Package 'ggformula'

January 13, 2021

Title Formula Interface to the Grammar of Graphics

Description Provides a formula interface to 'ggplot2' graphics.

Type Package

Version 0.10.1

License MIT + file LICENSE

LazyData TRUE

LazyLoad TRUE

Depends R (>= 3.1), ggplot2 (>= 3.3), ggstance (>= 0.3.4), scales, ggridges

Imports mosaicCore (>= 0.7.0), rlang, magrittr, tibble, stringr, ggforce, grid, labelled

Suggests tidyr, mosaicData, dplyr, lattice, mosaic, palmerpenguins, testthat, vdiffr, knitr, rmarkdown, lubridate, survival, broom, maps, maptools, rgeos, sf, purrr, ggthemes, covr, ggplot2movies

VignetteBuilder knitr

RoxygenNote 7.1.1

Encoding UTF-8

URL https://github.com/ProjectMOSAIC/ggformula

BugReports https://github.com/ProjectMOSAIC/ggformula/issues

Collate 'MIpop-doc.R' 'formula2aes.R' 'gf_aux.R' 'gf_dist.R'
'layer_factory.R' 'gf_function2d.R' 'gf_functions.R'
'gf_plot.R' 'ggstance.R' 'ggridges.R' 'ggstrings.R'
'newplots.R' 'reexports.R' 'scales.R' 'utils.R' 'relabel.R'
'vdiffr.R' 'zzz.R'

NeedsCompilation no

Author Daniel Kaplan [aut], Randall Pruim [aut, cre]

Maintainer Randall Pruim < rpruim@calvin.edu>

Repository CRAN

Date/Publication 2021-01-13 10:00:09 UTC

R topics documented:

discrete_breaks	3
gf_abline	
gf_area	7
gf_ash	10
gf_bar	13
gf_barh	20
gf_bin2d	23
gf_blank	
gf_boxplot	28
gf_boxploth	
gf_col	
gf_contour	
gf_count	
gf_crossbar	
gf_curve	
gf_density	
gf_density_2d	
gf_dist	
gf_dotplot	
gf_ecdf	
gf_ellipse	
gf_empty	
gf_errorbar	
gf_errorbarh	
gf_facet_wrap	
gf_fitdistr	
gf_freqpoly	
gf_function	
gf_function_2d	
gf_hex	
gf_histogram	
gf_jitter	
gf_labs	
gf_line	
gf_linerange	
gf plot	
gf_point	
gf_polygon	
gf_qq	
gf_quantile	
gf_raster	
gf_rect	
gf_relabel	
gf_ribbon	
gr_ridgeline	
c – c	
gf_rug	130

discrete_breaks 3

disc	ete_breaks Discrete Breaks	
Index		177
	var_label	175
	stat_spline	
	stat_qqline	
	stat_lm	
	stat_fitdistr	
	StatAsh	
	percs_by_group	
	MIpop	
	layer_factory	
	ggformula	
	gf_violin	
	gf_tile	
	gf_theme	
	gf_text	
	gf_step	
	gf_spoke	
	gf_spline	
	gf_smooth	
	gf_sina	
	gf_sf	
	gf_segment	

Description

Creates a function that can be passed to scales for creating discrete breaks at multilples of resolution.

Usage

```
discrete_breaks(resolution = 1)
```

Arguments

resolution

Resolution of the breaks

Value

A function that can be passed to scales functions as the breaks argument.

Examples

```
x <- rbinom(100, 100, 0.4)
p <- gf_bar( ~ x)
p %>% gf_refine(scale_x_continuous(breaks = discrete_breaks()))
p %>% gf_refine(scale_x_continuous(breaks = discrete_breaks(5)))
p %>% gf_refine(scale_x_continuous(breaks = discrete_breaks(2)))
```

gf_abline

gf_abline

Reference lines – horizontal, vertical, and diagonal.

Description

These functions create layers that display lines described i various ways. Unlike most of the plotting functions in ggformula, these functions do not take a formula as input for describing positional attributes of the plot.

```
gf_abline(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  slope,
  intercept,
  color,
  size,
  linetype,
  alpha,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  show.legend = NA,
  show.help = NULL,
  inherit = FALSE,
  environment = parent.frame()
)
gf_hline(
  object = NULL,
  gformula = NULL,
  data = NULL,
 yintercept,
  color,
  size,
  linetype,
  alpha,
  xlab,
 ylab,
  title,
  subtitle,
```

gf_abline 5

```
caption,
  show.legend = NA,
  show.help = NULL,
  inherit = FALSE,
  environment = parent.frame()
)
gf_vline(
  object = NULL,
  gformula = NULL,
 data = NULL,
  . . . ,
 xintercept,
  color,
  size,
  linetype,
  alpha,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  show.legend = NA,
  show.help = NULL,
  inherit = FALSE,
  environment = parent.frame()
)
gf_coefline(object = NULL, coef = NULL, model = NULL, ...)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

Must be NULL.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

. . .

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = \sim expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

gf_abline

intercept Parameters that control the position of the line. If these are set, data, mapping and show.legend are overridden.
color A color or a formula used for mapping color.
size A numeric size or a formula used for mapping size.
linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
alpha Opacity $(0 = invisible, 1 = opaque)$.
xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().
title Title, sub-title, and caption for the plot. See also gf_labs().
subtitle Title, sub-title, and caption for the plot. See also gf_labs().
caption Title, sub-title, and caption for the plot. See also gf_labs().
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help If TRUE, display some minimal help.
inherit A logical indicating whether default attributes are inherited.
environment An environment in which to look for variables not found in data.
yintercept Parameters that control the position of the line. If these are set, data, mapping and show.legend are overridden.
Parameters that control the position of the line. If these are set, data, mapping and show.legend are overridden.
coef A numeric vector of coefficients.
model A model from which to extract coefficients.

See Also

```
ggplot2::geom_abline(), ggplot2::geom_vline(), ggplot2::geom_hline()
```

Examples

```
mtcars2 <- df_stats(wt ~ cyl, data = mtcars, median_wt = median)
gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) %>%
    gf_abline(slope = ~0, intercept = ~median_wt, color = ~cyl, data = mtcars2)
gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) %>%
    gf_abline(slope = 0, intercept = 3, color = "green")
# avoid warnings by using formulas:
gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) %>%
    gf_abline(slope = ~0, intercept = ~3, color = "green")
```

gf_area 7

```
gf_point(wt ~ hp, size = ~wt, color = ~cyl, data = mtcars) %>%
 gf_hline(yintercept = ~median_wt, color = ~cyl, data = mtcars2)
gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars) %>%
 gf_abline(color = "red", slope = ~ - 0.10, intercept = ~ 35)
gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars) %>%
 gf_abline(
   color = "red", slope = ~slope, intercept = ~intercept,
   data = data.frame(slope = -0.10, intercept = 33:35)
# We can set the color of the guidelines while mapping color in other layers
gf_point(mpg ~ hp, color = ~cyl, size = ~ wt, data = mtcars) %>%
 gf_hline(color = "navy", yintercept = \sim c(20, 25), data = NA) %>%
 gf_vline(color = "brown", xintercept = ~c(200, 300), data = NA)
# If we want to map the color of the guidelines, it must work with the
# scale of the other colors in the plot.
gf_point(mpg ~ hp, size = ~wt, data = mtcars, alpha = 0.3) %>%
 gf_hline(color = ~"horizontal", yintercept = ~ c(20, 25), data = NA) %>%
 gf_vline(color = "vertical", xintercept = ~c(100, 200, 300), data = NA)
gf_point(mpg ~ hp, size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3) %>%
 gf_hline(color = "orange", yintercept = ~ 20) %>%
 gf_vline(color = ~c("4", "6", "8"), xintercept = ~c(80, 120, 250), data = NA)
gf_point(mpg ~ hp, size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3) %>%
 gf_hline(color = "orange", yintercept = ~ 20) %>%
 gf_vline(color = c("green", "red", "blue"), xintercept = ~ c(80, 120, 250),
   data = NA)
# reversing the layers requires using inherit = FALSE
gf_hline(color = "orange", yintercept = ~ 20) %>%
 gf_point(mpg ~ hp,
   size = ~wt, color = ~ factor(cyl), data = mtcars, alpha = 0.3,
   inherit = FALSE
```

gf_area

Formula interface to geom_area()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

8 gf_area

Usage

```
gf_area(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "area",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

data

When chaining, this holds an object produced in the earlier portions of the chain. object

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

gf_area 9

color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

See Also

```
ggplot2::geom_area()
```

Examples

```
if (require(dplyr) && require(mosaicData)) {
   Temps <- Weather %>%
     filter(city == "Chicago", year == 2016, month <= 4)
   gf_linerange(low_temp + high_temp ~ date, color = ~high_temp, data = Temps)
   gf_ribbon(low_temp + high_temp ~ date, data = Temps, color = "navy", alpha = 0.3)
   gf_area(high_temp ~ date, data = Temps, color = "navy", alpha = 0.3)

   gf_ribbon(low_temp + high_temp ~ date, data = Weather, alpha = 0.3) %>%
     gf_facet_grid(city ~ .)

   gf_linerange(low_temp + high_temp ~ date, color = ~high_temp, data = Weather) %>%
     gf_facet_grid(city ~ .) %>%
     gf_refine(scale_colour_gradientn(colors = rev(rainbow(5))))
}
```

 gf_ash

gf_ash

Average Shifted Histograms

Description

An ASH plot is the average over all histograms of a fixed bin width. geom_ash() and gf_ash() provide ways to create ASH plots using **ggplot2** or **ggformula**.

```
gf_ash(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "line",
  stat = "ash",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
stat_ash(
  mapping = NULL,
  data = NULL,
  geom = "line",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  binwidth = NULL,
  adjust = 1,
)
```

gf_ash 11

```
geom_ash(
  mapping = NULL,
  data = NULL,
  stat = "ash",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  binwidth = NULL,
  adjust = 1,
  ...
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ~x or y ~ x. y may be stat(density) or stat(count)

or stat(ndensity) or stat(ncount). Faceting can be achieved by including

| in the formula.

data A data frame with the variables to be plotted.

... Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also $gf_{abs}()$. subtitle Title, sub-title, and caption for the plot. See also $gf_{abs}()$.

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

geom A character string naming the geom used to make the layer.

Stat A character string naming the stat used to make the layer.

position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show.legend A logical indicating whether this layer should be included in the legends. NA,

the default, includes layer in the legends if any of the attributes of the layer are

mapped.

 gf_ash

show.help If TRUE, display some minimal help. inherit A logical indicating whether default attributes are inherited. environment An environment in which to look for variables not found in data. mapping set of aesthetic mappings created by aes() or aes_(). na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values. A logical indicating whether default aesthetics are inherited. inherit.aes binwidth the width of the histogram bins. If NULL (the default) the binwidth will be chosen so that approximately 10 bins cover the data. adjust can be used to to increase or decrease binwidth. a numeric adjustment to binwidth. Primarily useful when binwidth is not adjust

specified. Increasing adjust makes the plot smoother.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
geom_histogram(), link{gf_histogram}().
```

Examples

```
data(penguins, package = "palmerpenguins")
gf_ash(~bill_length_mm, color = ~species, data = penguins)
gf_ash(~bill_length_mm, color = ~species, data = penguins, adjust = 2)
gf_ash(~bill_length_mm, color = ~species, data = penguins, binwidth = 1)
gf_ash(~bill_length_mm, color = ~species, data = penguins, binwidth = 1, adjust = 2)
ggplot(faithful, aes(x = eruptions)) +
    geom_histogram(aes(y = stat(density)),
        fill = "lightskyblue", colour = "gray50", alpha = 0.2
    ) +
```

```
geom_ash(colour = "red") +
geom_ash(colour = "forestgreen", adjust = 2) +
geom_ash(colour = "navy", adjust = 1 / 2) +
theme_minimal()
```

gf_bar

Formula interface to geom_bar()

Description

There are two types of bar charts: geom_bar() and geom_col(). geom_bar() makes the height of the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied, the sum of the weights). If you want the heights of the bars to represent values in the data, use geom_col() instead. geom_bar() uses stat_count() by default: it counts the number of cases at each x position. geom_col() uses stat_identity(): it leaves the data as is.

```
gf_bar(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 width = NULL,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "count",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_counts(
  object = NULL,
  gformula = NULL,
```

```
data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 width = NULL,
 xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "count",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_props(
 object = NULL,
  gformula = NULL,
 data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab = "proportion",
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "count",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame(),
  denom = ~PANEL
)
```

```
gf_percents(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab = "percent",
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "count",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame(),
  denom = ~PANEL
)
gf_countsh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 width = NULL,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
  stat = "counth",
  position = "stackv",
  show.legend = NA,
```

```
show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_colh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 width = NULL,
 xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "colh",
  stat = "identity",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_propsh(
 object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab = "proportion",
 ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
```

```
stat = "counth",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame(),
 denom = ~PANEL
)
gf_percentsh(
  object = NULL,
  gformula = NULL,
 data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 xlab = "percent",
 ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
  stat = "counth",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame(),
  denom = ~PANEL
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula, typically with shape $\sim x$. ($y \sim x$ is also possible, but typically using one of $gf_col()$, $gf_props()$, or $gf_percents()$ is preferable to using this formula shape.) Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

> A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

Used for grouping. group

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

width Width of the bars.

xlab Label for x-axis. See also gf_labs(). ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

Override the default connection between geom_bar() and stat_count(). geom stat Override the default connection between geom_bar() and stat_count().

Position adjustment, either as a string, or the result of a call to a position adjustposition

ment function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if

> any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

A formula, the right hand side of which describes the denominators used for denom

computing proportions and percents. These are computed after the stat has been applied to the data and should refer to variables available at that point. See the

examples.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_bar()
```

Examples

```
gf_bar(~substance, data = mosaicData::HELPrct)
gf_bar(~substance, data = mosaicData::HELPrct, fill = ~sex)
gf_bar(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge()
# gf_counts() is another name for gf_bar()
gf_counts(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge()
# gf_props() and gf_percents() use proportions or percentages instead of counts
# use denom to control which denominators are used.
gf_props(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge()
)
gf_props(substance ~ .,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge(),
  orientation = 'y'
)
gf_propsh(substance ~ .,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodgev(),
gf_percents(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge()
```

```
gf_percents(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge(),
  denom = ~x
)
gf_percents(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge(),
  denom = ~fill
)
gf_percents(~substance | sex,
  data = mosaicData::HELPrct, fill = ~homeless,
  position = position_dodge()
gf_percents(~substance | sex,
  data = mosaicData::HELPrct,
  fill = ~homeless,
  denom = ~fill,
  position = position_dodge()
)
gf_percents(~substance | sex,
  data = mosaicData::HELPrct,
  fill = ~homeless,
  denom = ~interaction(fill, PANEL),
  position = position_dodge()
if (require(scales)) {
  gf\_percents(\sim substance,
   data = mosaicData::HELPrct, fill = ~sex,
    position = position_dodge(),
    denom = \sim x,
  ) %>%
    gf_refine(scale_y_continuous(labels = scales::percent))
}
```

gf_barh

Formula interface to geom_barh()

Description

Horizontal version of geom_bar().

```
gf_barh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
```

```
alpha,
  color,
  fill,
  group,
  linetype,
  size,
 width = NULL,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
  stat = "counth",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula, typically with shape $\sim x$. ($y \sim x$ is also possible, but typically using one of $gf_col()$, $gf_props()$, or $gf_percents()$ is preferable to using this formula shape.) Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

. . .

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
width	Width of the bars.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	Override the default connection between geom_bar() and stat_count().
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Horizontal Geoms

There are two ways to obtain "horizontal" geoms: (1) The ggstance package provides a set of "horizontal" geoms and positions; (2) Thee ggplot2 now provides an orientation argument for "native" horizontal geoms and positions. ggformula supports both.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

gf_bin2d 23

See Also

```
ggstance::geom_barh()
```

Examples

```
gf_barh(~Diet, data = ChickWeight)
gf_bar(Diet ~ ., data = ChickWeight, orientation = 'y' )
gf_barh(~substance, data = mosaicData::HELPrct, fill = ~sex)
gf_bar(substance ~ ., data = mosaicData::HELPrct, fill = ~sex, orientation = 'y')
gf_barh(~substance,
  data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodgev()
)
# gf_countsh() is another name for gf_barh()
gf_countsh(~Diet, data = ChickWeight)
# gf_propsh() and gf_percentsh() use proportions or percentages instead of counts
gf_propsh(substance ~ ., data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodgev())
gf_props(substance ~ ., data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge(), orientation = 'y')
gf_props(~substance, data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge())
gf_percents(~substance, data = mosaicData::HELPrct, fill = ~sex,
  position = position_dodge())
if (require(scales)) {
  gf_props(~substance, data = mosaicData::HELPrct, fill = ~sex,
   position = position_dodge()) %>%
      gf_refine(scale_y_continuous(labels = scales::percent))
}
```

gf_bin2d

Formula interface to geom_bin2d()

Description

geom_bin2d() uses ggplot2::stat_bin2d() to bin the data before using gf_tile() to display
the results.

```
gf_bin2d(
  object = NULL,
  gformula = NULL,
  data = NULL,
    ...,
  alpha,
  color,
```

24 gf_bin2d

```
fill,
  group,
  linetype,
  size,
 xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "tile",
 stat = "bin2d",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including \mid in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.
alpha	Opacity $(0 = invisible, 1 = opaque)$.
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.

gf_bin2d 25

position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_bin2d(), gf_tile()
```

Examples

```
gf_bin2d(eruptions ~ waiting, data = faithful, bins = 15) %>%
gf_refine(scale_fill_viridis_c(begin = 0.1, end = 0.9))
```

26 gf_blank

gf_blank

Formula interface to geom_blank()

Description

The blank geom draws nothing, but can be a useful way of ensuring common scales between different plots. See expand_limits() for more details.

```
gf_blank(
  object = NULL,
  gformula = NULL,
  data = NULL,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "blank",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_frame(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "blank",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

gf_blank 27

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_blank()
```

Examples

gf_boxplot

Formula interface to geom_boxplot()

Description

The boxplot compactly displays the distribution of a continuous variable. It visualises five summary statistics (the median, two hinges and two whiskers), and all "outlying" points individually.

```
gf_boxplot(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  coef,
  outlier.color = NULL,
  outlier.fill = NULL,
  outlier.shape = 19,
  outlier.size = 1.5,
  outlier.stroke = 0.5,
  outlier.alpha = NULL,
  notch = FALSE,
  notchwidth = 0.5,
  varwidth = FALSE,
  xlab,
  ylab,
  title,
```

```
subtitle,
caption,
geom = "boxplot",
stat = "boxplot",
position = "dodge",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer. There are three options:

If NULL , the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

coef Length of the whiskers as multiple of IQR. Defaults to 1.5.

outlier.color Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US $\,$

spelling will take precedence.

Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier.shape = NA. Importantly, this does not remove the outliers,

> it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for outlier.fill

> In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.

> Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier. shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

outlier.shape Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for the box.

> In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.

> Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier. shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

outlier.size Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for the box.

> In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.

> Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier. shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

outlier.stroke Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for the box.

> In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.

> Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier. shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for the box.

> In the unlikely event you specify both US and UK spellings of colour, the US spelling will take precedence.

> Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier. shape = NA. Importantly, this does not remove the outliers,

outlier.alpha

	it only hides them, so the range calculated for the y-axis will be the same with outliers shown and outliers hidden.
notch	If FALSE (default) make a standard box plot. If TRUE, make a notched box plot. Notches are used to compare groups; if the notches of two boxes do not overlap, this suggests that the medians are significantly different.
notchwidth	For a notched box plot, width of the notch relative to the body (defaults to notchwidth = 0.5).
varwidth	If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with widths proportional to the square-roots of the number of observations in the groups (possibly weighted, using the weight aesthetic).
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	Use to override the default connection between geom_boxplot and stat_boxplot.
stat	Use to override the default connection between geom_boxplot and stat_boxplot.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

References

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statistician 32, 12-16.

See Also

```
ggplot2::geom_boxplot(), fivenum(), df_stats()
```

Examples

```
gf_boxplot(age ~ substance, data = mosaicData::HELPrct)
gf_boxplot(age ~ substance, data = mosaicData::HELPrct, varwidth = TRUE)
gf_boxplot(age ~ substance, data = mosaicData::HELPrct, color = ~sex)
gf_boxplot(age ~ substance,
  data = mosaicData::HELPrct,
  color = ~sex, outlier.color = "gray50"
# longer whiskers
gf_boxplot(age ~ substance,
  data = mosaicData::HELPrct,
  color = \sim sex, coef = 2
)
# Note: width for boxplots is full width of box.
        For jittering, it is the half-width.
gf_boxplot(age ~ substance | sex,
  data = mosaicData::HELPrct,
  coef = 5, width = 0.4
  gf_jitter(width = 0.2, alpha = 0.3)
# move boxplots away a bit by adjusting dodge
gf_boxplot(age ~ substance,
  data = mosaicData::HELPrct,
  color = ~sex, position = position_dodge(width = 0.9)
)
```

gf_boxploth

Formula interface to geom boxploth()

Description

Horizontal version of geom_boxplot().

```
gf_boxploth(
  object = NULL,
  gformula = NULL,
  data = NULL,
```

```
. . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  coef,
  outlier.color = NULL,
  outlier.fill = NULL,
  outlier.shape = 19,
  outlier.size = 1.5,
  outlier.stroke = 0.5,
  outlier.alpha = NULL,
  notch = FALSE,
  notchwidth = 0.5,
  varwidth = FALSE,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "boxploth",
  stat = "boxploth",
  position = "dodgev",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $y \sim x$. Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

. . .

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

coef Length of the whiskers as multiple of IQR. Defaults to 1.5.

outlier.color Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

outlier.fill Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier.shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with

outliers shown and outliers hidden.

outlier.shape Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

outlier.size Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

outlier.stroke Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

outlier.alpha Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for

the box.

In the unlikely event you specify both US and UK spellings of colour, the US

spelling will take precedence.

Sometimes it can be useful to hide the outliers, for example when overlaying the raw data points on top of the boxplot. Hiding the outliers can be achieved by setting outlier.shape = NA. Importantly, this does not remove the outliers, it only hides them, so the range calculated for the y-axis will be the same with

outliers shown and outliers hidden.

notch	If FALSE (default) make a standard box plot. If TRUE, make a notched box plot. Notches are used to compare groups; if the notches of two boxes do not overlap, this suggests that the medians are significantly different.
notchwidth	For a notched box plot, width of the notch relative to the body (defaults to $notchwidth = 0.5$).
varwidth	If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with widths proportional to the square-roots of the number of observations in the groups (possibly weighted, using the weight aesthetic).
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	Use to override the default connection between geom_boxplot and stat_boxplot.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Horizontal Geoms

There are two ways to obtain "horizontal" geoms: (1) The ggstance package provides a set of "horizontal" geoms and positions; (2) Thee ggplot2 now provides an orientation argument for "native" horizontal geoms and positions. ggformula supports both.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

36 gf_col

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggstance::geom_boxploth(), fivenum(), df_stats()
```

Examples

```
gf_boxploth(sex ~ age, data = mosaicData::HELPrct, varwidth = TRUE)
gf_boxplot(sex ~ age, data = mosaicData::HELPrct, varwidth = TRUE, orientation = 'y')
gf_boxploth(substance ~ age, data = mosaicData::HELPrct, color = ~sex)
# move boxplots away a bit by adjusting dodge
gf_boxploth(substance ~ age,
 data = mosaicData::HELPrct, color = ~sex,
 position = position_dodgev(height = 0.9)
# gf_boxplot guesses horizontal because substance is categorical
gf_boxplot(substance ~ age,
 data = mosaicData::HELPrct, color = ~sex,
 position = position_dodge(width = 0.9)
gf_boxploth(substance ~ age, data = mosaicData::HELPrct, color = ~sex, outlier.color = "gray50")
# longer whiskers
gf_boxploth(substance ~ age, data = mosaicData::HELPrct, color = ~sex, coef = 2)
# Note: height for boxplots is full width of box.
  For jittering, it is the half-height.
gf_boxploth(substance ~ age | sex, data = mosaicData::HELPrct, coef = 5, height = 0.4) %>%
 gf_jitter(height = 0.2, alpha = 0.3)
# combining boxplots and histograms
gf_histogram(~eruptions, data = faithful) %>%
 gf_boxploth(0 \sim eruptions, alpha = 0, width = 2)
gf_histogram(~eruptions, data = faithful) %>%
 gf_boxploth(-2 \sim eruptions, alpha = 0, width = 2)
gf_histogram(~eruptions, data = faithful) %>%
 gf_boxploth(32 \sim eruptions, alpha = 0, width = 2)
```

gf_col

Formula interface to geom_col()

Description

There are two types of bar charts: geom_bar() and geom_col(). geom_bar() makes the height of the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied, the sum of the weights). If you want the heights of the bars to represent values in the data, use geom_col() instead. geom_bar() uses stat_count() by default: it counts the number of cases at each x position. geom_col() uses stat_identity(): it leaves the data as is.

gf_col 37

Usage

```
gf_col(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "col",
stat = "identity",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including \mid in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.
alpha	Opacity ($0 = \text{invisible}$, $1 = \text{opaque}$).
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().

38 gf_col

ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_col()
```

Examples

```
SomeData <- data.frame(
  group = LETTERS[1:3],
  count = c(20, 25, 18)
)
gf_col(count ~ group, data = SomeData)</pre>
```

gf_contour 39

```
# A Pareto chart
if (require(dplyr) && require(mosaicData)) {
 HELPrct %>%
   group_by(substance) %>%
    summarise(count = n()) %>%
   ungroup() %>%
   dplyr::arrange(-count) %>%
   mutate(
     cumcount = cumsum(count),
      substance = reorder(substance, -count)
   gf_col(count ~ substance, fill = "skyblue") %>%
   gf_point(cumcount ~ substance) %>%
   gf_line(cumcount ~ substance, group = 1) %>%
   gf_refine(
     scale_y_continuous(sec.axis = sec_axis(~ . / nrow(HELPrct)))
}
```

gf_contour

Formula interface to geom_contour() and geom_contour_filled()

Description

ggplot2 can not draw true 3D surfaces, but you can use geom_contour(), geom_contour_filled(), and geom_tile() to visualise 3D surfaces in 2D. To specify a valid surface, the data must contain x, y, and z coordinates, and each unique combination of x and y can appear exactly once. Contouring tends to work best when x and y form a (roughly) evenly spaced grid. If your data is not evenly spaced, you may want to interpolate to a grid before visualising, see geom_density_2d().

```
gf_contour(
  object = NULL,
  gformula = NULL,
  data = NULL,
    ...,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "contour",
  stat = "contour",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
```

40 gf_contour

```
inherit = TRUE,
  environment = parent.frame()
)
gf_contour_filled(
  object = NULL,
  gformula = NULL,
 data = NULL,
  . . . ,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "contour_filled",
  stat = "contour_filled",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

Label for x-axis. See also gf_labs(). xlab

Label for y-axis. See also gf_labs(). ylab

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

41 gf_contour

caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	The geometric object to use display the data
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = \sim expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the ggplot2 code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_contour(), gf_density_2d()
```

Examples

```
gf_density_2d(eruptions ~ waiting, data = faithful, alpha = 0.5, color = "navy") %>%
 gf_contour(density ~ waiting + eruptions, data = faithfuld, bins = 10, color = "red")
gf_contour_filled(density ~ waiting + eruptions, data = faithfuld, bins = 10,
    show.legend = FALSE) %>%
 gf_jitter(eruptions ~ waiting, data = faithful, color = "white", alpha = 0.5,
   inherit = FALSE)
```

42 gf_count

gf_count

Formula interface to geom_count()

Description

This is a variant <code>geom_point()</code> that counts the number of observations at each location, then maps the count to point area. It useful when you have discrete data and overplotting.

Usage

```
gf_count(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  shape,
  size,
  stroke,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "point",
  stat = "sum",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including in the formula.
data	A data frame with the variables to be plotted.
•••	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

gf_count 43

alpha	Opacity ($0 = \text{invisible}, 1 = \text{opaque}$).
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
shape	An integer or letter shape or a formula used for mapping shape.
size	A numeric size or a formula used for mapping size.
stroke	A numeric size of the border or a formula used to map stroke.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

gf_crossbar

See Also

```
ggplot2::geom_count()
```

Examples

```
# Best used in conjunction with scale_size_area which ensures that
# counts of zero would be given size 0. This doesn't make much difference
# here because the smallest count is already close to 0.

gf_count(hwy ~ cty, data = mpg, alpha = 0.3) %>%
    gf_refine(scale_size_area())
```

gf_crossbar

Formula interface to geom_crossbar()

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a single graphical object.

```
gf_crossbar(
 object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  fatten = 2.5,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "crossbar",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

45 gf_crossbar

```
gf_crossbarh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  fatten = 2.5,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "crossbarh",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y + ymin + ymax ~ x. Faceting can be achieved by includ-

ing | in the formula.

data The data to be displayed in this layer. There are three options:

> If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

Used for grouping. group

46 gf_crossbar

linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
fatten	A multiplicative factor used to increase the size of the middle bar in geom_crossbar() and the middle point in geom_pointrange().
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_crossbar()
```

gf_curve 47

Examples

```
if (require(mosaicData) && require(dplyr)) {
 HELP2 <- HELPrct %>%
    group_by(substance, sex) %>%
    summarise(
     mean.age
               = mean(age),
     median.age = median(age),
     max.age
                = max(age),
     min.age
                = min(age),
     sd.age
                = sd(age),
     10
                 = mean.age - sd.age,
     hi
                 = mean.age + sd.age
   )
 gf_jitter(age ~ substance, data = HELPrct,
      alpha = 0.7, width = 0.2, height = 0, color = "skyblue") %>%
    gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2) %>%
   gf_facet_grid(~sex)
 gf_jitter(age ~ substance, data = HELPrct,
      alpha = 0.7, width = 0.2, height = 0, color = "skyblue") \%%
    gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) %>%
   gf_facet_grid(~sex)
 gf_jitter(age ~ substance, data = HELPrct,
     alpha = 0.7, width = 0.2, height = 0, color = "skyblue") \%%
   gf_crossbar(mean.age + lo + hi ~ substance, data = HELP2,
     fill = "transparent") %>%
   gf_facet_grid(~sex)
 gf_jitter(substance ~ age, data = HELPrct,
     alpha = 0.7, height = 0.2, width = 0, color = "skyblue") %>%
   gf_crossbarh(substance ~ mean.age + lo + hi, data = HELP2,
     fill = "transparent", color = "red") %>%
   gf_facet_grid(~sex)
}
```

gf_curve

Formula interface to geom_curve()

Description

geom_segment() draws a straight line between points (x, y) and (xend, yend). geom_curve draws a curved line. See the underlying drawing function grid::curveGrob() for the parameters that control the curve.

48 gf_curve

Usage

```
gf_curve(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  curvature = 0.5,
  angle = 90,
  ncp = 5,
  arrow = NULL,
  lineend = "butt",
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "curve",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $y + yend \sim x + xend$.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

. . .

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

gf_curve 49

~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

curvature A numeric value giving the amount of curvature. Negative values produce left-

hand curves, positive values produce right-hand curves, and zero produces a

straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points

of the curve. Values less than 90 skew the curve towards the start point and

values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates

a smoother curve.

arrow specification for arrow heads, as created by arrow().

lineend Line end style (round, butt, square).
xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_curve()
```

Examples

```
D <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
gf_point(mpg ~ wt, data = mtcars) %>%
    gf_curve(y1 + y2 ~ x1 + x2, data = D, color = "navy") %>%
    gf_segment(y1 + y2 ~ x1 + x2, data = D, color = "red")
```

gf_density

Formula interface to stat_density()

Description

Computes and draws a kernel density estimate, which is a smoothed version of the histogram and is a useful alternative when the data come from an underlying smooth distribution. The only difference between gf_dens() and gf_density() is the default geom used to show the density curve: gf_density() uses an area geom (which can be filled). gf_dens() using a line geom (which cannot be filled).

```
gf_density(
  object = NULL,
  gformula = NULL,
  data = NULL,
    ...,
  alpha = 0.5,
  color,
  fill,
```

```
group,
  linetype,
  size,
  kernel = "gaussian",
  n = 512,
  trim = FALSE,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "area",
  stat = "density",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_dens(
  object = NULL,
  gformula = NULL,
 data = NULL,
  alpha = 0.5,
  color,
  fill = NA,
  group,
  linetype,
  size,
  kernel = "gaussian",
  n = 512,
  trim = FALSE,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "line",
  stat = "density",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

```
gf_dens2(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha = 0.5,
  color,
  fill = NA,
  group,
  linetype,
  size,
  kernel = "gaussian",
  n = 512,
  trim = FALSE,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "density_line",
  stat = "density",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape ~ x. Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

. .

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

alpha	Opacity $(0 = invisible, 1 = opaque)$.
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
kernel	Kernel. See list of available kernels in density().
n	number of equally spaced points at which the density is to be estimated, should be a power of two, see density() for details
trim	If FALSE, the default, each density is computed on the full range of the data. If TRUE, each density is computed over the range of that group: this typically means the estimated x values will not line-up, and hence you won't be able to stack density values. This parameter only matters if you are displaying multiple densities in one plot or if you are manually adjusting the scale limits.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	Use to override the default connection between ${\tt geom_density}$ and ${\tt stat_density}$.
stat	Use to override the default connection between ${\tt geom_density}$ and ${\tt stat_density}$.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = \sim expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
gf_ash(), ggplot2::geom_density()
```

Examples

```
gf_dens()
data(penguins, package = "palmerpenguins")
gf_density(~bill_length_mm, fill = ~species, data = penguins)
gf_dens(~bill_length_mm, color = ~species, data = penguins)
gf_dens2(~bill_length_mm, color = ~species, fill = ~species, data = penguins)
gf_freqpoly(~bill_length_mm, color = ~species, data = penguins, bins = 15)
# Chaining in the data
data(penguins, package = "palmerpenguins")
penguins %>% gf_dens(~bill_length_mm, color = ~species)
# horizontal orientation
penguins %>% gf_dens(bill_length_mm ~ ., color = ~species)
```

Description

Perform a 2D kernel density estimation using MASS::kde2d() and display the results with contours. This can be useful for dealing with overplotting. This is a 2D version of geom_density(). geom_density_2d() draws contour lines, and geom_density_2d_filled() draws filled contour bands.

```
gf_density_2d(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  group,
  linetype,
  size,
  contour = TRUE,
  n = 100,
```

```
h = NULL,
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "density_2d",
  stat = "density_2d",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_density_2d_filled(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
  linetype,
  size,
  contour = TRUE,
  n = 100,
  h = NULL,
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "density_2d_filled",
  stat = "density_2d_filled",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

```
gf_density2d(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  group,
  linetype,
  size,
  contour = TRUE,
  n = 100,
  h = NULL,
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "density2d",
  stat = "density2d",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_density2d_filled(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  contour = TRUE,
  n = 100,
  h = NULL
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  xlab,
  ylab,
```

```
title,
  subtitle,
  caption,
  geom = "density2d_filled",
  stat = "density_2d_filled",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

.. Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

contour If TRUE, contour the results of the 2d density estimation.

n Number of grid points in each direction.

h Bandwidth (vector of length two). If NULL, estimated using MASS::bandwidth.nrd().

lineend Line end style (round, butt, square).
linejoin Line join style (round, mitre, bevel).
linemitre Line mitre limit (number greater than 1).
xlab Label for x-axis. See also gf_labs().

ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	$Use to override the default connection between {\tt geom_density_2d} \ and {\tt stat_density_2d}.$
stat	$Use to override the default connection between {\tt geom_density_2d} \ and {\tt stat_density_2d}.$
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_density_2d()
```

Examples

```
gf_jitter(avg_drinks ~ age,
    alpha = 0.2, data = mosaicData::HELPrct,
    width = 0.4, height = 0.4
) %>%
    gf_density_2d(avg_drinks ~ age, data = mosaicData::HELPrct)
gf_density_2d_filled(avg_drinks ~ age, data = mosaicData::HELPrct, show.legend = FALSE) %>%
```

gf_dist 59

```
gf_jitter(avg_drinks ~ age,
    alpha = 0.3, data = mosaicData::HELPrct,
    width = 0.4, height = 0.4,
    color = "white"
)
gf_jitter(avg_drinks ~ age,
  alpha = 0.2, data = mosaicData::HELPrct,
  width = 0.4, height = 0.4
) %>%
  gf_density2d(avg_drinks ~ age, data = mosaicData::HELPrct)
gf_density2d_filled(avg_drinks ~ age, data = mosaicData::HELPrct, show.legend = FALSE) %>%
  gf_jitter(avg_drinks ~ age,
    alpha = 0.4, data = mosaicData::HELPrct,
    width = 0.4, height = 0.4,
    color = "white"
)
```

gf_dist

Plot distributions

Description

Create a layer displaying a probability distribution.

Usage

```
gf_dist(
  object = ggplot(),
  dist,
  ...,
  xlim = NULL,
  kind = c("density", "cdf", "qq", "qqstep", "histogram"),
  resolution = 5000L,
  params = NULL
)
```

Arguments

object a gg object.
dist A character

A character string providing the name of a distribution. Any distribution for which the functions with names formed by prepending "d", "p", or "q" to dist exist can be used.

additional arguments passed both to the distribution functions and to the layer. Note: Possible ambiguities using params or by preceding plot argument with

plot_.

A numeric vector of length 2 providing lower and upper bounds for the portion of the distribution that will be displayed. The default is to attempt to determine

reasonable bounds using quantiles of the distribution.

gf_dotplot

kind One of "density", "cdf", "qq", "qqstep", or "histogram" describing what kind of plot to create.
 resolution An integer specifying the number of points to use for creating the plot.
 params a list of parameters for the distribution.

Examples

```
gf_dhistogram(~ rnorm(100), bins = 20) %>%
    gf_dist("norm", color = "red")

# shading tails -- but see pdist() for this
gf_dist("norm", fill = ~ (abs(x) <= 2), geom = "area")
gf_dist("norm", color = "red", kind = "cdf")
gf_dist("norm", fill = "red", kind = "histogram")
gf_dist("norm", color = "red", kind = "qqstep", resolution = 25) %>%
    gf_dist("norm", color = "black", kind = "qq", resolution = 25, size = 2, alpha = 0.5)
# size is used as parameter for binomial distribution
gf_dist("binom", size = 20, prob = 0.25)
# If we want to adjust size argument for plots, we have two choices:
gf_dist("binom", size = 20, prob = 0.25, plot_size = 2)
gf_dist("binom", params = list(size = 20, prob = 0.25), size = 2)
```

gf_dotplot

Formula interface to geom_dotplot()

Description

Scatterplots in ggformula.

```
gf_dotplot(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  binwidth = NULL,
  binaxis = "x",
  method = "dotdensity",
  binpositions = "bygroup",
  stackdir = "up",
  stackratio = 1,
  dotsize = 1,
  stackgroups = FALSE,
```

gf_dotplot 61

```
origin = NULL,
right = TRUE,
width = 0.9,
drop = FALSE,
xlab,
ylab,
title,
subtitle,
caption,
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
```

Arguments

stackdir

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ~ x. Faceting can be achieved by including | in the for-

mula.

data A data frame with the variables to be plotted.

.. Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

binwidth When method is "dotdensity", this specifies maximum bin width. When method

is "histodot", this specifies bin width. Defaults to 1/30 of the range of the data

binaxis The axis to bin along, "x" (default) or "y"

method "dotdensity" (default) for dot-density binning, or "histodot" for fixed bin widths

(like stat_bin)

binpositions When method is "dotdensity", "bygroup" (default) determines positions of the

bins for each group separately. "all" determines positions of the bins with all the data taken together; this is used for aligning dot stacks across multiple groups.

which direction to stack the dots. "up" (default), "down", "center", "centerw-

hole" (centered, but with dots aligned)

stackratio how close to stack the dots. Default is 1, where dots just touch. Use smaller

values for closer, overlapping dots.

dotsize The diameter of the dots relative to binwidth, default 1.

62 gf_dotplot

stackgroups	should dots be stacked across groups? This has the effect that position = "stack" should have, but can't (because this geom has some odd properties).
origin	When method is "histodot", origin of first bin
right	When method is "histodot", should intervals be closed on the right $(a,b]$, or not $[a,b)$
width	When binaxis is "y", the spacing of the dot stacks for dodging.
drop	If TRUE, remove all bins with zero counts
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Details

There are two basic approaches: *dot-density* and *histodot*. With dot-density binning, the bin positions are determined by the data and binwidth, which is the maximum width of each bin. See Wilkinson (1999) for details on the dot-density binning algorithm. With histodot binning, the bins have fixed positions and fixed widths, much like a histogram.

When binning along the x axis and stacking along the y axis, the numbers on y axis are not meaningful, due to technical limitations of ggplot2. You can hide the y axis, as in one of the examples, or manually scale it to match the number of dots.

Value

a gg object

Warning

Dotplots in ggplot2 (and hence in ggformula) often require some fiddling because the default y-axis is meaningless and the ideal size of the dots depends on the aspect ratio of the plot.

gf_ecdf 63

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

References

Wilkinson, L. (1999) Dot plots. The American Statistician, 53(3), 276-281.

See Also

```
ggplot2::geom_dotplot()
```

Examples

```
data(penguins, package = "palmerpenguins")
gf_dotplot(~bill_length_mm, fill = ~species, data = penguins)
```

gf_ecdf

Formula interace to empirical cumulative distribution

Description

The empirical cumulative distribution function (ECDF) provides an alternative visualization of distribution. Compared to other visualizations that rely on density (like histograms or density plots) the ECDF doesn't require any tuning parameters and handles both continuous and categorical variables. The downside is that it requires more training to accurately interpret, and the underlying visual tasks are somewhat more challenging.

```
gf_ecdf(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  group,
```

64 gf_ecdf

```
pad,
  n = NULL
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "step",
  stat = "ecdf",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also

be parameters to the paired geom/stat.

Used for grouping. group

If TRUE, pad the ecdf with additional points (-Inf, 0) and (Inf, 1) pad

if NULL, do not interpolate. If not NULL, this is the number of points to inter-

polate with.

xlab Label for x-axis. See also gf_labs(). Label for y-axis. See also gf_labs(). ylab

title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle

Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). caption

The geometric object to use display the data geom

gf_ellipse 65

The statistical transformation to use on the data for this layer, as a string.

Position Position adjustment, either as a string, or the result of a call to a position adjustment function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Examples

```
Data <- data.frame(
    x = c(rnorm(100, 0, 1), rnorm(100, 0, 3), rt(100, df = 3)),
    g = gl(3, 100, labels = c("N(0, 1)", "N(0, 3)", "T(df = 3)") )
)
gf_ecdf( ~ x, data = Data)
# Don't go to positive/negative infinity
gf_ecdf( ~ x, data = Data, pad = FALSE)

# Multiple ECDFs
gf_ecdf( ~ x, data = Data, color = ~ g)</pre>
```

gf_ellipse

Formula interface to stat_ellipse()

Description

Formula interface to ggplot2::stat_ellipse().

```
gf_ellipse(
  object = NULL,
    gformula = NULL,
    data = NULL,
    ...,
    alpha,
    color,
    group,
    type = "t",
    level = 0.95,
    segments = 51,
    xlab,
    ylab,
    title,
```

66 gf_ellipse

```
subtitle,
caption,
geom = "path",
stat = "ellipse",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the

formula.

data A data frame with the variables to be plotted.

... Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

type The type of ellipse. The default "t" assumes a multivariate t-distribution, and

"norm" assumes a multivariate normal distribution. "euclid" draws a circle with the radius equal to level, representing the euclidean distance from the center. This ellipse probably won't appear circular unless coord_fixed() is

applied.

level The level at which to draw an ellipse, or, if type="euclid", the radius of the

circle to be drawn.

segments The number of segments to be used in drawing the ellipse.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom Geom for drawing ellipse. Note: "polygon" allows fill; "path" does not; on the

other hand, "path" allows alpha to be applied to the border, while "polygon"

applies alpha only to the interior.

stat A character string naming the stat used to make the layer.

position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

gf_empty 67

show.legend A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

See Also

```
ggplot2::stat_ellipse()
```

Examples

```
gf_ellipse()
gf_point(eruptions ~ waiting, data = faithful) %>%
  gf_ellipse(alpha = 0.5)
gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) %>%
  gf_ellipse(alpha = 0.5)
gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) %>%
  gf_ellipse(type = "norm", linetype = ~ "norm") %>%
  gf_ellipse(type = "t",
                           linetype = \sim "t")
gf_point(eruptions ~ waiting, data = faithful, color = ~ (eruptions > 3)) %>%
  gf_ellipse(type = "norm", linetype = ~ "norm") %>%
  gf_ellipse(type = "euclid", linetype = ~ "euclid", level = 3) %>%
  gf_refine(coord_fixed())
# Use geom = "polygon" to enable fill
gf_point(eruptions ~ waiting, data = faithful, fill = ~ (eruptions > 3)) %>%
  gf_ellipse(geom = "polygon", alpha = 0.3, color = "black")
gf_point(eruptions ~ waiting, data = faithful, fill = ~ (eruptions > 3)) %>%
  gf_ellipse(geom = "polygon", alpha = 0.3) %>%
  gf_ellipse(alpha = 0.3, color = "black")
gf_ellipse(eruptions ~ waiting, data = faithful, show.legend = FALSE,
  alpha = 0.3, fill = ~ (eruptions > 3), geom = "polygon") %>%
  gf_ellipse(level = 0.68, geom = "polygon", alpha = 0.3) %>%
  gf_point(data = faithful, color = ~ (eruptions > 3), show.legend = FALSE)
```

gf_empty

Create an "empty" plot

Description

This is primarily useful as a way to start a sequence of piped plot layers.

68 gf_errorbar

Usage

```
gf_empty(environment = parent.frame())
```

Arguments

environment An environment passed to ggplot2::ggplot()

Value

A plot with now layers.

Examples

```
gf_empty()
data(penguins, package = "palmerpenguins")
gf_empty() %>%
   gf_point(bill_length_mm ~ bill_depth_mm, data = penguins, color = ~species)
```

gf_errorbar

Formula interface to geom_errorbar()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

```
gf_errorbar(
 object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "errorbar",
  stat = "identity",
  position = "identity",
  show.legend = NA,
```

gf_errorbar 69

```
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

inherit

environment

When chaining, this holds an object produced in the earlier portions of the chain. object Most users can safely ignore this argument. See details and examples. gformula A formula with shape ymin + ymax ~ x. Faceting can be achieved by including | in the formula. data The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot(). A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)). Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. alpha Opacity (0 = invisible, 1 = opaque). color A color or a formula used for mapping color. group Used for grouping. A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype size A numeric size or a formula used for mapping size. Label for x-axis. See also gf_labs(). xlab Label for y-axis. See also gf_labs(). vlab title Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). subtitle caption Title, sub-title, and caption for the plot. See also gf_labs(). A character string naming the geom used to make the layer. geom stat The statistical transformation to use on the data for this layer, as a string. Position adjustment, either as a string, or the result of a call to a position adjustposition ment function. show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display. show.help If TRUE, display some minimal help.

> A logical indicating whether default attributes are inherited. An environment in which to look for variables not found in data.

70 gf_errorbarh

See Also

```
ggplot2::geom_errorbar()
```

Examples

```
if (require(mosaicData) && require(dplyr)) {
 HELP2 <- HELPrct %>%
   group_by(substance, sex) %>%
    summarise(
     mean.age = mean(age),
     median.age = median(age),
     max.age = max(age),
     min.age = min(age),
     sd.age = sd(age),
     lo = mean.age - sd.age,
     hi = mean.age + sd.age
 gf_jitter(age ~ substance, data = HELPrct,
     alpha = 0.5, width = 0.2, height = 0, color = "skyblue") %>%
   gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2,
     inherit = FALSE) %>%
   gf_facet_grid(~sex)
 gf_jitter(age ~ substance, data = HELPrct,
     alpha = 0.5, width = 0.2, height = 0, color = "skyblue") %>%
   gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) %>%
   gf_facet_grid(~sex)
 gf_jitter(age ~ substance, data = HELPrct,
     alpha = 0.5, width = 0.2, height = 0, color = "skyblue") \%%
    gf_boxplot(age ~ substance, data = HELPrct, color = "red") %>%
   gf_crossbar(mean.age + lo + hi ~ substance, data = HELP2) %>%
   gf_facet_grid(~sex)
}
```

gf_errorbarh

Formula interface to geom_errorbarh()

Description

A rotated version of geom_errorbar().

```
gf_errorbarh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
```

gf_errorbarh 71

```
alpha,
  color,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "errorbarh",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x + xmin + xmax$. Faceting can be achieved by includ-

ing | in the formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the $\ensuremath{\mathsf{I}}$

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

xlab Label for x-axis. See also gf_labs().

72 gf_errorbarh

ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_errorbarh()
```

Examples

```
if (require(dplyr)) {
   HELP2 <- mosaicData::HELPrct %>%
   group_by(substance, sex) %>%
   summarise(
    mean.age = mean(age),
   median.age = median(age),
```

gf_facet_wrap 73

```
max.age = max(age),
    min.age = min(age),
    sd.age = sd(age),
    lo = mean.age - sd.age,
    hi = mean.age + sd.age
)

gf_jitter(substance ~ age, data = mosaicData::HELPrct,
    alpha = 0.5, height = 0.2, width = 0, color = "skyblue") %>%
    gf_errorbarh(substance ~ lo + hi, data = HELP2, inherit = FALSE) %>%
    gf_facet_grid(~sex)

gf_jitter(age ~ substance, data = mosaicData::HELPrct,
    alpha = 0.5, width = 0.2, height = 0, color = "skyblue") %>%
    gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) %>%
    gf_facet_grid(~sex)
}
```

gf_facet_wrap

Add facets to a plot

Description

These functions provide more control over faceting than is possible using the formula interface.

Usage

```
gf_facet_wrap(object, ...)
gf_facet_grid(object, ...)
```

Arguments

object

A ggplot object

..

Additional arguments passed to facet_wrap() or facet_grid(). This typically includes an unnamed formula argument describing the facets. scales and space are additional useful arguments. See the examples.

See Also

```
ggplot2::facet_grid(), ggplot2::facet_wrap().
```

```
gf_histogram(~avg_drinks, data = mosaicData::HELPrct) %>%
   gf_facet_grid(~substance)
gf_histogram(~avg_drinks, data = mosaicData::HELPrct) %>%
   gf_facet_grid(~substance, scales = "free")
gf_histogram(~avg_drinks, data = mosaicData::HELPrct) %>%
```

74 gf_fitdistr

```
gf_facet_grid(~substance, scales = "free", space = "free")
gf_line(births ~ date, data = mosaicData::Births, color = ~wday) %>%
  gf_facet_wrap(~year, scales = "free_x", nrow = 5) %>%
  gf_theme(
    axis.title.x = element_blank(),
    axis.text.x = element_blank(), axis.ticks.x = element_blank()
) %>%
  gf_labs(color = "Day")
```

gf_fitdistr

Plot density function based on fit to data

Description

MASS::fitdistr() is used to fit coefficients of a specified family of distributions and the resulting density curve is displayed.

```
gf_fitdistr(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  dist = "dnorm",
  start = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "path",
  stat = "fitdistr",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = FALSE,
  environment = parent.frame()
)
```

gf_fitdistr 75

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See examples.
gformula	A formula with shape $\sim x$ used to specify the data to be fit to a family of distributions.
data	A data frame containing the variable to be fitted.
	Additional arguments
dist	A quoted name of a distribution function. See mosaicCore::fit_distr_fun() for more details about allowable distributions.
start	Starting value(s) for the search for MLE. (See MASS::fitdistr.)
alpha	Opacity ($0 = \text{invisible}$, $1 = \text{opaque}$).
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

76 gf_fitdistr

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
mosaicCore::fit_distr_fun()
```

```
gf_fitdistr(~length, data = mosaicData::KidsFeet, inherit = FALSE) %>%
 gf_dhistogram(~length, data = mosaicData::KidsFeet, binwidth = 0.5, alpha = 0.25)
gf_dhistogram(~length, data = mosaicData::KidsFeet, binwidth = 0.5, alpha = 0.25) %>%
 gf_fitdistr()
set.seed(12345)
Dat <- data.frame(g = rgamma(500, 3, 10), f = rf(500, df1 = 3, df2 = 47))
gf_dhistogram(~g, data = Dat) %>%
 gf_fitdistr(dist = "dgamma")
gf_dhistogram(~g, data = Dat) %>%
 gf_fun(mosaicCore::fit_distr_fun(~g, data = Dat, dist = "dgamma"))
gf_dhistogram(~f, data = Dat) %>%
 gf_fitdistr(dist = "df", start = list(df1 = 2, df2 = 50))
# fitted parameters are default argument values
 mosaicCore::fit_distr_fun(~f,
   data = Dat, dist = "df",
   start = list(df1 = 2, df2 = 50)
 )
)
args(mosaicCore::fit_distr_fun(~g, data = Dat, dist = "dgamma"))
```

gf_freqpoly 77

gf_freqpoly

Formula interface to geom_freqpoly()

Description

Visualise the distribution of a single continuous variable by dividing the x axis into bins and counting the number of observations in each bin. Histograms (geom_histogram()) display the counts with bars; frequency polygons (geom_freqpoly()) display the counts with lines. Frequency polygons are more suitable when you want to compare the distribution across the levels of a categorical variable.

Usage

```
gf_freqpoly(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  binwidth,
  bins,
  center,
  boundary,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "path",
  stat = "bin",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $\sim x$ or $y \sim x$. Faceting can be achieved by including | in the formula.

78 gf_freqpoly

data The data to be displayed in this layer. There are three options:

> If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

> A data, frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

> A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

> Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

Used for grouping. group

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

> The width of the bins. Can be specified as a numeric value or as a function that calculates width from unscaled x. Here, "unscaled x" refers to the original x values in the data, before application of any scale transformation. When specifying a function along with a grouping structure, the function will be called once per group. The default is to use the number of bins in bins, covering the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.

> The bin width of a date variable is the number of days in each time; the bin width of a time variable is the number of seconds.

Number of bins. Overridden by binwidth. Defaults to 30.

bin position specifiers. Only one, center or boundary, may be specified for a single plot. center specifies the center of one of the bins. boundary specifies the boundary between two bins. Note that if either is above or below the range of the data, things will be shifted by the appropriate integer multiple of binwidth. For example, to center on integers use binwidth = 1 and center = 0, even if 0 is outside the range of the data. Alternatively, this same alignment can be specified with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the data.

bin position specifiers. Only one, center or boundary, may be specified for a single plot. center specifies the center of one of the bins. boundary specifies the boundary between two bins. Note that if either is above or below the range of the data, things will be shifted by the appropriate integer multiple of binwidth. For example, to center on integers use binwidth = 1 and center = 0, even if 0 is outside the range of the data. Alternatively, this same alignment can be specified with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the data.

binwidth

bins center

boundary

gf_freqpoly 79

xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	Use to override the default connection between $geom_histogram()/geom_freqpoly()$ and $stat_bin()$.
stat	Use to override the default connection between $geom_histogram()/geom_freqpoly()$ and $stat_bin()$.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_freqpoly()
```

gf_function

Examples

```
data(penguins, package = "palmerpenguins")
gf_histogram(~ bill_length_mm | species, alpha = 0.2, data = penguins, bins = 20) %>%
    gf_freqpoly(~bill_length_mm, data = penguins, color = ~species, bins = 20)
gf_freqpoly(~bill_length_mm, color = ~species, data = penguins, bins = 20)
gf_dens(~bill_length_mm, data = penguins, color = "navy") %>%
    gf_freqpoly(stat(density) ~ bill_length_mm,
        data = penguins,
        color = "red", bins = 20
)
```

gf_function

Layers displaying graphs of functions

Description

These functions provide two different interfaces for creating a layer that contains the graph of a function.

Usage

```
gf_function(object = NULL, fun, xlim, ..., inherit = FALSE)
gf_fun(object = NULL, formula, xlim, ..., inherit = FALSE)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
fun	A function.
xlim	A numeric vector providing the extent of the x-axis when creating the first layer in a plot. Ignored when creating a subsequent layer.
	Other arguments such as position="dodge".
inherit	A logical indicating whether default attributes are inherited.
formula	A formula describing a function. See examples and mosaicCore::makeFun().

```
gf_function(fun = sqrt, xlim = c(0, 10))
gf_dhistogram(~age, data = mosaicData::HELPrct, binwidth = 3, alpha = 0.6) %>%
    gf_function(
        fun = stats::dnorm,
        args = list(mean = mean(mosaicData::HELPrct$age), sd = sd(mosaicData::HELPrct$age)),
        color = "red"
    )
gf_fun(5 + 3 * cos(10 * x) ~ x, xlim = c(0, 2))
# Utility bill is quadratic in month?
```

gf_function_2d 81

```
f <- makeFun(lm(totalbill ~ poly(month, 2), data = mosaicData::Utilities))
gf_point(totalbill ~ month, data = mosaicData::Utilities, alpha = 0.6) %>%
gf_fun(f(m) ~ m, color = "red")
```

gf_function_2d

Plot functions of two variables

Description

Plot functions of two variables as tile and/or contour plots.

```
gf_function_2d(
  object = NULL,
  fun = identity,
  xlim = NULL,
 ylim = NULL,
  . . . ,
  tile = TRUE,
  contour = TRUE,
  resolution = 50
gf_function2d(
  object = NULL,
  fun = identity,
  xlim = NULL,
 ylim = NULL,
  tile = TRUE,
  contour = TRUE,
  resolution = 50
)
gf_function_contour(
  object = NULL,
  fun = identity,
  xlim = NULL,
 ylim = NULL,
  resolution = 50
)
gf_function_tile(
  object = NULL,
  fun = identity,
```

82 gf_function_2d

```
xlim = NULL,
 ylim = NULL,
  ...,
  resolution = 50
)
gf_fun_2d(
 object = NULL,
  formula = NULL,
 xlim = NULL,
 ylim = NULL,
  tile = TRUE,
  contour = TRUE,
 resolution = 50
)
gf_fun2d(
  object = NULL,
  formula = NULL,
 xlim = NULL,
 ylim = NULL,
  tile = TRUE,
  contour = TRUE,
  resolution = 50
)
gf_fun_tile(
  object = NULL,
  formula = NULL,
 xlim = NULL,
 ylim = NULL,
  resolution = 50
)
gf_fun_contour(
 object = NULL,
  formula = NULL,
 xlim = NULL,
 ylim = NULL,
  . . . ,
 resolution = 50
)
```

Arguments

object An R object, typically of class "gg".

gf_hex 83

fun	A function of two variables to be plotted.
xlim	x limits for generating points to be plotted.
ylim	y limits for generating points to be plotted.
	additional arguments passed to gf_tile() or gf_contour().
tile	A logical indicating whether the tile layer should be drawn.
contour	A logical indicating whether the contour layer should be drawn.
resolution	A numeric vector of length 1 or 2 specifying the number of grid points at which the function is evaluated (in each dimension).
formula	A formula describing a function of two variables to be plotted. See mosaic::makeFun() for details regarding the conversion from a formula to a function.

Value

A gg plot.

Examples

```
theme_set(theme_bw())
gf_function_2d(fun = function(x, y) sin(2 * x * y), xlim = c(-pi, pi), ylim = c(-pi, pi)) %>%
    gf_refine(scale_fill_viridis_c())
gf_function_2d(fun = function(x, y) x + y, contour = FALSE)
gf_function_tile(fun = function(x, y) x * y) %>%
    gf_function_contour(fun = function(x, y) x * y, color = "white") %>%
    gf_refine(scale_fill_viridis_c())
gf_fun_tile(x * y ~ x + y, xlim = c(-3, 3), ylim = c(-2, 2)) %>%
    gf_fun_contour(x * y ~ x + y, color = "white") %>%
    gf_refine(scale_fill_viridis_c()) %>%
    gf_labs(fill = "product")
```

gf_hex

Formula interface to geom_hex()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the order in which they appear in data.

```
gf_hex(
  object = NULL,
  gformula = NULL,
  data = NULL,
   ...,
  bins,
  binwidth,
```

84 gf_hex

```
alpha,
  color,
  fill,
  group,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "hex",
  stat = "binhex",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

bins numeric vector giving number of bins in both vertical and horizontal directions.

Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-

rides bins if both set.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

Used for grouping. group

gf_hex 85

size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	Override the default connection between geom_hex and stat_binhex.
stat	Override the default connection between geom_hex and stat_binhex.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_hex()
```

```
gf_hex(avg_drinks ~ age, data = mosaicData::HELPrct, bins = 15) %>%
    gf_density2d(avg_drinks ~ age, data = mosaicData::HELPrct, color = "red", alpha = 0.5)
```

 ${\it gf_histogram}$

Formula interface to geom_histogram()

Description

Count and density histograms in ggformula.

```
gf_histogram(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
 bins = 25,
  binwidth,
  alpha = 0.5,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "bin",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_dhistogram(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  bins = 25,
  binwidth,
  alpha = 0.5,
  color,
  fill,
  group,
```

```
linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "bar",
  stat = "bin",
  position = "stack",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_histogramh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  bins = 25,
  binwidth,
  alpha = 0.5,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
  stat = "binh",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_dhistogramh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
```

```
bins = 25,
  binwidth,
  alpha = 0.5,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "barh",
  stat = "binh",
  position = "stackv",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $\sim x$ (or $y \sim x$, but this shape is not generally needed).

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data, frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

bins

Number of bins. Overridden by binwidth. Defaults to 30.

The width of the bins. Can be specified as a numeric value or as a function that calculates width from unscaled x. Here, "unscaled x" refers to the original x values in the data, before application of any scale transformation. When specifying a function along with a grouping structure, the function will be called once per group. The default is to use the number of bins in bins, covering the range of

binwidth

the data. You should always override this value, exploring multiple widths to

find the best to illustrate the stories in your data.

The bin width of a date variable is the number of days in each time; the bin

width of a time variable is the number of seconds.

alpha Opacity (0 = invisible, 1 = opaque).

A color or a formula used for mapping color. color

fill A color for filling, or a formula used for mapping fill.

Used for grouping. group

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

xlab Label for x-axis. See also gf_labs(). Label for y-axis. See also gf_labs(). ylab

Title, sub-title, and caption for the plot. See also gf_labs(). title subtitle Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). caption

Use to override the default connection between geom_histogram()/geom_freqpoly() geom

and stat_bin().

Use to override the default connection between geom_histogram()/geom_freqpoly() stat

and stat_bin().

Position adjustment, either as a string, or the result of a call to a position adjustposition

ment function.

logical. Should this layer be included in the legends? NA, the default, includes if show.legend

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

Value

a gg object

Horizontal Geoms

There are two ways to obtain "horizontal" geoms: (1) The ggstance package provides a set of "horizontal" geoms and positions; (2) Thee ggplot2 now provides an orientation argument for "native" horizontal geoms and positions. ggformula supports both.

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_histogram()
```

```
x <- rnorm(1000)
gf_histogram(x, bins = 30)
gf_dhistogram(\sim x, bins = 30)
gf_dhistogram(~x, binwidth = 0.5, center = 0, color = "black")
gf_dhistogram(~x, binwidth = 0.5, boundary = 0, color = "black")
gf_dhistogram(~x, bins = 30) %>%
  gf_fitdistr(dist = "dnorm") # see help for gf_fitdistr() for more info.
gf_histogram(^{x}, fill = ^{x} (abs(x) <= 2), boundary = 2, binwidth = 0.25)
data(penguins, package = "palmerpenguins")
gf_histogram(~ bill_length_mm | species, data = penguins, binwidth = 0.25)
gf_histogram(~age,
  data = mosaicData::HELPrct, binwidth = 5,
  fill = "skyblue", color = "black"
# bins can be adjusted left/right using center or boundary
gf_histogram(~age,
  data = mosaicData::HELPrct,
  binwidth = 5, fill = "skyblue", color = "black", center = 42.5
gf_histogram(~age,
  data = mosaicData::HELPrct,
  binwidth = 5, fill = "skyblue", color = "black", boundary = 40
gf_histogram(age ~ .,
  data = mosaicData::HELPrct,
  binwidth = 5, fill = "skyblue", color = "black", boundary = 40
)
```

gf_jitter 91

```
gf_histogramh(~x, bins = 30)
gf_histogram(x ~., bins = 30)
gf_histogramh(x ~ ., bins = 30)
gf_histogramh(x ~ stat(density), bins = 30)
gf_dhistogramh(~x, bins = 30)
gf_dhistogram(x ~ ., bins = 30)
gf_dhistogramh(x ~ ., bins = 30)
```

gf_jitter

Formula interface to geom_jitter()

Description

Jittered scatter plots in ggformula.

```
gf_jitter(
  object = NULL,
  gformula = NULL,
 data = NULL,
  ...,
  alpha,
  color,
  size,
  shape,
  fill,
 width,
 height,
  group,
  stroke,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "point",
  stat = "identity",
  position = "jitter",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

92 gf_jitter

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples. gformula A formula with shape y ~ x. Faceting can be achieved by including | in the formula. data A data frame with the variables to be plotted. Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. alpha Opacity (0 = invisible, 1 = opaque). color A color or a formula used for mapping color. A numeric size or a formula used for mapping size. size An integer or letter shape or a formula used for mapping shape. shape fill A color for filling, or a formula used for mapping fill. width Amount of horizontal jitter. Amount of vertical jitter. height Used for grouping. group A numeric size of the border or a formula used to map stroke. stroke xlab Label for x-axis. See also gf_labs(). ylab Label for y-axis. See also gf_labs(). title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). caption Title, sub-title, and caption for the plot. See also gf_labs(). geom A character string naming the geom used to make the layer. A character string naming the stat used to make the layer. stat Either a character string naming the position function used for the layer or a position position object returned from a call to a position function. show.legend A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped. show.help If TRUE, display some minimal help. inherit A logical indicating whether default attributes are inherited. An environment in which to look for variables not found in data. environment

Value

a gg object

gf_labs 93

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_jitter(), gf_point()
```

Examples

```
gf_jitter()
# without jitter
gf_point(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct)
# jitter only horizontally
gf_jitter(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct, width = 0.2, height = 0)
# alternative way to get jitter
gf_point(age ~ sex,
    alpha = 0.25, data = mosaicData::HELPrct,
    position = "jitter", width = 0.2, height = 0
)
```

gf_labs

Non-layer functions for gf plots

Description

These functions modify things like labels, limits, scales, etc. for plots ggplot2 plots. They are wrappers around functions in ggplot2 that allow for chaining syntax.

```
gf_labs(object, ...)
gf_lims(object, ...)
gf_refine(object, ...)
```

94 gf_labs

Arguments

```
object a gg object
```

additional arguments passed through to the similarly named function in **ggplot2**...

Details

gf_refine() provides a mechanism to replace + with the chaining operator from **magrittr**. Each of its ... arguments is added in turn to the base plot in object. The other functions are thin wrappers around specific ggplot2 refinement functions and pass their ... arguments through to the similarly named ggplot2 functions.

Value

a modified gg object

```
gf_dens(~cesd, color = ~substance, size = 1.5, data = mosaicData::HELPrct) %>%
 gf_labs(
   title = "Center for Epidemiologic Studies Depression measure",
   subtitle = "(at baseline)",
   color = "Abused substance: ",
   x = "CESD score",
   y = "",
   caption = "Source: HELPrct"
 ) %>%
 gf_theme(theme_classic()) %>%
 gf_theme(
    axis.text.y = element_blank(),
   legend.position = "top",
   plot.title = element_text(hjust = 0.5, color = "navy"),
   plot.subtitle = element_text(hjust = 0.5, color = "navy", size = 12)
gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5)
gf_point(eruptions ~ waiting, data = faithful, alpha = 0.5) %>%
 gf_{lims}(x = c(65, NA), y = c(3, NA))
# modify scales using gf_refine()
data(penguins, package = "palmerpenguins")
gf_jitter(bill_length_mm ~ bill_depth_mm, color = ~species, data = penguins) %>%
 gf_refine(scale_color_brewer(type = "qual", palette = 3)) %>%
 gf_theme(theme_bw())
gf_jitter(bill_length_mm ~ bill_depth_mm, color = ~species, data = penguins) %>%
 gf_refine(scale_color_manual(values = c("red", "navy", "limegreen"))) %>%
 gf_theme(theme_bw())
```

gf_line 95

gf_line

Formula interface to geom_line() and geom_path()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the order in which they appear in data.

```
gf_line(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  lineend,
  linejoin,
  linemitre,
  arrow,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "line",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_path(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
```

96 gf_line

```
linetype,
  size,
  lineend = "butt",
  linejoin = "round",
 linemitre = 1,
  arrow = NULL,
 xlab,
 ylab,
  title,
  subtitle,
  caption,
 geom = "path",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

ylab

	Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including \mid in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.
alpha	Opacity $(0 = invisible, 1 = opaque)$.
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
lineend	Line end style (round, butt, square).
linejoin	Line join style (round, mitre, bevel).
linemitre	Line mitre limit (number greater than 1).
arrow	Arrow specification, as created by grid::arrow().
xlab	Label for x-axis. See also gf_labs().

Label for y-axis. See also gf_labs().

When chaining, this holds an object produced in the earlier portions of the chain.

gf_line 97

title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.lege	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environme	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_line(), gf_point()
```

```
gf_line()
gf_point(age ~ sex, alpha = 0.25, data = mosaicData::HELPrct)
gf_point(births ~ date, color = ~wday, data = mosaicData::Births78)
# lines make the exceptions stand out more prominently
gf_line(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_path()
if (require(dplyr)) {
```

```
data.frame(t = seq(1, 10 * pi, length.out = 400)) %>%
    mutate(x = t * cos(t), y = t * sin(t)) %>%
    gf_path(y ~ x, color = ~t)
}
```

gf_linerange

Formula interface to geom_linerange() and geom_pointrange()

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a single graphical object.

```
gf_linerange(
 object = NULL,
 gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "linerange",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_pointrange(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
```

```
linetype,
  size,
  fatten = 2,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "pointrange",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_summary(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  fun.y = NULL,
  fun.ymax = NULL,
  fun.ymin = NULL,
  fun.args = list(),
  fatten = 2,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "pointrange",
  stat = "summary",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_linerangeh(
  object = NULL,
```

```
gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "linerangeh",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_pointrangeh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "pointrangeh",
stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ymin + ymax ~ x. Faceting can be achieved by including

| in the formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

.. Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

fatten A multiplicative factor used to increase the size of the middle bar in geom_crossbar()

and the middle point in geom_pointrange().

```
fun.y Deprecated, use the versions specified above instead.

fun.ymax Deprecated, use the versions specified above instead.

fun.ymin Deprecated, use the versions specified above instead.

fun.args Optional additional arguments passed on to the functions.
```

See Also

```
ggplot2::geom_linerange()
ggplot2::geom_pointrange()
ggplot2::geom_pointrange(), ggplot2::stat_summary()
```

```
gf_linerange()
gf_ribbon(low_temp + high_temp ~ date,
  data = mosaicData::Weather,
  fill = \sim city, alpha = 0.4
) %>%
  gf_theme(theme = theme_minimal())
gf_linerange(
  low_temp + high_temp ~ date | city ~ .,
  data = mosaicData::Weather,
  color = ~ ((low_temp + high_temp) / 2)
  gf_refine(scale_colour_gradientn(colors = rev(rainbow(5)))) %>%
  gf_labs(color = "mid-temp")
gf_ribbon(low_temp + high_temp ~ date | city ~ ., data = mosaicData::Weather)
# Chaining in the data
mosaicData::Weather %>%
  gf_ribbon(low_temp + high_temp ~ date, alpha = 0.4) %>%
  gf_facet_grid(city ~ .)
if (require(mosaicData) && require(dplyr)) {
  HELP2 <- HELPrct %>%
    group_by(substance, sex) %>%
    summarise(
      age = NA,
      mean.age = mean(age),
      median.age = median(age),
      max.age = max(age),
      min.age = min(age),
      sd.age = sd(age),
      lo = mean.age - sd.age,
      hi = mean.age + sd.age
  gf_jitter(age ~ substance, data = HELPrct,
      alpha = 0.5, width = 0.2, height = 0, color = "skyblue") %>%
    gf_pointrange(mean.age + lo + hi ~ substance, data = HELP2) %>%
```

```
gf_facet_grid(~sex)
  gf_jitter(age ~ substance, data = HELPrct,
    alpha = 0.5, width = 0.2, height = 0, color = "skyblue") %>%
    gf_errorbar(lo + hi ~ substance, data = HELP2, inherit = FALSE) %>%
    gf_facet_grid(~sex)
  # width is defined differently for gf_boxplot() and gf_jitter()
    * for gf_boxplot() it is the full width of the box.
  \# * for gf_jitter() it is half that -- the maximum amount added or subtracted.
  gf_boxplot(age ~ substance, data = HELPrct, width = 0.4) %>%
    gf_jitter(width = 0.4, height = 0, color = "skyblue", alpha = 0.5)
  gf_boxplot(age ~ substance, data = HELPrct, width = 0.4) %>%
    gf_jitter(width = 0.2, height = 0, color = "skyblue", alpha = 0.5)
p \leftarrow gf_jitter(mpg \sim cyl, data = mtcars, height = 0, width = 0.15); p
p %>% gf_summary(fun.data = "mean_cl_boot", color = "red", size = 2)
# You can supply individual functions to summarise the value at
p %>% gf_summary(fun.y = "median", color = "red", size = 2, geom = "point")
p %>%
  gf_summary(fun.y = "mean", color = "red", size = 2, geom = "point") %>%
  gf_summary(fun.y = mean, geom = "line")
p %>%
  gf_summary(fun.y = mean, fun.ymin = min, fun.ymax = max, color = "red")
  gf_summary(fun.ymin = min, fun.ymax = max, color = "red", geom = "linerange")
gf_bar(~ cut, data = diamonds)
gf_col(price ~ cut, data = diamonds, stat = "summary_bin", fun.y = "mean")
# Don't use gf_lims() to zoom into a summary plot - this throws the
# data away
p <- gf_summary(mpg ~ cyl, data = mtcars, fun.y = "mean", geom = "point")</pre>
p \% % gf_{lims}(y = c(15, 30))
# Instead use coord_cartesian()
p %>% gf_refine(coord_cartesian(ylim = c(15, 30)))
# A set of useful summary functions is provided from the Hmisc package.
p <- gf_jitter(mpg ~ cyl, data = mtcars, width = 0.15, height = 0); p
p %>% gf_summary(fun.data = mean_cl_boot, color = "red")
p %>% gf_summary(fun.data = mean_cl_boot, color = "red", geom = "crossbar")
p %>% gf_summary(fun.data = mean_sdl, group = ~ cyl, color = "red",
                   geom = "crossbar", width = 0.3)
p %>% gf_summary(group = ~ cyl, color = "red", geom = "crossbar", width = 0.3,
        fun.data = mean_sdl, fun.args = list(mult = 1))
p %>% gf_summary(fun.data = median_hilow, group = ~ cyl, color = "red",
        geom = "crossbar", width = 0.3)
# An example with highly skewed distributions:
if (require("ggplot2movies")) {
```

104 gf_plot

```
set.seed(596)
 Mov <- movies[sample(nrow(movies), 1000), ]</pre>
 m2 <- gf_jitter(votes ~ factor(round(rating)), data = Mov, width = 0.15, height = 0, alpha = 0.3)
 m2 <- m2 %>%
   gf_summary(fun.data = "mean_cl_boot", geom = "crossbar",
               colour = "red", width = 0.3) %>%
   gf_labs(x = "rating")
 m2
 # Notice how the overplotting skews off visual perception of the mean
 # supplementing the raw data with summary statistics is _very_ important
 # Next, we'll look at votes on a log scale.
 # Transforming the scale means the data are transformed
 # first, after which statistics are computed:
 m2 %>% gf_refine(scale_y_log10())
 \ensuremath{\text{\#}} Transforming the coordinate system occurs after the
 # statistic has been computed. This means we're calculating the summary on the raw data
 # and stretching the geoms onto the log scale. Compare the widths of the
 # standard errors.
 m2 %>% gf_refine(coord_trans(y="log10"))
}
gf_linerangeh(date ~ low_temp + high_temp | ~city,
 data = mosaicData::Weather,
 color = ~avg_temp
) %>%
 gf_refine(scale_color_viridis_c(begin = 0.1, end = 0.9, option = "C"))
gf_linerange(date ~ low_temp + high_temp | ~city,
 data = mosaicData::Weather,
 color = ~avg_temp,
 orientation = 'y'
) %>%
 gf_refine(scale_color_viridis_c(begin = 0.1, end = 0.9, option = "C"))
gf_pointrangeh(date ~ avg_temp + low_temp + high_temp | ~city,
 data = Weather,
 color = ~avg_temp
 gf_refine(scale_color_viridis_c(begin = 0.1, end = 0.9, option = "C"))
```

gf_plot

Formula interface to ggplot()

Description

Create a new ggplot and (optionally) set default dataset aesthetics mapping.

```
gf_plot(...)
```

gf_point 105

Arguments

..

arguments that can include data (a data frame or something that can be ggplot2::fortify()ed to become one) and aesthetics specified using the following formula notation: aesthetic = ~ expression. See examples.

Value

a gg object

Examples

```
gf_plot(mtcars, x = ~ wt, y = ~ mpg, color = ~ factor(cyl)) %>%
  gf_density_2d() %>%
  gf_point()
```

gf_point

Formula interface to geom_point()

Description

Scatterplots in ggformula.

```
gf_point(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  size,
  shape,
  fill,
  group,
  stroke,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "point",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
```

106 gf_point

```
inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

_	
object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including \mid in the formula.
data	A data frame with the variables to be plotted.
•••	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, (c) attributes of the layer as a whole, which are set with attribute = value, or (d) arguments for the geom, stat, or position function.
alpha	Opacity $(0 = invisible, 1 = opaque)$.
color	A color or a formula used for mapping color.
size	A numeric size or a formula used for mapping size.
shape	An integer or letter shape or a formula used for mapping shape.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
stroke	A numeric size of the border or a formula used to map stroke.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title, subtitle	e, caption
	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

```
a gg object
```

gf_point 107

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_point(), gf_line(), gf_jitter()
```

```
gf_point()
gf_point((10 * ((1:25) %/% 10)) ~ ((1:25) %% 10),
  shape = 1:25,
  fill = "skyblue", color = "navy", size = 4, stroke = 1, data = NA
gf_point(mpg ~ hp, color = ~cyl, size = ~wt, data = mtcars)
# faceting -- two ways
gf_point(mpg ~ hp, data = mtcars) %>%
  gf_facet_wrap(~am)
gf_point(mpg ~ hp | am, group = ~cyl, data = mtcars)
gf_point(mpg ~ hp | ~am, group = ~cyl, data = mtcars)
gf_point(mpg ~ hp | am ~ ., group = ~cyl, data = mtcars)
# Chaining in the data
mtcars %>% gf_point(mpg ~ wt)
# short cuts for main labels in the plot
gf_point(births ~ date,
  color = ~wday, data = mosaicData::Births78,
  xlab = "Date", ylab = "Number of Live Births"
  title = "Interesting Patterns in the Number of Births",
  subtitle = "(United States, 1978)",
  caption = "Source: mosaicData::Births78"
```

108 gf_polygon

gf_polygon

Formula interface to geom_polygon()

Description

Scatterplots in ggformula.

Usage

```
gf_polygon(
  object = NULL,
  gformula = NULL,
 data = NULL,
  . . . ,
  alpha,
  color,
  size,
  shape,
  fill,
  group,
  stroke,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "polygon",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including \mid in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, (c) attributes of the layer as a whole, which are set with attribute

= value, or (d) arguments for the geom, stat, or position function.

gf_polygon 109

alpha	Opacity ($0 = \text{invisible}$, $1 = \text{opaque}$).
color	A color or a formula used for mapping color.
size	A numeric size or a formula used for mapping size.
shape	An integer or letter shape or a formula used for mapping shape.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
stroke	A numeric size of the border or a formula used to map stroke.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

 gf_{qq}

See Also

```
ggplot2::geom_point(), gf_line(), gf_jitter()
```

Examples

```
gf_polygon()
if (require(maps) && require(ggthemes) && require(dplyr)) {
 US <- map_data("state") %>%
   dplyr::mutate(name_length = nchar(region))
 States <- US %>%
   dplyr::group_by(region) %>%
   dplyr::summarise(lat = mean(range(lat)), long = mean(range(long))) %>%
   dplyr::mutate(name = abbreviate(region, 3))
 gf_polygon(lat ~ long,
   data = US, group = ~group,
    fill = ~name_length, color = "white"
 ) %>%
   gf_text(lat ~ long,
     label = ~name, data = States,
     color = "gray70", inherit = FALSE
   ) %>%
   gf_refine(ggthemes::theme_map())
}
```

gf_qq

Formula interface to geom_qq()

Description

gf_qq() an gf_qqstep() both create quantile-quantile plots. They differ in how they display the qq-plot. gf_qq() uses points and gf_qqstep() plots a step function through these points.

Usage

```
gf_qq(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  group,
  distribution = stats::qnorm,
  dparams = list(),
  xlab,
  ylab,
  title,
  subtitle,
  caption,
```

 $gf_{-}qq$

```
geom = "point",
  stat = "qq",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_qqline(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  group,
  distribution = stats::qnorm,
  dparams = list(),
  linetype = "dashed",
  alpha = 0.7,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "line",
  stat = "qqline",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_qqstep(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  group,
  distribution = stats::qnorm,
  dparams = list(),
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "step",
  stat = "qq",
```

112 gf_qq

```
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ~ sample. Facets can be added using |.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

group Used for grouping.

distribution Distribution function to use, if x not specified

dparams Additional parameters passed on to distribution function.

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom Use to override the default connection between geom_histogram()/geom_freqpoly()

and stat_bin().

stat Use to override the default connection between geom_histogram()/geom_freqpoly()

and stat_bin().

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

gf_quantile 113

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

alpha Opacity (0 = invisible, 1 = opaque).

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_qq()
```

Examples

```
gf_qq(~ rnorm(100))
data(penguins, package = "palmerpenguins")
gf_qq(~ bill_length_mm | species, data = penguins) %>% gf_qqline()
gf_qq(~ bill_length_mm | species, data = penguins) %>% gf_qqline(tail = 0.10)
gf_qq(~bill_length_mm, color = ~species, data = penguins) %>%
    gf_qqstep(~bill_length_mm, color = ~species, data = penguins)
```

gf_quantile

Formula interface to geom_quantile()

Description

This fits a quantile regression to the data and draws the fitted quantiles with lines. This is as a continuous analogue to geom_boxplot().

114 gf_quantile

Usage

```
gf_quantile(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  group,
  linetype,
  size,
  weight,
  lineend = "butt",
  linejoin = "round",
  linemitre = 1,
  quantiles,
  formula,
  method,
 method.args,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "quantile",
  stat = "quantile",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $y \sim x$. Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

gf_quantile 115

can be created from a formula (e.g. \sim head(.x,10)). Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. alpha Opacity (0 = invisible, 1 = opaque). color A color or a formula used for mapping color. Used for grouping. group A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype linetype. size A numeric size or a formula used for mapping size. Useful for summarized data, weight provides a count of the number of values weight with the given combination of x and y values. lineend Line end style (round, butt, square). linejoin Line join style (round, mitre, bevel). linemitre Line mitre limit (number greater than 1). quantiles conditional quantiles of y to calculate and display formula formula relating y variables to x variables method Quantile regression method to use. Available options are "rq" (for quantreg::rq()) and "rqss" (for quantreg::rqss()). List of additional arguments passed on to the modelling function defined by method.args method. xlab Label for x-axis. See also gf_labs(). Label for y-axis. See also gf_labs(). ylab title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). caption Title, sub-title, and caption for the plot. See also gf_labs(). Use to override the default connection between geom_quantile and stat_quantile. geom Use to override the default connection between geom_quantile and stat_quantile. stat position Position adjustment, either as a string, or the result of a call to a position adjustment function. logical. Should this layer be included in the legends? NA, the default, includes if show.legend any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display. show.help If TRUE, display some minimal help.

A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Value

a gg object

inherit

environment

116 gf_raster

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_quantile()
```

Examples

```
gf_point((1 / hwy) ~ displ, data = mpg) %>%
  gf_quantile((1 / hwy) ~ displ)
```

gf_raster

Formula interface to geom_raster()

Description

Formula interface to geom_raster()

Usage

```
gf_raster(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  hjust = 0.5,
  vjust = 0.5,
  interpolate = FALSE,
```

gf_raster 117

```
xlab,
ylab,
title,
subtitle,
caption,
geom = "raster",
stat = "identity",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$ or fill $\sim x + y$ data A data frame with the variables to be plotted.

... Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

hjust horizontal and vertical justification of the grob. Each justification value should

be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over

its data location.

vjust horizontal and vertical justification of the grob. Each justification value should

be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over

its data location.

interpolate If TRUE interpolate linearly, if FALSE (the default) don't interpolate.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

118 gf_raster

geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_raster()
```

Examples

```
# Justification controls where the cells are anchored
D <- expand.grid(x = 0:5, y = 0:5)
D$z <- runif(nrow(D))
# centered squares
gf_raster(z ~ x + y, data = D)
gf_raster(y ~ x, fill = ~z, data = D)
# zero padding
gf_raster(z ~ x + y, data = D, hjust = 0, vjust = 0)</pre>
```

gf_rect 119

gf_rect

Formula interface to geom_rect()

Description

Line plots in ggformula. gf_path() differs from gf_line() in that points are connected in the order in which they appear in data.

Usage

```
gf_rect(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "rect",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape ymin + ymax \sim xmin + xmax. Faceting can be achieved by including in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = \sim expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

120 gf_rect

alpha	Opacity ($0 = invisible, 1 = opaque$).
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().
ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

gf_relabel 121

See Also

```
ggplot2::geom_rect()
```

Examples

```
gf_rect(1 + 2 ~ 3 + 4, alpha = 0.3, color = "red")
# use data = data.frame() so we get 1 rectangle and not 1 per row of faithful
# use inherit = FALSE because we are not reusing eruptions and waiting
gf_point(eruptions ~ waiting, data = faithful) %>%
gf_rect(1.5 + 3 ~ 45 + 68,
    fill = "red", alpha = 0.2,
    data = data.frame(), inherit = FALSE) %>%
gf_rect(3 + 5.5 ~ 68 + 100,
    fill = "green", alpha = 0.2,
    data = data.frame(), inherit = FALSE)
```

gf_relabel

Modify plot labeling

Description

Some packages like expss provide mechanisms for providing longer labels to R objects. These labels can be used when labeling plots and tables, for example, without requiring long or awkward variable names. This is an experimental feature and currently only supports expss or any other system that stores a label in the label attribute of a vector.

Usage

```
gf_relabel(plot, labels = get_variable_labels(plot$data), ...)
## S3 method for class 'gf_ggplot'
print(x, labels = get_variable_labels(x$data), ...)
```

Arguments

```
plot A ggplot.

labels A named list of labels.

... Additional named labels. See examples.

x A ggplot.
```

Value

A plot with potentially modified labels.

gf_ribbon

Examples

```
# labeling using a list
labels <- list(width = "width of foot (cm)", length = "length of foot (cm)",
  domhand = "dominant hand")
gf_point(length ~ width, color = ~domhand, data = mosaicData::KidsFeet) %>%
  gf_relabel(labels)
# labeling using ...
gf_point(length ~ width, color = ~domhand, data = mosaicData::KidsFeet) %>%
  gf_relabel(
   width = "width of foot (cm)",
   length = "length of foot (cm)",
   domhand = "dominant hand")
# Alternatively, we can store labels with data.
KF <- mosaicData::KidsFeet %>%
  set_variable_labels(
   length = 'foot length (cm)',
   width = 'foot width (cm)'
gf_point(length ~ width, data = KF)
gf_density2d(length ~ width, data = KF)
get_variable_labels(KF)
```

gf_ribbon

Formula interface to geom_ribbon()

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

```
gf_ribbon(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha = 0.3,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
```

gf_ribbon 123

```
geom = "ribbon",
stat = "identity",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape ymin + ymax ~ x. Faceting can be achieved by including

| in the formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show, legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It

can also be a named logical vector to finely select the aesthetics to display.

show. help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

See Also

```
ggplot2::geom_ribbon()
```

Examples

```
gf_ribbon()

gf_ribbon(low_temp + high_temp ~ date, data = mosaicData::Weather, fill = ~city, alpha = 0.4) %>%
    gf_theme(theme = theme_minimal())

gf_linerange(
    low_temp + high_temp ~ date | city ~ .,
    color = ~high_temp,
    data = mosaicData::Weather
) %>%
    gf_refine(scale_colour_gradientn(colors = rev(rainbow(5))))

gf_ribbon(low_temp + high_temp ~ date | city ~ ., data = mosaicData::Weather)

# Chaining in the data
mosaicData::Weather %>%
    gf_ribbon(low_temp + high_temp ~ date, alpha = 0.4) %>%
    gf_facet_grid(city ~ .)
```

gf_ridgeline

Formula interface to ggridges plots

Description

Formula interface to ggridges plots

Usage

```
gf_ridgeline(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  height,
  scale = 1,
 min_height = 0,
  color,
  fill,
  alpha,
  group,
  linetype,
  size,
  point_size,
  point_shape,
  point_colour,
  point_fill,
```

```
point_alpha,
  point_stroke,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "ridgeline",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_density_ridges(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  height,
  scale = 1,
  rel_min_height = 0,
  color,
  fill,
  alpha,
  group,
  linetype,
  size,
  point_size,
  point_shape,
  point_colour,
  point_fill,
  point_alpha,
  point_stroke,
  panel_scaling = TRUE,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "density_ridges",
  stat = "density_ridges",
  position = "points_sina",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
```

```
environment = parent.frame()
)
gf_density_ridges2(
  object = NULL,
  gformula = NULL,
  data = NULL,
  height,
  scale = 1,
  rel_min_height = 0,
  color,
  fill,
  alpha,
  group,
  linetype,
  size,
  point_size,
  point_shape,
  point_colour,
  point_fill,
  point_alpha,
  point_stroke,
  panel_scaling = TRUE,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "density_ridges2",
  stat = "density_ridges",
  position = "points_sina",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_density_ridgeline_gradient(
 object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  height,
  color,
  fill,
  alpha,
  group,
```

```
linetype,
  size,
  gradient_lwd = 0.5,
 xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "ridgeline_gradient",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_density_ridges_gradient(
 object = NULL,
  gformula = NULL,
 data = NULL,
 height,
  panel_scaling = TRUE,
  color,
  fill = \sim stat(x),
  alpha,
  group,
  linetype,
  size,
  gradient_lwd = 0.5,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "density_ridges_gradient",
  stat = "density_ridges",
  position = "points_sina",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

A formula with shape ~ x. Faceting can be achieved by including | in the for-

gformula

stat

data The data to be displayed in this layer. There are three options: If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot(). A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created. A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)). Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. height The height of each ridgeline at the respective x value. Automatically calculated and provided by ggridges::stat_density_ridges() if the default stat is not changed. A scaling factor to scale the height of the ridgelines relative to the spacing bescale tween them. A value of 1 indicates that the maximum point of any ridgeline touches the baseline right above, assuming even spacing between baselines. min_height A height cutoff on the drawn ridgelines. All values that fall below this cutoff will be removed. The main purpose of this cutoff is to remove long tails right at the baseline level, but other uses are possible. The cutoff is applied before any height scaling is applied via the scale aesthetic. Default is 0, so negative values are removed. color A color or a formula used for mapping color. fill A color for filling, or a formula used for mapping fill. alpha Opacity (0 = invisible, 1 = opaque). group Used for grouping. A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype linetype. size A numeric size or a formula used for mapping size. point_shape, point_colour, point_size, point_fill, point_alpha, point_stroke As in ggridges::geom_ridgeline(). Label for x-axis. See also gf_labs(). xlab ylab Label for y-axis. See also gf_labs(). title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). caption Title, sub-title, and caption for the plot. See also gf_labs(). Use to override the default connection between geom_density and stat_density. geom

Use to override the default connection between geom_density and stat_density.

position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.
rel_min_height	Lines with heights below this cutoff will be removed. The cutoff is measured relative to the overall maximum, so rel_min_height = 0.01 would remove everything. Default is 0, so nothing is removed.
panel_scaling	If TRUE, the default, relative scaling is calculated separately for each panel. If FALSE, relative scaling is calculated globally.
gradient_lwd	A parameter to needed to remove rendering artifacts inside the rendered gradients. Should ideally be 0, but often needs to be around 0.5 or higher.

Details

Note that the <code>ggridges::stat_density_ridges()</code> makes joint density estimation across all datasets. This may not generate the desired result when using faceted plots. As an alternative, you can set <code>stat="density"</code> to use <code>ggplot2::stat_density()</code>. In this case, it is required to add the aesthetic mapping <code>height=stat(density)</code> (see examples).

See Also

```
ggridges::geom_density_ridges()
ggridges::geom_ridgeline()
ggridges::geom_density_ridges_gradient()
```

Examples

```
data.frame(
    x = rep(1:5, 3), y = c(rep(0, 5), rep(1, 5), rep(3, 5)),
    height = c(0, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 4, 1)
) %>%
    gf_ridgeline(y ~ x, height = ~ height, group = ~y, fill = "lightblue", alpha = 0.7)
diamonds %>%
    gf_density_ridges(cut ~ price,
        scale = 2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) %>%
    gf_theme(theme_ridges()) %>%
    gf_refine(
        scale_y_discrete(expand = c(0.01, 0)),
        scale_x_continuous(expand = c(0.01, 0))
)
diamonds %>%
    gf_density_ridges(clarity ~ price | cut,
        scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) %>%
    gf_theme(theme_ridges()) %>%
```

```
gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
   scale_x_continuous(expand = c(0.01, 0))
diamonds %>%
 gf_density_ridges(clarity ~ price | cut, height = ~stat(density), stat = "density",
    scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) %>%
 gf_theme(theme_ridges()) %>%
 gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
    scale_x_continuous(expand = c(0.01, 0))
diamonds %>%
 gf_density_ridges2(cut ~ price, scale = 2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) %>%
 gf_theme(theme_ridges()) %>%
 gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
    scale_x_continuous(expand = c(0.01, 0))
 )
diamonds %>%
 gf_density_ridges(cut ~ price,
   scale = 2, fill = ~ cut, alpha = 0.6, show.legend = FALSE) %>%
 gf_theme(theme_ridges()) %>%
 gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
    scale_x_continuous(expand = c(0.01, 0))
diamonds %>%
 gf_density_ridges(clarity ~ price | cut,
   scale = 2, fill = \sim clarity, alpha = 0.6, show.legend = FALSE) %>%
 gf_theme(theme_ridges()) %>%
 gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
    scale_x_continuous(expand = c(0.01, 0))
diamonds %>%
 gf_density_ridges(clarity ~ price | cut, height = ~stat(density), stat = "density",
    scale = 2, fill = ~ clarity, alpha = 0.6, show.legend = FALSE) %>%
 gf_theme(theme_ridges()) %>%
 gf_refine(
    scale_y_discrete(expand = c(0.01, 0)),
    scale_x_continuous(expand = c(0.01, 0))
 )
mosaicData::Weather %>%
 gf_density_ridges_gradient(month ~ high_temp | city ~ ., fill = ~stat(x),
   group = ~ month, show.legend = FALSE, rel_min_height = 0.02) %>%
 gf_refine(scale_fill_viridis_c(option = "B"), theme_bw())
```

Description

gf_rugx() and gf_rugy() are versions that only add a rug to x- or y- axis. By default, these functions do not inherit from the formula in the original layer (because doing so would often result in rugs on both axes), so the formula is required.

Usage

```
gf_rug(
  object = NULL,
  gformula = NULL,
  data = NULL,
  sides = "bl",
  alpha,
  color,
  group,
  linetype,
  size,
 xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "rug",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_rugx(
  object = NULL,
  gformula = NULL,
  data = NULL,
  sides = "b",
  alpha,
  color,
  group,
  linetype,
  size,
  height = 0,
  xlab,
  ylab,
  title,
  subtitle,
```

```
caption,
  geom = "rug",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_rugy(
  object = NULL,
  gformula = NULL,
  data = NULL,
  sides = "1",
  alpha,
  color,
  group,
  linetype,
  size,
  width = 0,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "rug",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $y \sim x (gf_rug())$ or $\sim x (gf_rugx())$ or $\sim y (gf_rugy())$.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)). Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. sides A string that controls which sides of the plot the rugs appear on. It can be set to a string containing any of "trbl", for top, right, bottom, and left. alpha Opacity (0 = invisible, 1 = opaque). color A color or a formula used for mapping color. Used for grouping. group A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype linetype. A numeric size or a formula used for mapping size. size xlab Label for x-axis. See also gf_labs(). Label for y-axis. See also gf_labs(). ylab title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). caption A character string naming the geom used to make the layer. geom stat The statistical transformation to use on the data for this layer, as a string. position Position adjustment, either as a string, or the result of a call to a position adjustment function. show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display. show.help If TRUE, display some minimal help. A logical indicating whether default attributes are inherited. inherit

Value

a gg object

environment

height

width

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

An environment in which to look for variables not found in data.

amount of vertical jittering when position is jittered.

amount of horizontal jittering when position is jittered.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_rug()
```

Examples

```
data(penguins, package = "palmerpenguins")
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) %>%
 gf_rug(bill_length_mm ~ bill_depth_mm)
# There are several ways to control x- and y-rugs separately
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) %>%
 gf_rugx(~bill_depth_mm, data = penguins, color = "red") %>%
 gf_rugy(bill_length_mm ~ ., data = penguins, color = "green")
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) %>%
 gf_rug(. ~ bill_depth_mm, data = penguins, color = "red", inherit = FALSE) %>%
 gf_rug(bill_length_mm ~ ., data = penguins, color = "green", inherit = FALSE)
gf_point(bill_length_mm ~ bill_depth_mm, data = penguins) %>%
 gf_rug(. ~ bill_depth_mm, data = penguins, color = "red", sides = "b") %>%
 gf_rug(bill_length_mm ~ ., data = penguins, color = "green", sides = "1")
# jitter requires both an x and a y, but we can turn off one or the other with sides
gf_jitter(bill_length_mm ~ bill_depth_mm, data = penguins) %>%
 gf_rug(color = "green", sides = "b", position = "jitter")
# rugs work with some 1-varialbe plots as well.
gf_histogram(~eruptions, data = faithful) %>%
 gf_rug(~eruptions, data = faithful, color = "red") %>%
 gf_rug(~eruptions, data = faithful, color = "navy", sides = "t")
# we can take advantage of inheritance to shorten the code
gf_histogram(~eruptions, data = faithful) %>%
 gf_rug(color = "red") %>%
 gf_rug(color = "navy", sides = "t")
# Need to turn off inheritance when using gf_dhistogram:
gf_dhistogram(~eruptions, data = faithful) %>%
 gf_rug(~eruptions, data = faithful, color = "red", inherit = FALSE)
# using jitter with gf_histogram() requires manually setting the y value.
```

gf_segment 135

```
gf_dhistogram(~bill_depth_mm, data = penguins) %>%
    gf_rug(0 ~ bill_depth_mm, data = penguins, color = "green", sides = "b", position = "jitter")
# the choice of y value can affect how the plot looks.
gf_dhistogram(~bill_depth_mm, data = penguins) %>%
    gf_rug(0.5 ~ bill_depth_mm, data = penguins, color = "green", sides = "b", position = "jitter")
```

gf_segment

Formula interface to geom_segment()

Description

geom_segment() draws a straight line between points (x, y) and (xend, yend). geom_curve draws a curved line. See the underlying drawing function grid::curveGrob() for the parameters that control the curve.

Usage

```
gf_segment(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
  linetype,
  size,
  arrow = NULL,
  lineend = "butt",
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "segment",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

136 gf_segment

gformula A formula with shape $y + yend \sim x + xend$.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. ~ head(.x,10)).

.. Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

arrow specification for arrow heads, as created by arrow().

lineend Line end style (round, butt, square).

xlab Label for x-axis. See also gf_labs().

ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It

can also be a named logical vector to finely select the aesthetics to display.

show. help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

Value

a gg object

gf_sf 137

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_segment()
```

Examples

```
D <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
gf_point(mpg ~ wt, data = mtcars) %>%
    gf_curve(y1 + y2 ~ x1 + x2, data = D, color = "navy") %>%
    gf_segment(y1 + y2 ~ x1 + x2, data = D, color = "red")
```

gf_sf

Mapping with shape files

Description

Mapping with shape files

Usage

```
gf_sf(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  geometry,
```

138 gf_sf

```
xlab,
ylab,
title,
subtitle,
caption,
stat = "sf",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the

formula.

data A data frame with the variables to be plotted.

... Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = \sim expression, (c) attributes of the layer as a whole, which are set with attribute

= value, or (d) arguments for the geom, stat, or position function.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

geometry A column of class sfc containing simple features data. (Another option is that

data may contain a column named geometry.) geometry is never inherited.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs(). stat A character string naming the stat used to make the layer.

position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

show.legend A logical indicating whether this layer should be included in the legends. NA,

the default, includes layer in the legends if any of the attributes of the layer are

mapped.

gf_sf 139

```
show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.
```

Value

```
a gg object
```

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_line(), gf_point()
```

Examples

```
## Not run:
if (require(maps) && require(maptools) &&
 require(sf) && require(rgeos))
 US <- sf::st_as_sf(maps::map("state", plot = FALSE, fill = TRUE))
 gf_sf(fill = ~ factor(nchar(ID)), data = US) %>%
   gf_refine(coord_sf())
 # We can specify shape data and external data separately using geometry
 MI <- sf::st_as_sf(maps::map("county", "michigan", plot = FALSE, fill = TRUE))
 MIgeom <- MI$geom
 gf_sf(
   fill = ~ log10(population), data = MIpop %>% dplyr::arrange(county),
   geometry = ~MIgeom, color = "white"
 ) %>%
   gf_refine(coord_sf(), theme_bw())
 # alternatively we can merge external data and shape data into one data frame.
 MI %>%
   dplyr::mutate(county = gsub("michigan,", "", ID)) %>%
   dplyr::left_join(MIpop %>% dplyr::mutate(county = tolower(county))) %>%
```

140 *gf_sina*

```
gf_sf(fill = ~ population / 1e3) %>%
gf_refine(
    coord_sf(), theme_bw(),
    scale_fill_continuous(name = "population (thousands)", trans = "log10")
)
## End(Not run)
```

gf_sina

Formula interface to geom_sina()

Description

The sina plot is a data visualization chart suitable for plotting any single variable in a multiclass dataset. It is an enhanced jitter strip chart, where the width of the jitter is controlled by the density distribution of the data within each class.

Usage

```
gf_sina(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  size,
  fill,
  group,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "point",
  stat = "sina",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gf_sina 141

gformula A formula with shape y ~ x. Faceting can be achieved by including | in the formula. The data to be displayed in this layer. There are three options: data If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot(). A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)). Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat. Opacity (0 = invisible, 1 = opaque). alpha color A color or a formula used for mapping color. size A numeric size or a formula used for mapping size. fill A color for filling, or a formula used for mapping fill. group Used for grouping. Label for x-axis. See also gf_labs(). xlab ylab Label for y-axis. See also gf_labs(). title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). caption The geometric object to use display the data geom The statistical transformation to use on the data for this layer, as a string. stat Position adjustment, either as a string, or the result of a call to a position adjustposition ment function. show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display. show.help If TRUE, display some minimal help. inherit A logical indicating whether default attributes are inherited. environment An environment in which to look for variables not found in data.

Value

a gg object

142 gf_smooth

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggforce::geom_sina()
```

Examples

```
gf_sina(age ~ substance, data = mosaicData::HELPrct)
```

gf_smooth

Formula interface to geom_smooth()

Description

LOESS and linear model smoothers in ggformula.

Usage

```
gf_smooth(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  method = "auto",
  formula = y ~ x,
  se = FALSE,
  method.args,
  n = 80,
  span = 0.75,
  fullrange = FALSE,
  level = 0.95,
  xlab,
```

gf_smooth 143

```
ylab,
  title,
  subtitle,
  caption,
  geom = "smooth",
  stat = "smooth",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_lm(
  object = NULL,
  gformula = NULL,
 data = NULL,
  alpha = 0.3,
  lm.args = list(),
  interval = "none",
  level = 0.95,
  fullrange = TRUE,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "lm",
  stat = "lm",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

data

. . .

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the formula.

A data frame with the variables to be plotted.

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

144 gf_smooth

method Smoothing method (function) to use, accepts either NULL or a character vector, e.g. "lm", "glm", "gam", "loess" or a function, e.g. MASS::rlm or mgcv::gam, stats::lm, or stats::loess. "auto" is also accepted for backwards compatibility. It is equivalent to NULL. For method = NULL the smoothing method is chosen based on the size of the largest group (across all panels). stats::loess() is used for less than 1,000 observations; otherwise mgcv: gam() is used with formula = $y \sim s(x,bs = "cs")$ with method = "REML". Somewhat anecdotally, loess gives a better appearance, but is $O(N^2)$ in memory, so does not work for larger datasets. If you have fewer than 1,000 observations but want to use the same gam() model that method = NULL would use, then set method = "gam", formula = $y \sim s(x, bs = "cs")$. formula Formula to use in smoothing function, eg. $y \sim x$, $y \sim poly(x, 2)$, $y \sim log(x)$. NULL by default, in which case method = NULL implies formula = y ~ x when there are fewer than 1,000 observations and formula = $y \sim s(x, bs = "cs")$ otherwise. se Display confidence interval around smooth? (TRUE by default, see level to control.) method.args List of additional arguments passed on to the modelling function defined by method. Number of points at which to evaluate smoother. n Controls the amount of smoothing for the default loess smoother. Smaller numspan bers produce wigglier lines, larger numbers produce smoother lines. fullrange Should the fit span the full range of the plot, or just the data? Level of confidence interval to use (0.95 by default). level xlab Label for x-axis. See also gf_labs(). Label for y-axis. See also gf_labs(). ylab title Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). caption geom A character string naming the geom used to make the layer. A character string naming the stat used to make the layer. stat Either a character string naming the position function used for the layer or a position position object returned from a call to a position function. A logical indicating whether this layer should be included in the legends. NA, show.legend the default, includes layer in the legends if any of the attributes of the layer are mapped. show.help If TRUE, display some minimal help. inherit A logical indicating whether default attributes are inherited. An environment in which to look for variables not found in data. environment alpha Opacity (0 = invisible, 1 = opaque). lm.args A list of arguments to stats::lm(). interval One of "none", "confidence" or "prediction".

gf_smooth 145

Value

```
a gg object
```

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_smooth(), gf_spline()
```

Examples

```
gf_smooth()
gf_lm()
gf_smooth(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_smooth(births ~ date,
  color = ~wday, data = mosaicData::Births78,
  fullrange = TRUE
gf_smooth(births ~ date,
  color = ~wday, data = mosaicData::Births78,
  show.legend = FALSE, se = FALSE
)
gf_smooth(births ~ date,
  color = ~wday, data = mosaicData::Births78,
  show.legend = FALSE, se = TRUE
gf_lm(length ~ width,
  data = mosaicData::KidsFeet,
  color = ~biggerfoot, alpha = 0.2
  gf_point()
gf_lm(length ~ width,
  data = mosaicData::KidsFeet,
  color = ~biggerfoot, fullrange = FALSE, alpha = 0.2
)
gf_point()
gf_lm(length ~ width,
```

gf_spline

```
color = ~sex, data = mosaicData::KidsFeet,
  formula = y \sim poly(x, 2), linetype = "dashed"
) %>%
  gf_point()
gf_lm(length ~ width,
  color = ~sex, data = mosaicData::KidsFeet,
  formula = log(y) \sim x, backtrans = exp
  gf_point()
gf_lm(hwy ~ displ,
  data = mpg,
  formula = log(y) \sim poly(x, 3), backtrans = exp,
  interval = "prediction", fill = "skyblue"
) %>%
  gf_lm(
    formula = log(y) \sim poly(x, 3), backtrans = exp,
    interval = "confidence", color = "red"
  ) %>%
  gf_point()
```

gf_spline

Formula interface to geom_spline()

Description

Fitting splines in ggformula.

```
gf_spline(
 object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  group,
  linetype,
  size,
 weight,
  df,
  spar,
  tol,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
```

gf_spline 147

```
geom = "line",
stat = "spline",
position = "identity",
show.legend = NA,
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples. gformula A formula with shape y ~ x. Faceting can be achieved by including | in the formula. A data frame with the variables to be plotted. data Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value. alpha Opacity (0 = invisible, 1 = opaque). color A color or a formula used for mapping color. Used for grouping. group A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype linetype. size A numeric size or a formula used for mapping size. An optional vector of weights. See smooth.spline(). weight desired equivalent degrees of freedom. See smooth.spline() for details. df A smoothing parameter, typically in (0,1]. See smooth.spline() for details. spar A tolerance for sameness or uniqueness of the x values. The values are binned tol into bins of size tol and values which fall into the same bin are regarded as the same. Must be strictly positive (and finite). When NULL, IQR(x) * 10e-6 is used. Label for x-axis. See also gf_labs(). xlab ylab Label for y-axis. See also gf_labs(). title Title, sub-title, and caption for the plot. See also gf_labs(). subtitle Title, sub-title, and caption for the plot. See also gf_labs(). Title, sub-title, and caption for the plot. See also gf_labs(). caption geom A character string naming the geom used to make the layer. A character string naming the stat used to make the layer. stat position Either a character string naming the position function used for the layer or a

position object returned from a call to a position function.

148 gf_spoke

show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.	
show.help	If TRUE, display some minimal help.	
inherit	A logical indicating whether default attributes are inherited.	
environment	An environment in which to look for variables not found in data.	

Value

```
a gg object
```

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
geom_spline(), gf_smooth(), gf_lm()
```

Examples

```
gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78)
gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78, df = 20)
gf_spline(births ~ date, color = ~wday, data = mosaicData::Births78, df = 4)
```

Description

This is a polar parameterisation of geom_segment. It is useful when you have variables that describe direction and distance.

149 gf_spoke

Usage

```
gf_spoke(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  angle,
  radius,
  alpha,
  color,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "spoke",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

A formula with shape $y \sim x$. Faceting can be achieved by including | in the gformula

formula.

data The data to be displayed in this layer. There are three options:

> If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

> A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

> A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

> Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.

angle The angle at which segment leaves the point (x,y).

150 gf_spoke

radius	The length of the segment.	
alpha	Opacity ($0 = \text{invisible}, 1 = \text{opaque}$).	
color	A color or a formula used for mapping color.	
group	Used for grouping.	
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.	
size	A numeric size or a formula used for mapping size.	
xlab	Label for x-axis. See also gf_labs().	
ylab	Label for y-axis. See also gf_labs().	
title	Title, sub-title, and caption for the plot. See also gf_labs().	
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().	
caption	Title, sub-title, and caption for the plot. See also gf_labs().	
geom	A character string naming the geom used to make the layer.	
stat	The statistical transformation to use on the data for this layer, as a string.	
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.	
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.	
show.help	If TRUE, display some minimal help.	
inherit	A logical indicating whether default attributes are inherited.	
environment	An environment in which to look for variables not found in data.	

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

gf_step 151

See Also

```
ggplot2::geom_spoke()
```

Examples

```
SomeData <- expand.grid(x = 1:10, y = 1:10)
SomeData$angle <- runif(100, 0, 2 * pi)
SomeData$speed <- runif(100, 0, sqrt(0.1 * SomeData$x))

gf_point(y ~ x, data = SomeData) %>%
    gf_spoke(y ~ x, angle = ~angle, radius = 0.5)

gf_point(y ~ x, data = SomeData) %>%
    gf_spoke(y ~ x, angle = ~angle, radius = ~speed)
```

gf_step

Formula interface to geom_step()

Description

geom_path() connects the observations in the order in which they appear in the data. geom_line() connects them in order of the variable on the x axis. geom_step() creates a stairstep plot, highlighting exactly when changes occur. The group aesthetic determines which cases are connected together.

```
gf_step(
  object = NULL,
  gformula = NULL,
  data = NULL,
  alpha,
  color,
  group,
  linetype,
  size,
  direction = "hv",
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "step",
  stat = "identity",
  position = "identity",
  show.legend = NA,
```

152 *gf_step*

```
show.help = NULL,
inherit = TRUE,
environment = parent.frame()
)
```

Arguments

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the

formula.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute =

~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

direction direction of stairs: 'vh' for vertical then horizontal, 'hv' for horizontal then

vertical, or 'mid' for step half-way between adjacent x-values.

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

gf_step 153

```
show.help If TRUE, display some minimal help.inherit A logical indicating whether default attributes are inherited.environment An environment in which to look for variables not found in data.
```

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_step()
```

Examples

```
gf_step(births ~ date, data = mosaicData::Births78, color = ~wday)
# Roll your own Kaplan-Meier plot

if (require(survival) && require(broom)) {
    # fit a survival model
    surv_fit <- survfit(coxph(Surv(time, status) ~ age + sex, lung))
    surv_fit
    # use broom::tidy() to create a tidy data frame for plotting
    surv_df <- tidy(surv_fit)
    head(surv_df)
    # now create a plot
    surv_df %>%
        gf_step(estimate ~ time) %>%
        gf_ribbon(conf.low + conf.high ~ time, alpha = 0.2)
}
```

gf_text

Formula interface to geom_text() and geom_label()

Description

Text geoms are useful for labeling plots. They can be used by themselves as scatterplots or in cobination with other geoms, for example, for labeling points or for annotating the height of bars. geom_text() adds only text to the plot. geom_label() draws a rectangle behind the text, making it easier to read.

```
gf_text(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  label,
  alpha,
  angle,
  color,
  family,
  fontface,
  group,
  hjust,
  lineheight,
  size,
  vjust,
  parse = FALSE,
  nudge_x = 0,
  nudge_y = 0,
  check_overlap = FALSE,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "text",
  stat = "identity",
  position = "nudge",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_label(
```

```
object = NULL,
  gformula = NULL,
  data = NULL,
  label,
  alpha,
  angle,
  color,
  family,
  fontface,
  group,
  hjust,
  vjust,
  lineheight,
  size,
  parse,
  nudge_x = 0,
  nudge_y = 0,
  label.padding = unit(0.25, "lines"),
  label.r = unit(0.15, "lines"),
  label.size = 0.25,
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  stat = "identity",
  position = "nudge",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object

When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.

gformula

A formula with shape $y \sim x$. Faceting can be achieved by including | in the formula.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function

can be created from a formula (e.g. \sim head(.x,10)).

... Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with

attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

label The text to be displayed.

alpha Opacity (0 = invisible, 1 = opaque).

An angle for rotating the text.

color A color or a formula used for mapping color.

family A font family.

fontface One of "plain", "bold", "italic", or "bold italic".

group Used for grouping.

hjust, vjust Numbers between 0 and 1 indicating how to justify text relative the the specified

location.

lineheight Line height.

size A numeric size or a formula used for mapping size.

parse If TRUE, the labels will be parsed into expressions and displayed as described in

?plotmath.

nudge_x Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text

from points, particularly on discrete scales. Cannot be jointly specified with

position.

nudge_y Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text

from points, particularly on discrete scales. Cannot be jointly specified with

position.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.

check_overlap happens at draw time and in the order of the data. Therefore data should be arranged by the label column before calling geom_label() or

geom_text().

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom A character string naming the geom used to make the layer.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function. Cannot be jointy specified with nudge_x or nudge_y.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

environment An environment in which to look for variables not found in data.

label.padding Amount of padding around label. Defaults to 0.25 lines.

Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_text()
```

Examples

```
data(penguins, package = "palmerpenguins")
gf_text(bill_length_mm ~ bill_depth_mm,
 data = penguins,
 label = ~species, color = ~species, size = 2, angle = 30
)
penguins %>%
gf_point(bill_length_mm ~ bill_depth_mm, color = ~species, alpha = 0.5) %>%
 gf_text(bill_length_mm ~ bill_depth_mm,
   label = ~species, color = ~species.
    size = 2, angle = 0, hjust = 0, nudge_x = 0.1, nudge_y = 0.1
if (require(dplyr)) {
 data(penguins, package = "palmerpenguins")
 penguins_means <-
   penguins %>%
   group_by(species) %>%
   summarise(bill_length_mm = mean(bill_length_mm), bill_depth_mm = mean(bill_depth_mm))
 gf_point(bill_length_mm ~ bill_depth_mm, data = penguins, color = ~species) %>%
```

158 gf_tile

```
gf_label(bill_length_mm ~ bill_depth_mm,
    data = penguins_means,
    label = ~species, color = ~species, size = 2, alpha = 0.7
)
}
```

gf_theme

Themes for ggformula

Description

Themes for ggformula

Usage

```
gf_theme(object, theme, ...)
```

Arguments

object a gg object

theme a ggplot2 theme function like theme_minimal().

... If theme is missing, then these additional arguments are theme elements of the

sort handled by ggplot2::theme().

Value

a modified gg object

gf_tile

Formula interface to geom_tile()

Description

geom_rect() and geom_tile() do the same thing, but are parameterised differently: geom_rect() uses the locations of the four corners (xmin, xmax, ymin and ymax), while geom_tile() uses the center of the tile and its size (x, y, width, height). geom_raster is a high performance special case for when all the tiles are the same size.

gf_tile 159

Usage

```
gf_tile(
  object = NULL,
  gformula = NULL,
  data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "tile",
  stat = "identity",
  position = "identity",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

object	When chaining, this holds an object produced in the earlier portions of the chain. Most users can safely ignore this argument. See details and examples.
gformula	A formula with shape $y \sim x$. Faceting can be achieved by including $ $ in the formula.
data	A data frame with the variables to be plotted.
	Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with attribute = value.
alpha	Opacity $(0 = invisible, 1 = opaque)$.
color	A color or a formula used for mapping color.
fill	A color for filling, or a formula used for mapping fill.
group	Used for grouping.
linetype	A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping linetype.
size	A numeric size or a formula used for mapping size.
xlab	Label for x-axis. See also gf_labs().

160 gf_tile

ylab	Label for y-axis. See also gf_labs().
title	Title, sub-title, and caption for the plot. See also gf_labs().
subtitle	Title, sub-title, and caption for the plot. See also gf_labs().
caption	Title, sub-title, and caption for the plot. See also gf_labs().
geom	A character string naming the geom used to make the layer.
stat	A character string naming the stat used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
show.legend	A logical indicating whether this layer should be included in the legends. NA, the default, includes layer in the legends if any of the attributes of the layer are mapped.
show.help	If TRUE, display some minimal help.
inherit	A logical indicating whether default attributes are inherited.
environment	An environment in which to look for variables not found in data.

Value

a gg object

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of **lattice**.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

See Also

```
ggplot2::geom_tile()
```

Examples

```
D <- expand.grid(x = 0:5, y = 0:5)

D$z <- runif(nrow(D))

gf_tile(y \sim x, fill = \simz, data = D)

gf_tile(z \sim x + y, data = D)
```

gf_violin

Formula interface to geom_violin()

Description

A violin plot is a compact display of a continuous distribution. It is a blend of geom_boxplot() and geom_density(): a violin plot is a mirrored density plot displayed in the same way as a boxplot.

```
gf_violin(
  object = NULL,
  gformula = NULL,
 data = NULL,
  ...,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
 weight,
  draw_quantiles = NULL,
  trim = TRUE,
  scale = "area",
  adjust = 1,
  kernel = "gaussian",
  xlab,
 ylab,
  title,
  subtitle,
  caption,
  geom = "violin",
  stat = "ydensity",
  position = "dodge",
  show.legend = NA,
```

```
show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
gf_violinh(
  object = NULL,
  gformula = NULL,
  data = NULL,
  . . . ,
  alpha,
  color,
  fill,
  group,
  linetype,
  size,
  weight,
  draw_quantiles = NULL,
  trim = TRUE,
  scale = "area",
  bw,
  adjust = 1,
  kernel = "gaussian",
  xlab,
  ylab,
  title,
  subtitle,
  caption,
  geom = "violinh",
  stat = "xdensity",
  position = "dodgev",
  show.legend = NA,
  show.help = NULL,
  inherit = TRUE,
  environment = parent.frame()
)
```

Arguments

data

object When chaining, this holds an object produced in the earlier portions of the chain.

Most users can safely ignore this argument. See details and examples.

gformula A formula with shape $y \sim x$. Faceting can be achieved by including | in the formula.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be

created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x,10)).

Additional arguments. Typically these are (a) ggplot2 aesthetics to be set with attribute = value, (b) ggplot2 aesthetics to be mapped with attribute = ~ expression, or (c) attributes of the layer as a whole, which are set with

attribute = value.

alpha Opacity (0 = invisible, 1 = opaque).

color A color or a formula used for mapping color.

fill A color for filling, or a formula used for mapping fill.

group Used for grouping.

linetype A linetype (numeric or "dashed", "dotted", etc.) or a formula used for mapping

linetype.

size A numeric size or a formula used for mapping size.

weight Useful for summarized data, weight provides a count of the number of values

with the given combination of x and y values.

draw_quantiles If not(NULL) (default), draw horizontal lines at the given quantiles of the density

estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,

don't trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).

If "count", areas are scaled proportionally to the number of observations. If

"width", all violins have the same maximum width.

bw The smoothing bandwidth to be used. If numeric, the standard deviation of

the smoothing kernel. If character, a rule to choose the bandwidth, as listed in

stats::bw.nrd().

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-

width while still using the a bandwidth estimator. For example, adjust = 1/2

means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

xlab Label for x-axis. See also gf_labs().
ylab Label for y-axis. See also gf_labs().

title Title, sub-title, and caption for the plot. See also gf_labs().

subtitle Title, sub-title, and caption for the plot. See also gf_labs().

caption Title, sub-title, and caption for the plot. See also gf_labs().

geom Use to override the default connection between geom_violin and stat_ydensity.

stat Use to override the default connection between geom_violin and stat_ydensity.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

show.help If TRUE, display some minimal help.

inherit A logical indicating whether default attributes are inherited.

An environment in which to look for variables not found in data.

Value

a gg object

environment

Specifying plot attributes

Positional attributes (a.k.a, aesthetics) are specified using the formula in gformula. Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment of gformula. This will typically do the right thing when formulas are created on the fly, but might not be the right thing if formulas created in one environment are used to create plots in another.

References

Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box Plot-Density Trace Synergism. The American Statistician 52, 181-184.

See Also

```
ggplot2::geom_violin()
```

Examples

```
gf_violin(age ~ substance, data = mosaicData::HELPrct)
gf_violin(age ~ substance, data = mosaicData::HELPrct, fill = ~sex)
gf_violinh(substance ~ age, data = mosaicData::HELPrct)
gf_violinh(substance ~ age, data = mosaicData::HELPrct, fill = ~sex)
```

ggformula 165

ggformula

Formula interface to ggplot2

Description

Formula interface to ggplot2

The ggformula system

The functions in **ggformula** provide a formula interface to **ggplot2** layer functions and a system for working with pipes to create multi-layer plots and to refine plots. For plots with just one layer, the formula interface is more compact than native **ggplot2** code and is consistent with modeling functions like **stats::lm()** that use a formula interface and with the numerical summary functions in the **mosaic** package.

Specifying plot attributes

Positional attributes (a.k.a aesthetics) are typically specified using a formula (see the gformula argument). Setting and mapping of additional attributes can be done through the use of additional arguments. Attributes can be set can be set using arguments of the form attribute = value or mapped using arguments of the form attribute = ~ expression. A (sometimes partial) list of available attributes can be obtained by executing plotting functions with no arguments.

In formulas of the form A | B, B will be used to form facets using facet_wrap() or facet_grid(). This provides an alternative to gf_facet_wrap() and gf_facet_grid() that is terser and may feel more familiar to users of lattice.

Evaluation

Evaluation of the **ggplot2** code occurs in the environment specified by environment. This will typically do the right thing, but is exposed in case some non-standard behavior is desired. In earlier versions, the environment of the formula was used, but since some functions in the package do not require a formula, a separate argument is used now.

Examples

```
apropos("gf_")
gf_point()
```

layer_factory

layer_factory

Create a ggformula layer function

Description

Primarily intended for package developers, this function factory is used to create the layer functions in the ggformula package.

Usage

```
layer_factory(
  geom = "point",
  position = "identity",
  stat = "identity",
  pre = { },
  aes_form = y ~ x,
  extras = alist(),
  note = NULL,
  aesthetics = aes(),
  inherit.aes = TRUE,
  check.aes = TRUE,
  data = NULL,
  layer_fun = quo(ggplot2::layer),
  ...
)
```

Arguments

geom	The geom to use for the layer (may be specified as a string).	
position	The position function to use for the layer (may be specified as a string).	
stat	The stat function to use for the layer (may be specified as a string).	
pre	code to run as a "pre-process".	
aes_form	A single formula or a list of formulas specifying how attributes are inferred from the formula. Use NULL if the function may be used without a formula.	
extras	An alist of additional arguments (potentially with defaults)	
note	A note to add to the quick help.	
aesthetics	Additional aesthetics (typically created using ggplot2::aes()) set rather than inferred from formula. gf_dhistogram() uses this to set the y aesthetic to stat(density), for example.	
inherit.aes	A logical indicating whether aesthetics should be inherited from prior layers or a vector of character names of aesthetics to inherit.	
check.aes	A logical indicating whether a warning should be emited when aesthetics provided don't match what is expected.	
data	A data frame or NULL or NA.	

MIpop 167

layer_fun The function used to create the layer or a quosure that evaluates to such a func-

tion.

... Additional arguments.

Value

A function.

MIpop

Population of Michigan counties

Description

Population of Michigan counties

Usage

```
data(MIpop)
```

Format

A data frame with populations of Michigan counties.

rank Population rank.

county County name.

population Population (2010 census).

percs_by_group

Compute groupwise proportions and percents

Description

Transform a vector of counts and a vector of groups into a vector of proportions or percentages within groups.

Usage

```
percs_by_group(x, group)
props_by_group(x, group)
```

Arguments

x A vector of counts

group A vector to determine groups.

168 StatAsh

Examples

```
x <- c(20, 30, 30, 70)
g1 <- c("A", "A", "B", "B")
g2 <- c("A", "B", "A", "B")
props_by_group(x, g1)
percs_by_group(x, g1)
props_by_group(x, g2)</pre>
```

StatAsh

ggproto classes for ggplot2

Description

These are typically accessed through their associated geom_*, stat_* or gf_* functions. These are typically accessed through their associated geom_*, stat_* or gf_* functions.

Usage

```
StatAsh
StatSpline
StatQqline
StatLm
GeomLm
StatAsh
StatFitdistr
```

See Also

```
stat_ash()
gf_ash()
stat_spline()
gf_spline()
stat_qq()
gf_qq()
stat_lm()
gf_lm()
geom_lm()
```

stat_fitdistr 169

```
gf_lm()
stat_ash()
gf_ash()
```

stat_fitdistr

A stat for fitting distributions

Description

This stat computes points for plotting a distribution function. Fitting is done using MASS::fitdistr() when analytic solutions are not available.

Usage

```
stat_fitdistr(
  mapping = NULL,
  data = NULL,
  geom = "path",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  dist = "dnorm",
  start = NULL,
  ...
)
```

Arguments

mapping	Aesthetics created using aes() or aes_string().
data	A data frame.
geom	A character string naming the geom used to make the layer.
position	Either a character string naming the position function used for the layer or a position object returned from a call to a position function.
na.rm	If TRUE, do not emit a warning about missing data.
show.legend	A logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them.
dist	A character string indicating the distribution to fit. Examples include "dnorm", "dgamma", etc.
start	A list of starting values used by MASS::fitdistr() when numerically approximating the maximum likelihood estimate.
	Additional arguments.

stat_lm

Value

A gg object

 $stat_lm$

Linear Model Displays

Description

Adds linear model fits to plots. geom_lm() and stat_lm() are essentially equivalent. Use geom_lm() unless you want a non-standard geom.

```
stat_lm(
 mapping = NULL,
 data = NULL,
 geom = "lm",
 position = "identity",
  interval = c("none", "prediction", "confidence"),
  level = 0.95,
  formula = y \sim x,
  lm.args = list(),
 backtrans = identity,
 na.rm = FALSE,
 show.legend = NA,
  inherit.aes = TRUE
)
geom_lm(
 mapping = NULL,
 data = NULL,
 stat = "lm",
 position = "identity",
 interval = c("none", "prediction", "confidence"),
  level = 0.95,
  formula = y \sim x,
  lm.args = list(),
 backtrans = identity,
 na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

stat_lm 171

Arguments

mapping	Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.	
data	The data to be displayed in this layer. There are three options:	
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().	
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.	
	A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x,10)).	
geom, stat	Use to override the default connection between geom_lm and stat_lm.	
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.	
interval	One of "none", "confidence" or "prediction".	
level	The level used for confidence or prediction intervals	
formula	a formula describing the model in terms of y (response) and x (predictor).	
lm.args	A list of arguments supplied to lm() when performing the fit.	
backtrans	a function that transforms the response back to the original scale when the formula includes a transformation on y.	
•••	Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.	
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.	
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.	
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().	

Details

Stat calculation is performed by the (currently undocumented) predictdf. Pointwise confidence or prediction bands are calculated using the predict() method.

See Also

lm() for details on linear model fitting.

stat_qqline

Examples

```
ggplot(data = mosaicData::KidsFeet, aes(y = length, x = width, color = sex)) +
 geom_lm() +
 geom_point()
ggplot(data = mosaicData::KidsFeet, aes(y = length, x = width, color = sex)) +
 geom_lm(interval = "prediction", color = "skyblue") +
 geom_lm(interval = "confidence") +
 geom_point() +
 facet_wrap(~sex)
# non-standard display
ggplot(data = mosaicData::KidsFeet, aes(y = length, x = width, color = sex)) +
 stat_lm(aes(fill = sex),
   color = NA, interval = "confidence", geom = "ribbon",
   alpha = 0.2
 ) +
 geom_point() +
 facet_wrap(~sex)
ggplot(mpg, aes(displ, hwy)) +
 geom_lm(
   formula = log(y) \sim poly(x, 3), backtrans = exp,
    interval = "prediction", fill = "skyblue"
 ) +
 geom_lm(
   formula = log(y) \sim poly(x, 3), backtrans = exp, interval = "confidence",
   color = "red"
 ) +
 geom_point()
```

stat_qqline

A Stat for Adding Reference Lines to QQ-Plots

Description

This stat computes quantiles of the sample and theoretical distribution for the purpose of providing reference lines for QQ-plots.

```
stat_qqline(
  mapping = NULL,
  data = NULL,
  geom = "line",
  position = "identity",
    ...,
  distribution = stats::qnorm,
  dparams = list(),
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

stat_spline 173

Arguments

mapping An aesthetic mapping produced with aes() or aes_string().

data A data frame. geom A geom.

position A position object.
... Additional arguments distribution A quantile function.

dparams A list of arguments for distribution.

na.rm A logical indicating whether a warning should be issued when missing values

are removed before plotting.

show.legend A logical indicating whether legends should be included for this layer. If NA,

legends will be include for each aesthetic that is mapped.

inherit.aes A logical indicating whether aesthetics should be inherited. When FALSE, the

supplied mapping will be the only aesthetics used.

Examples

```
data(penguins, package = "palmerpenguins")
ggplot(data = penguins, aes(sample = bill_length_mm)) +
  geom_qq() +
  stat_qqline(alpha = 0.7, color = "red", linetype = "dashed") +
  facet_wrap(~species)
```

stat_spline

Geoms and stats for spline smoothing

Description

Similar to geom_smooth, this adds spline fits to plots.

```
stat_spline(
  mapping = NULL,
  data = NULL,
  geom = "line",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
  weight = NULL,
  df = NULL,
  spar = NULL,
  cv = FALSE,
```

stat_spline

```
all.knots = FALSE,
  nknots = stats::.nknots.smspl,
  df.offset = 0,
  penalty = 1,
  control.spar = list(),
  tol = NULL,
)
geom_spline(
 mapping = NULL,
 data = NULL,
  stat = "spline",
  position = "identity",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE,
 weight = NULL,
 df = NULL,
  spar = NULL,
  cv = FALSE,
  all.knots = FALSE,
  nknots = stats::.nknots.smspl,
  df.offset = 0,
 penalty = 1,
  control.spar = list(),
  tol = NULL,
)
```

Arguments

mapping

1-10	we we will also be a second of the secon
data	A data frame.
geom	A geom.
position	A position object.
na.rm	A logical indicating whether a warning should be issued when missing values are removed before plotting.
show.legend	A logical indicating whether legends should be included for this layer. If NA, legends will be included for each aesthetic that is mapped.
inherit.aes	A logical indicating whether aesthetics should be inherited. When FALSE, the supplied mapping will be the only aesthetics used.
weight	An optional vector of weights. See smooth.spline().
df	desired equivalent degrees of freedom. See smooth.spline() for details.
spar	A smoothing parameter, typically in (0,1]. See smooth.spline() for details.
CV	A logical. See smooth.spline() for details.

An aesthetic mapping produced with aes() or aes_string().

var_label 175

all.knots	A logical. See smooth.spline() for details.
nknots	An integer or function giving the number of knots to use when all.knots = FALSE. See smooth.spline() for details.
df.offset	A numerical value used to increase the degrees of freedom when using GVC. See smooth.spline() for details.
penalty	the coefficient of the penalty for degrees of freedom in the GVC criterion. See smooth.spline() for details.
control.spar	An optional list used to control root finding when the parameter spar is computed. See smooth.spline() for details.
tol	A tolerance for sameness or uniqueness of the x values. The values are binned into bins of size tol and values which fall into the same bin are regarded as the same. Must be strictly positive (and finite). When NULL, $IQR(x) * 10e-6$ is used.
	Additional arguments
stat	A stat.

Examples

```
if (require(mosaicData)) {
   ggplot(Births) + geom_spline(aes(x = date, y = births, colour = wday))
   ggplot(Births) + geom_spline(aes(x = date, y = births, colour = wday), nknots = 10)
}
```

var_label

Set and extract labels from a labeled object

Description

Some packages like expss provide mechanisms for providing longer labels to R objects. These labels can be used when labeling plots and tables, for example, without requiring long or awkward variable names. This is an experimental feature and currently only supports expss or any other system that stores a label in the label attribute of a vector.

```
var_label(x, unlist = FALSE)
var_label(x) <- value
get_variable_labels(x, unlist = FALSE)
var_label(x, unlist = FALSE)
set_variable_labels(.data, ..., .labels = NA, .strict = TRUE)</pre>
```

176 var_label

Arguments

Χ	an object
unlist	for data frames, return a named vector instead of a list
value	a character string or NULL to remove the label For data frames, it could also be a named list or a character vector of same length as the number of columns in \boldsymbol{x} .
.data	a data frame
	name-value pairs of variable labels (see examples)
.labels	variable labels to be applied to the data.frame, using the same syntax as value in var_label(df) <-value.
.strict	should an error be returned if some labels doesn't correspond to a column of x?

Details

For data frames, if value is a named list, only elements whose name will match a column of the data frame will be taken into account. If value is a character vector, labels should in the same order as the columns of the data frame.

Value

```
set_variable_labels() will return an updated copy of .data.
```

Note

These functions are imported from the {labelled} package.

Examples

```
KF <-
  mosaicData::KidsFeet %>%
  set_variable_labels(
    length = 'foot length (cm)',
    width = 'foot width (cm)',
    birthmonth = 'birth month',
    birthyear = 'birth year',
    biggerfoot = 'bigger foot',
    domhand = 'dominant hand'
)
KF %>%
  gf_point(length ~ width, color = ~ domhand)
get_variable_labels(KF)
```

Index

* datasets	geom_lm(stat_lm), 170
StatAsh, 168	geom_lm(), 168
	<pre>geom_point(), 42</pre>
aes(), 12, 171, 173, 174	geom_smooth, 173
aes_(), <i>12</i> , <i>171</i>	<pre>geom_spline (stat_spline), 173</pre>
aes_string(), <i>173</i> , <i>174</i>	<pre>geom_spline(), 148</pre>
handana() 171	<pre>geom_tile(), 39</pre>
borders(), <i>171</i>	GeomLm (StatAsh), 168
density(), 53, 163	<pre>get_variable_labels (var_label), 175</pre>
df_stats(), 32, 36	gf_abline,4
discrete_breaks, 3	gf_area, 7
4150. 665_8. 64.ks, <i>b</i>	gf_ash, 10
expand_limits(), 26	gf_ash(), 54, 168, 169
	gf_bar, 13
facet_grid(), 12, 19, 22, 25, 27, 31, 35, 38,	gf_barh, 20
41, 43, 46, 50, 53, 58, 63, 72, 73, 76,	gf_bin2d, 23
79, 85, 90, 93, 97, 107, 109, 113,	gf_blank, 26
116, 118, 120, 134, 137, 139, 142,	gf_boxplot, 28
145, 148, 150, 153, 157, 160, 164,	gf_boxploth, 32
165	gf_coefline (gf_abline), 4
facet_wrap(), 12, 19, 22, 25, 27, 31, 35, 38,	gf_col, 36
41, 43, 46, 50, 53, 58, 63, 72, 73, 76,	gf_col(), 17, 21
79, 85, 90, 93, 97, 107, 109, 113,	gf_colh (gf_bar), 13
116, 118, 120, 134, 137, 139, 142,	gf_contour, 39
145, 148, 150, 153, 157, 160, 164,	gf_contour(), 83
165	gf_contour_filled (gf_contour), 39
fivenum(), 32, 36	gf_count, 42
fortify(), 5, 8, 17, 21, 29, 33, 40, 45, 48, 52,	gf_counts (gf_bar), 13
57, 64, 69, 71, 78, 84, 88, 101, 112,	gf_countsh (gf_bar), 13
114, 123, 128, 132, 136, 141, 149,	gf_crossbar, 44
152, 155, 162, 171	gf_crossbarh (gf_crossbar), 44
goom ach (af ach) 10	gf_curve, 47
geom_ash (gf_ash), 10 geom_bar, 20	gf_dens (gf_density), 50
geom_boxplot, 32	gf_dens2 (gf_density), 50
geom_boxplot(), 113, 161	gf_density, 50
=	gf_density2d (gf_density_2d), 54
<pre>geom_density(), 54, 161 geom_density_2d(), 39</pre>	gf_density2d_filled (gf_density_2d), 54
geom_errorbar(), 70	gf_density_2d, 54
- · · · · · · · · · · · · · · · · · · ·	gf_density_2d(), 41
<pre>geom_histogram(), 12</pre>	gi_ueii51ty_2u(), 41

INDEX

<pre>gf_density_2d_filled (gf_density_2d), 54</pre>	gf_jitter(), <i>107</i> , <i>110</i>
<pre>gf_density_ridgeline_gradient</pre>	<pre>gf_label (gf_text), 154</pre>
(gf_ridgeline), 124	gf_labs, 93
<pre>gf_density_ridges (gf_ridgeline), 124</pre>	gf_labs(), 6, 9, 11, 18, 22, 24, 27, 31, 35, 37
<pre>gf_density_ridges2 (gf_ridgeline), 124</pre>	38, 40, 41, 43, 46, 49, 53, 57, 58, 62
<pre>gf_density_ridges_gradient</pre>	64, 66, 69, 71, 72, 75, 79, 85, 89, 92
(gf_ridgeline), 124	96, 97, 101, 106, 109, 112, 115, 117
<pre>gf_dhistogram (gf_histogram), 86</pre>	120, 123, 128, 133, 136, 138, 141,
<pre>gf_dhistogramh (gf_histogram), 86</pre>	144, 147, 150, 152, 156, 159, 160,
gf_dist, 59	163
gf_dotplot, 60	gf_lims(gf_labs), 93
gf_ecdf, 63	gf_line, 95
gf_ellipse, 65	gf_line(), <i>107</i> , <i>110</i>
gf_empty, 67	${\sf gf_linerange}, 98$
gf_errorbar, 68	${\sf gf_linerangeh}({\sf gf_linerange}),98$
gf_errorbarh, 70	gf_lm(gf_smooth), 142
<pre>gf_facet_grid (gf_facet_wrap), 73</pre>	gf_lm(), <i>148</i> , <i>168</i> , <i>169</i>
gf_facet_grid(), 12, 19, 22, 25, 27, 31, 35,	gf_path(gf_line),95
38, 41, 43, 46, 50, 53, 58, 63, 72, 76,	<pre>gf_percents (gf_bar), 13</pre>
79, 85, 90, 93, 97, 107, 109, 113,	gf_percents(), <i>17</i> , <i>21</i>
116, 118, 120, 134, 137, 139, 142,	gf_percentsh (gf_bar), 13
145, 148, 150, 153, 157, 160, 164,	gf_plot, 104
165	gf_point, 105
<pre>gf_facet_wrap, 73</pre>	gf_point(), 93, 97, 139
gf_facet_wrap(), 12, 19, 22, 25, 27, 31, 35,	${\tt gf_pointrange}({\tt gf_linerange}),98$
38, 41, 43, 46, 50, 53, 58, 63, 72, 76,	${\tt gf_pointrangeh}({\tt gf_linerange}),98$
79, 85, 90, 93, 97, 107, 109, 113,	gf_polygon, 108
116, 118, 120, 134, 137, 139, 142,	gf_props (gf_bar), 13
145, 148, 150, 153, 157, 160, 164,	gf_props(), <i>17</i> , <i>21</i>
165	gf_propsh (gf_bar), 13
gf_fitdistr, 74	gf_qq, 110
gf_frame (gf_blank), 26	gf_qq(), <i>168</i>
gf_freqpoly, 77	<pre>gf_qqline (gf_qq), 110</pre>
gf_fun(gf_function), 80	gf_qqstep(gf_qq), 110
<pre>gf_fun2d (gf_function_2d), 81</pre>	gf_quantile, 113
gf_fun_2d (gf_function_2d), 81	gf_raster, 116
<pre>gf_fun_contour(gf_function_2d), 81</pre>	gf_rect, 119
<pre>gf_fun_tile (gf_function_2d), 81</pre>	<pre>gf_refine(gf_labs), 93</pre>
$gf_function, 80$	gf_relabel, 121
<pre>gf_function2d (gf_function_2d), 81</pre>	gf_ribbon, 122
gf_function_2d, 81	gf_ridgeline, 124
<pre>gf_function_contour(gf_function_2d), 81</pre>	gf_rug, 130
<pre>gf_function_tile (gf_function_2d), 81</pre>	gf_rugx (gf_rug), 130
gf_hex, 83	gf_rugy (gf_rug), 130
gf_histogram, 86	gf_segment, 135
gf_histogramh (gf_histogram), 86	gf_sf, 137
<pre>gf_hline (gf_abline), 4</pre>	gf_sina, 140
gf_jitter, 91	gf_smooth, 142

INDEX 179

gf_smooth(), <i>148</i>	ggplot2::geom_qq(), <i>113</i>
gf_spline, 146	<pre>ggplot2::geom_quantile(), 116</pre>
gf_spline(), 145, 168	<pre>ggplot2::geom_raster(), 118</pre>
gf_spoke, 148	<pre>ggplot2::geom_rect(), 121</pre>
gf_step, 151	<pre>ggplot2::geom_ribbon(), 124</pre>
gf_summary (gf_linerange), 98	<pre>ggplot2::geom_rug(), 134</pre>
gf_text, 154	<pre>ggplot2::geom_segment(), 137</pre>
gf_theme, 158	<pre>ggplot2::geom_smooth(), 145</pre>
gf_tile, 158	<pre>ggplot2::geom_spoke(), 151</pre>
gf_tile(), 23, 25, 83	ggplot2::geom_step(), 153
gf_violin, 161	<pre>ggplot2::geom_text(), 157</pre>
gf_violinh (gf_violin), 161	<pre>ggplot2::geom_tile(), 161</pre>
gf_vline (gf_abline), 4	<pre>ggplot2::geom_violin(), 164</pre>
ggforce::geom_sina(), 142	<pre>ggplot2::geom_vline(), 6</pre>
ggformula, 165	ggplot2::ggplot(), 68
ggplot(), 5, 8, 17, 21, 29, 33, 40, 45, 48, 52,	<pre>ggplot2::stat_bin2d(), 23</pre>
57, 64, 69, 71, 78, 84, 88, 101, 112,	<pre>ggplot2::stat_density(), 129</pre>
114, 123, 128, 132, 136, 141, 149,	<pre>ggplot2::stat_ellipse(), 65, 67</pre>
152, 155, 162, 171	ggplot2::stat_summary(), 102
ggplot2::aes(), 166	ggplot2::theme(), 158
ggplot2::facet_grid(), 73	<pre>ggridges::geom_density_ridges(), 129</pre>
ggplot2::facet_wrap(), 73	<pre>ggridges::geom_density_ridges_gradient(),</pre>
ggplot2::fortify(), 105	129
ggplot2::geom_abline(), 6	<pre>ggridges::geom_ridgeline(), 128, 129</pre>
	<pre>ggridges::stat_density_ridges(), 128,</pre>
ggplot2::geom_area(), 9	129
ggplot2::geom_bar(), 19	<pre>ggstance::geom_barh(), 23</pre>
ggplot2::geom_bin2d(), 25	ggstance::geom_boxploth(), 36
ggplot2::geom_blank(), 28	grid::arrow(), 96
ggplot2::geom_boxplot(), 32	grid::curveGrob(), 47, 135
ggplot2::geom_col(), 38	
ggplot2::geom_contour(), 41	layer(), 64, 141, 171
ggplot2::geom_count(),44	layer_factory, 166
ggplot2::geom_crossbar(),46	lm(), 171
ggplot2::geom_curve(), 50	MASS handwidth and() 57
ggplot2::geom_density(), 54	MASS::bandwidth.nrd(), 57
ggplot2::geom_density_2d(), 58	MASS::fitdistr, 75
ggplot2::geom_dotplot(), 63	MASS::kde2d(), 54
ggplot2::geom_errorbar(),70	mgcv::gam(), 144
ggplot2::geom_errorbarh(),72	MIpop, 167
ggplot2::geom_freqpoly(),79	mosaic::makeFun(), 83
ggplot2::geom_hex(), 85	mosaicCore::fit_distr_fun(), 75, 76
$ggplot2::geom_histogram(), 90$	mosaicCore::makeFun(), 80
ggplot2::geom_hline(),6	percs_by_group, 167
ggplot2::geom_jitter(),93	predict(), <i>171</i>
ggplot2::geom_line(), 97, 139	print.gf_ggplot (gf_relabel), 121
<pre>ggplot2::geom_linerange(), 102</pre>	props_by_group (percs_by_group), 167
ggplot2::geom_point(), <i>107</i> , <i>110</i>	EE27-0. and (Eq. 20-27-9, 200), 10,
ggplot2::geom_pointrange(), 102	quantreg::rq(), <i>115</i>

INDEX

```
quantreg::rqss(), 115
set_variable_labels (var_label), 175
smooth.spline(), 147, 174, 175
stat_ash (gf_ash), 10
stat_ash(), 168, 169
stat_fitdistr, 169
stat_lm, 170
stat_lm(), 168
stat_qq(), 168
stat_qqline, 172
stat_spline, 173
stat_spline(), 168
StatAsh, 168
StatFitdistr (StatAsh), 168
StatLm (StatAsh), 168
StatQqline (StatAsh), 168
stats::bw.nrd(), 163
stats::lm(), 144, 165
stats::loess(), 144
StatSpline (StatAsh), 168
theme_minimal(), 158
var_label, 175
var_label<- (var_label), 175</pre>
```