsets
fast_cov(x, col_x = 1, col_y = 1:2)

if(interactive()){

Speed comparison, better to use multiple cores (4, 8, or more)
to show the differences.

ravetools_threads(n_threads = -1)
x <- matrix(rnorm(100000), nrow = 1000)
microbenchmark::microbenchmark(

fast_cov = {
fast_cov(x, col_x = 1:50, col_y = 51:100)

},
cov = {

cov(x[,1:50], x[,51:100])
},
unit = 'ms', times = 10

)

12 multitaper

}

matlab_palette ’Matlab’ heat-map plot palette

Description

’Matlab’ heat-map plot palette

Usage

matlab_palette()

Value

vector of 64 colors

multitaper Compute ’multitaper’ spectral densities of time-series data

Description

Compute ’multitaper’ spectral densities of time-series data

Usage

multitaper_config(
data_length,
fs,
frequency_range = NULL,
time_bandwidth = 5,
num_tapers = NULL,
window_params = c(5, 1),
nfft = NA,
detrend_opt = "linear"

)

multitaper(
data,
fs,
frequency_range = NULL,
time_bandwidth = 5,
num_tapers = NULL,

multitaper 13

window_params = c(5, 1),
nfft = NA,
detrend_opt = "linear"

)

Arguments

data_length length of data

fs sampling frequency in ’Hz’
frequency_range

frequency range to look at; length of two

time_bandwidth a number indicating time-half bandwidth product; i.e. the window duration
times the half bandwidth of main lobe; default is 5

num_tapers number of ’DPSS’ tapers to use; default is NULL and will be automatically com-
puted from floor(2*time_bandwidth - 1)

window_params vector of two numbers; the first number is the window size in seconds; the
second number if the step size; default is c(5, 1)

nfft ’NFFT’ size, positive; see ’Details’

detrend_opt how you want to remove the trend from data window; options are 'linear'
(default), 'constant', and 'off'

data numerical vector, signal traces

Details

The original source code comes from ’Prerau’ Lab (see ’Github’ repository 'multitaper_toolbox'
under user 'preraulab'). The results tend to agree with their ’Python’ implementation with
precision on the order of at 1E-7 with standard deviation at most 1E-5. The original copy was
licensed under a Creative Commons Attribution ’NC’-’SA’ 4.0 International License (https://
creativecommons.org/licenses/by-nc-sa/4.0/).

This package ('ravetools') redistributes the multitaper function under minor modifications on
nfft. In the original copy there is no parameter to control the exact numbers of nfft, and the nfft
is always the power of 2. While choosing nfft to be the power of 2 is always recommended, the
modified code allows other choices.

Value

multitaper_config returns a list of configuration parameters for the filters; multitaper also
returns the time, frequency and corresponding spectral power.

Examples

time <- seq(0, 3, by = 0.001)
x <- sin(time * 20*pi) + exp(-time^2) * cos(time * 10*pi)

res <- multitaper(
x, 1000, frequency_range = c(0,15),

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

14 notch_filter

time_bandwidth=1.5,
window_params=c(2,0.01)

)

image(
x = res$time,
y = res$frequency,
z = 10 * log10(res$spec),
xlab = "Time (s)",
ylab = 'Frequency (Hz)',
col = matlab_palette()

)

notch_filter Apply ’Notch’ filter

Description

Apply ’Notch’ filter

Usage

notch_filter(
s,
sample_rate,
lb = c(59, 118, 178),
ub = c(61, 122, 182),
domain = 1

)

Arguments

s numerical vector if domain=1 (voltage signals), or complex vector if domain=0

sample_rate sample rate

lb filter lower bound of the frequencies to remove

ub filter upper bound of the frequencies to remove; shares the same length as lb

domain 1 if the input signal is in the time domain, 0 if it is in the frequency domain

Details

Mainly used to remove electrical line frequencies at 60, 120, and 180 Hz.

Value

filtered signal in time domain (real numerical vector)

parallel-options 15

Examples

time <- seq(0, 3, 0.005)
s <- sin(120 * pi * time) + rnorm(length(time))

Welch periodogram shows a peak at 60Hz
pwelch(s, 200, plot = 1, log = "y")

notch filter to remove 60Hz
s1 <- notch_filter(s, 200, lb = 59, ub = 61)
pwelch(s1, 200, plot = 2, log = "y", col = "red")

parallel-options Set or get thread options

Description

Set or get thread options

Usage

detect_threads()

ravetools_threads(n_threads = "auto", stack_size = "auto")

Arguments

n_threads number of threads to set

stack_size Stack size (in bytes) to use for worker threads. The default used for "auto" is
2MB on 32-bit systems and 4MB on 64-bit systems.

Value

detect_threads returns an integer of default threads that is determined by the number of CPU
cores; ravetools_threads returns nothing.

Examples

if(interactive()){
detect_threads()
ravetools_threads(n_threads = 2)

}

16 pwelch

pwelch Calculate ’Welch Periodogram’

Description

pwelch is for single signal trace only; mv_pwelch is for multiple traces. Currently mv_pwelch is
experimental and should not be called directly.

Usage

pwelch(
x,
fs,
window = 64,
noverlap = 8,
nfft = 256,
col = "black",
xlim = NULL,
ylim = NULL,
main = "Welch periodogram",
plot = 0,
log = c("xy", "", "x", "y"),
...

)

S3 method for class 'pwelch'
print(x, ...)

S3 method for class 'pwelch'
plot(
x,
log = c("xy", "x", "y", ""),
type = "l",
add = FALSE,
col = 1,
cex = 1,
cex.main = cex,
cex.sub = cex,
cex.lab = cex * 0.8,
cex.axis = cex * 0.7,
las = 1,
main = "Welch periodogram",
xlab,
ylab,
xlim = NULL,
ylim = NULL,
...

pwelch 17

)

mv_pwelch(x, margin, fs, nfft)

Arguments

x 'pwelch' instance returned by pwelch function

fs sample rate, average number of time points per second

window window length in time points, default size is 64

noverlap overlap between two adjacent windows, measured in time points; default is 8

nfft number of basis functions to apply
col, xlim, ylim, main, type, cex, cex.main, cex.sub, cex.lab, cex.axis, las, xlab, ylab

parameters passed to plot.default

plot integer, whether to plot the result or not; choices are 0, no plot; 1 plot on a new
canvas; 2 add to existing canvas

log indicates which axis should be log10-transformed, used by the plot function.
For 'x' axis, it’s log10-transform; for 'y' axis, it’s 10log10-transform (decibel
unit). Choices are "xy", "x", "y", and "".

... will be passed to plot.pwelch or ignored

add logical, whether the plot should be added to existing canvas

margin the margin in which pwelch should be applied to

Value

A list with class 'ravetools-pwelch' that contains the following items:

freq frequencies used to calculate the ’periodogram’

spec resulting spectral power for each frequency

window window function (in numerical vector) used

noverlap number of overlapping time-points between two adjacent windows

nfft number of basis functions

fs sample rate

x_len input signal length

method a character string 'Welch'

Examples

x <- rnorm(1000)
pwel <- pwelch(x, 100)
pwel

plot(pwel, log = "xy")

18 raw-to-sexp

raw-to-sexp Convert raw vectors to R vectors

Description

Convert raw vectors to R vectors

Usage

raw_to_uint8(x)

raw_to_uint16(x)

raw_to_uint32(x)

raw_to_int8(x)

raw_to_int16(x)

raw_to_int32(x)

raw_to_int64(x)

raw_to_float(x)

raw_to_string(x)

Arguments

x raw vector of bytes

Details

For numeric conversions, the function names are straightforward. For example, raw_to_uintN
converts raw vectors to unsigned integers, and raw_to_intN converts raw vectors to signed integers.
The number 'N' stands for the number of bits used to store the integer. For example raw_to_uint8
uses 8 bits (1 byte) to store an integer, hence the value range is 0-255.

The input data length must be multiple of the element size represented by the underlying data. For
example uint16 integer uses 16 bites, and one raw number uses 8 bits, hence two raw vectors can
form one unsigned integer-16. That is, raw_to_uint16 requires the length of input to be multiple
of two. An easy calculation is: the length of x times 8, must be divided by 'N' (see last paragraph
for definition).

The returned data uses the closest available R native data type that can fully represent the data.
For example, R does not have single float type, hence raw_to_float returns double type, which
can represent all possible values in float. For raw_to_uint32, the potential value range is 0 -
(2^32-1). This exceeds the limit of R integer type (-2^31) - (2^31-1). Therefore, the returned
values will be real (double float) data type.

raw-to-sexp 19

There is no native data type that can store integer-64 data in R, package bit64 provides integer64
type, which will be used by raw_to_int64. Currently there is no solution to convert raw to unsigned
integer-64 type.

raw_to_string converts raw to character string. This function respects null character, hence is
slightly different than the native rawToChar, which translates raw byte-by-byte. If each raw byte
represents a valid character, then the above two functions returns the same result. However, when
the characters represented by raw bytes are invalid, raw_to_string will stop parsing and returns
only the valid characters, while rawToChar will still try to parse, and most likely to result in errors.
Please see Examples for comparisons.

Value

Numeric vectors, except for raw_to_string, which returns a string.

Examples

0x00, 0x7f, 0x80, 0xFF
x <- as.raw(c(0, 127, 128, 255))

raw_to_uint8(x)

The first bit becomes the integer sign
128 -> -128, 255 -> -1
raw_to_int8(x)

Comments based on little endian system

0x7f00 (32512), 0xFF80 (65408 unsigned, or -128 signed)
raw_to_uint16(x)
raw_to_int16(x)

0xFF807F00 (4286611200 unsigned, -8356096 signed)
raw_to_uint32(x)
raw_to_int32(x)

---------------------------- String ---------------------------

ASCII case: all valid
x <- charToRaw("This is an ASCII string")

raw_to_string(x)
rawToChar(x)

x <- c(charToRaw("This is the end."),
as.raw(0),
charToRaw("*** is invalid"))

rawToChar will raise error
raw_to_string(x)

---------------------------- Integer64 ------------------------

20 shift_array

Runs on little endian system
x <- as.raw(c(0x80, 0x00, 0x7f, 0x80, 0xFF, 0x50, 0x7f, 0x00))

Calculate bitstring, which concaternates the followings
10000000 (0x80), 00000000 (0x00), 01111111 (0x7f), 10000000 (0x80),
11111111 (0xFF), 01010000 (0x50), 01111111 (0x7f), 00000000 (0x00)

if(.Platform$endian == "little") {
bitstring <- paste0(
"00000000011111110101000011111111",
"10000000011111110000000010000000"

)
} else {

bitstring <- paste0(
"00000001000000001111111000000001",
"11111111000010101111111000000000"

)
}

This is expected value
bit64::as.integer64(structure(

bitstring,
class = "bitstring"

))

This is actual value
raw_to_int64(x)

shift_array Shift array by index

Description

Re-arrange arrays in parallel

Usage

shift_array(x, along_margin, unit_margin, shift_amount)

Arguments

x array, must have at least matrix

along_margin which index is to be shifted

unit_margin which dimension decides shift_amount

shift_amount shift amount along along_margin

shift_array 21

Details

A simple use-case for this function is to think of a matrix where each row is a signal and columns
stand for time. The objective is to align (time-lock) each signal according to certain events. For
each signal, we want to shift the time points by certain amount.

In this case, the shift amount is defined by shift_amount, whose length equals to number of signals.
along_margin=2 as we want to shift time points (column, the second dimension) for each signal.
unit_margin=1 because the shift amount is depend on the signal number.

Value

An array with same dimensions as the input x, but with index shifted. The missing elements will be
filled with NA.

Examples

Set ncores = 2 to comply to CRAN policy. Please don't run this line
ravetools_threads(n_threads = 2L)

x <- matrix(1:10, nrow = 2, byrow = TRUE)
z <- shift_array(x, 2, 1, c(1,2))

y <- NA * x
y[1,1:4] = x[1,2:5]
y[2,1:3] = x[2,3:5]

Check if z ang y are the same
z - y

array case
x is Trial x Frequency x Time
x <- array(1:27, c(3,3,3))

Shift time for each trial, amount is 1, -1, 0
shift_amount <- c(1,-1,0)
z <- shift_array(x, 3, 1, shift_amount)

if(interactive()){

par(mfrow = c(3, 2), mai = c(0.8, 0.6, 0.4, 0.1))
for(ii in 1:3){

image(t(x[ii, ,]), ylab = 'Frequency', xlab = 'Time',
main = paste('Trial', ii))

image(t(z[ii, ,]), ylab = 'Frequency', xlab = 'Time',
main = paste('Shifted amount:', shift_amount[ii]))

}

}

22 wavelet

wavelet ’Morlet’ wavelet transform (Discrete)

Description

Transform analog voltage signals with ’Morlet’ wavelets: complex wavelet kernels with π/2 phase
differences.

Usage

wavelet_kernels(freqs, srate, wave_num)

morlet_wavelet(
data,
freqs,
srate,
wave_num,
precision = c("float", "double"),
trend = c("constant", "linear", "none"),
...

)

Arguments

freqs frequency in which data will be projected on

srate sample rate, number of time points per second

wave_num desired number of cycles in wavelet kernels to balance the precision in time and
amplitude (control the smoothness); positive integers are strongly suggested

data numerical vector such as analog voltage signals

precision the precision of computation; choices are 'float' (default) and 'double'.

trend choices are 'constant': center the signal at zero; 'linear': remove the linear
trend; 'none' do nothing

... further passed to detrend;

Value

wavelet_kernels returns wavelet kernels to be used for wavelet function; morlet_wavelet returns
a file-based array if precision is 'float', or a list of real and imaginary arrays if precision is
'double'

Examples

if(interactive()){

generate sine waves

wavelet 23

time <- seq(0, 3, by = 0.01)
x <- sin(time * 20*pi) + exp(-time^2) * cos(time * 10*pi)

plot(time, x, type = 'l')

freq from 1 - 15 Hz; wavelet using float precision
freq <- seq(1, 15, 0.2)
coef <- morlet_wavelet(x, freq, 100, c(2,3))

to get coefficients in complex number from 1-10 time points
coef[1:10,]

power
power <- Mod(coef[])^2

Power peaks at 5Hz and 10Hz at early stages
After 1.0 second, 5Hz component fade away
image(power, x = time, y = freq, ylab = "frequency")

wavelet using double precision
coef2 <- morlet_wavelet(x, freq, 100, c(2,3), precision = "double")
power2 <- (coef2$real[])^2 + (coef2$imag[])^2

image(power2, x = time, y = freq, ylab = "frequency")

The maximum relative change of power with different precisions
max(abs(power/power2 - 1))

display kernels
freq <- seq(1, 15, 1)
kern <- wavelet_kernels(freq, 100, c(2,3))
print(kern)

plot(kern)

}

Index

baseline_array, 2

collapse, 5
cov, 10

decimate, 7
detect_threads (parallel-options), 15
detrend, 8, 22
diagnose_channel, 9

fast_cov, 10

hist, 9, 10

matlab_palette, 12
morlet_wavelet (wavelet), 22
multitaper, 12
multitaper_config (multitaper), 12
mv_pwelch (pwelch), 16

notch_filter, 14

par, 10
parallel-options, 15
plot.default, 17
plot.pwelch (pwelch), 16
print.pwelch (pwelch), 16
pwelch, 9, 10, 16

ravetools_threads (parallel-options), 15
raw-to-sexp, 18
raw_to_float (raw-to-sexp), 18
raw_to_int16 (raw-to-sexp), 18
raw_to_int32 (raw-to-sexp), 18
raw_to_int64 (raw-to-sexp), 18
raw_to_int8 (raw-to-sexp), 18
raw_to_string (raw-to-sexp), 18
raw_to_uint16 (raw-to-sexp), 18
raw_to_uint32 (raw-to-sexp), 18
raw_to_uint8 (raw-to-sexp), 18
rawToChar, 19

shift_array, 20

wavelet, 22
wavelet_kernels (wavelet), 22

24

	baseline_array
	collapse
	decimate
	detrend
	diagnose_channel
	fast_cov
	matlab_palette
	multitaper
	notch_filter
	parallel-options
	pwelch
	raw-to-sexp
	shift_array
	wavelet
	Index

