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Abstract

Market models constitute a major cornerstone of empirical research in industrial organization and

macroeconomics. Previous literature in these fields has proposed a variety of estimation methods both for

markets in equilibrium, which typically entail a market-clearing condition, and in disequilibrium, in which the

primary identification condition comes from the short-side rule. Although methodologically attractive, the

estimation methods of such models, in particular of the disequilibrium models, is computationally demand-

ing and software providing simple, out-of-the-box methods for estimating them is scarce. Econometricians,

therefore, mostly rely on their own implementations for estimating these models. This article presents the R

package diseq, which provides functionality to simplify the estimation of models for markets in equilibrium

and disequilibrium using full information maximum likelihood methods. The basic functionality of the pack-

age is presented based on the data and the classic analysis originally performed by Fair & Jaffee (1972). The

article also gives an overview of the design of the package, presents the post-estimation analysis capabilities

that accompany it, and provides statistical evidence of the computational performance of its functionality

gathered via large-scale benchmarking simulations. Diseq is free software that is distributed under the MIT

license as part of the R software project. It comprises a set of estimation tools, which are to a large extend

not available from either alternative R packages or other statistical software projects.
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1. Introduction

Demand and supply estimations are among the most common objectives of the econometrics involved in policy-

making and academic analysis. These two market forces are typically interdependent through prices, which

affect both sides of the market. Thus, it is well understood in the economic literature that estimating separately

demand or supply has endogeneity issues. Therefore, the majority of estimation methods for demand and supply

account that these market forces are simultaneously determined and model them after systems of potentially

dynamic, stochastic, simultaneous equations.

Estimation methods for systems of market equations adopt a variety of structural assumptions about the

market. The most common assumption is that of market-clearing, which postulates that prices are infinitely

responsive to demand and supply changes and swiftly adjust so that demand and supply meet each other.

Economists have employed alternative structural assumptions in studying situations for which the market-

clearing assumption constitutes a poor approximation. Unemployment in labor markets, financial constraints

in credit markets, and shortages in agricultural products are more commonly studied by replacing the market-

clearing assumption with the short-side rule. The short-side rule presumes that price adjustment is not perfect,

and temporary market imbalances can lead to disagreements between demanded and supplied quantities.

Methodologies for estimating markets using either market-clearing or the short-side rule as the primary struc-

tural identification condition are known for years. Still, because the short-side rule introduces non-linearities

to the system of market equations, the computational difficulties relating to methodologies for markets in dise-

quilibrium posed a bottleneck in the application of such methods, also hindering in this way the development

of statistical software implementing them. This article introduces the statistical R package diseq, which closes

this long-lasting gap by providing a common framework for estimation methods and analysis tools for markets

in equilibrium and disequilibrium.

The common framework allows the estimation of five market models; a model with market-clearing and four

models for markets in disequilibrium. Except for the equilibrium model, which can also be estimated using

two-stage least squares, the models of diseq are estimated by maximizing the full information likelihood. The

common estimation interface allows interchanging among the available optimization methods in optimr. Access

to native optimization procedures from GSL are also provided for the equilibrium model. More importantly,

diseq uses analytic expressions for calculating the gradients of all models’ likelihoods by default, which greatly

enhances the computational performance of maximum likelihood optimization. The article presents statistical

evidence in favor of the overperformance gathered from large-scale benchmarking estimations using simulated

data in the high-performance cluster of Goethe University’s Center for Scientific Computing (CSC). Specifically,

benchmarking measurements for estimating all models using BFGS with analytically calculated gradients, BFGS

with numerically approximated gradients, and Nelder-Mead are presented. In addition, diseq calculates standard

errors using analytic Hessian expressions by default for two of the disequilibrium models. The package also

1

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:start


provides options for estimating clustered standard errors or adjusting for heteroscedasticity. The option of using

analytic gradient and Hessian expressions in the estimation calls is not available in any alternative statistical

software package.

Besides providing a unified and computationally efficient way to estimate various market models, diseq pro-

vides a minimalistic set of post-estimation analysis methods. These simplify the calculation of (dis-)aggregated

predicted demanded and supplied values, various measures of shortages, and marginal effects.

This article gives an overview of data analysis with the R package diseq. Section 2 demonstrates the typical

usage of diseq via the classic analysis of Fair & Jaffee (1972). Section 3 offers a top-down overview of the design

of the package. Section 4 describes the functions provided by the diseq package for estimating and analyzing

markets in equilibrium and disequilibrium. Section 4 discusses alternative tools for estimating markets in

disequilibrium and provides some computational benchmarks. The last section concludes.

2. An empirical example

2.1. The houses dataset

The houses dataset contains the monthly macroeconomic time series for the US credit market of housing starts

from July 1958 to December 1969. The market for this period was initially studied by Fair (1971). Subsequent

work on estimation of markets with disequilibrium methods, by Fair & Jaffee (1972), Maddala & Nelson (1974),

and Hwang (1980), also uses the housing market of this period for illustrating the introduced methodologies.

Table 1 presents the variables of the houses dataset and provides a short description for each one of them.

The observations of HS were collected from the Economic Report of the President (1947). The series of RM

were obtained by Fair (1971, table A.3). The observations of W were manually collected, and the data for

DSLA, DMSB, and DHLB were collected from the Federal Reserve Bulletin (1914).

Table 1: Variables in the houses dataset.

DATE The date of the record.

HS Private non-farm housing starts in thousands of units (not seasonally adjusted).

RM FHA Mortgage Rate series on new homes in units of 100 (beginning-of-month Data).

DSLA Savings capital (deposits) of savings and loan associations in millions of dollars.

DMSB Deposits of mutual savings banks in millions of dollars.

DHLB Advances of the federal home loan bank to savings and loan associations in million of dollars.

W Number of working days in month.

The specification of the demand and supply equations follows Hwang (1980) and Maddala & Nelson (1974).
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The demand equation is given by

Dt = βd
0RMt + βd

1 + βd
2 t+ βd

3Wt + βd
4CSHSt + βd

5RMt−1 + βd
6RMt−2 +

12
∑

i=2

βd
5+iMONTHi,t + ud

t ,

where CSHS is the cumulative sum of past housing starts and MONTHi are monthly indicator variables.

The variable CSHS is used as a proxy to the stock of houses, and the monthly indicators are used to capture

seasonal demand effects. The supply equation is specified as

St = βs
0RMt + βs

1 + βs
2t+ βs

3Wt + βs
4RMt−1 + βs

4MA6(DSFt) + βs
6MA3(DHFt) +

12
∑

i=2

βs
5+iMONTHi,t + us

t ,

where MA6(DSF ) is the moving average of order 6 of the flow of deposits in savings associations and loan

associations and mutual savings banks, and MA3(DHF ) is the moving average of order 3 of the flow of advances

of the federal home loan bank to savings and loan associations. The stochastic terms ud,t and us,t are jointly,

normally distributed. The moving averages and lagged variables of the analysis are constructed from the

variables of the houses dataset. The fair_houses function of diseq automates the construction (see listing 1).

Listing 1: Data preparation.

1 house_data <- fair_houses ()

2.2. Model initialization

The demand and supply equations are estimated using four market structures. Each market structure entails

a different assumption about the price dynamics of the market. Figure 1 illustrates the differences between

the four models. The equilibrium model (fig. 1a) assumes that market prices seamlessly adjust to demand and

supply changes, and the econometrician observes only equilibrium points in the data, i.e., HSt = Dt = St

for each t in the sample. The basic disequilibrium model (fig. 1b) assumes that the observed quantity in the

data is determined by the short side rule, i.e., HSt = min{Dt, St}. The directional model (fig. 1c) add a

separation rule to the identification assumption of the basic model. The sample is separated in demand and

supply observations based on the observed price changes. If MRt −MRt−1 ≥ 0, then the observation at time t

is classified as belonging to the supply side, otherwise it is classified as a demand side observation. Finally, the

deterministic adjustment model (fig. 1b) additionally assumes that price changes are analogous to the shortages

and surpluses of the market, i.e., γ (MRt −MRt−1) = Dt − St for some positive parameter γ that is to be

estimated.

The initialization arguments of the constructors of the four models mostly coincide. Each model initialization

requires specifying the model class, the used dataset, the identifiers of the dataset, the quantity and price

variables, and the demand and supply specifications. If the initialized model involves price dynamics, as is the

case for the directional and deterministic adjustment model, the construction operation also requires specifying
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Figure 1: Market specifications.

(a) Equilibrium model. (b) Basic model.

(c) Directional model. (d) Deterministic adjustment model.

the dataset’s time column. Additionally, one can choose whether the initialized model should allow for temporal

correlation between the shocks of the demand and supply equations and the verbosity level with which the

operations of the constructed model should emit messages to the user. The initialization options across the

four models used in this example are kept similar to allow for comparability. The common input variables are

defined in Listing 2.

Listing 2: Model specification.

1 key_columns <- c("ID", "TREND")

2 quantity_column <- "HS"

3 price_column <- "RM"

4 time_column <- "TREND"
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5 demand_specification <- "TREND + W + CSHS + L1RM + L2RM + MONTH"

6 supply_specification <- "TREND + W + L1RM + MA6DSF + MA3DHF + MONTH"

7 correlated_shocks <- FALSE

8 verbose <- 3

Initialization requires specifying two key columns in order to handle panel data. For panel data, one key

column should specify the entity identifier, and the other key column should specify the time identifier. As in

the case of this example’s data, time series data can be handled by passing a constant entity identification value

for all observations of the used sample. The indicator variables of factor type columns included in the market

equations, such as the MONTH variable of this example, are automatically created by the constructors, and

the variable that corresponds to the first level of the factor is dropped.

Listing 3 contains the models’ initialization code. The equilibrium_model and diseq_basic models are atem-

poral, and thus their constructors do not require specifying a time column. The diseq_deterministic_adjustment

and diseq_directional models entail price dynamics, and the time_column variable is passed as the third ar-

gument to their constructors. Expect for the case of the diseq_directional, the price_column is added to the

demand_specification and demand_specification. The directional model uses the price_column for separating

the sample without adding any additional degree of freedom in its estimation and, thus, the price variables

cannot be part of both the demand and supply sides (Maddala & Nelson, 1974, p. 1021).

Listing 3: Model initialization.

1 equilibrium_mdl <- new(

2 "equilibrium_model",

3 key_columns , quantity_column , price_column ,

4 paste(price_column , demand_specification , sep = "+"),

5 paste(price_column , supply_specification , sep = "+"),

6 house_data ,

7 correlated_shocks = correlated_shocks , verbose = verbose)

8 basic_mdl <- new(

9 "diseq_basic",

10 key_columns , quantity_column , price_column ,

11 paste(price_column , demand_specification , sep = "+"),

12 paste(price_column , supply_specification , sep = "+"),

13 house_data ,

14 correlated_shocks = correlated_shocks , verbose = verbose)

15 directional_mdl <- new(

16 "diseq_directional",

17 key_columns , time_column , quantity_column , price_column ,

18 paste(price_column , demand_specification , sep = "+"),
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19 supply_specification ,

20 house_data ,

21 correlated_shocks = correlated_shocks , verbose = verbose)

22 deterministic_adjustment_mdl <- new(

23 "diseq_deterministic_adjustment",

24 key_columns , time_column , quantity_column , price_column ,

25 paste(price_column , demand_specification , sep = "+"),

26 paste(price_column , supply_specification , sep = "+"),

27 house_data ,

28 correlated_shocks = correlated_shocks , verbose = verbose)

2.3. Estimation

The models of this example are estimated by maximizing their likelihoods (see Maddala & Nelson (1974) and

Maddala (1986)). The diseq packages relies mainly on R package bbmle for maximizing the likelihoods2. By

default, likelihoods are maximized using the Broyden-Fletcher-Goldfarb-Shanno (hereafter BFGS) algorithm with

gradients that are calculated by analytic expressions, but the user can override this behavior. Other options

regarding the calculation of the Hessians and standard errors are documented in section 4.

Listing 4 contains the commands for estimating the four models of the example. The two additional keyword

arguments given the the estimation call of this example (optimization_control and method) are passed to the

bbmle::mle2 function. If starting values are not provided, the estimate function initializes the optimization

routine using as starting values the coefficient estimates obtained by linear regressions of the demand and

supply equations of the model. The default estimation method is BFGS with analytically calculated gradients.

For the basic and directional models, for which Hessian expressions are available, standard errors are calculated

using these expressions by default.

Listing 4: Model estimation.

1 optimization_control <- list(maxit = 50000)

2 equilibrium_est <- estimate(equilibrium_mdl , control = optimization_control)

3 basic_est <- estimate(basic_mdl , control = optimization_control ,

4 start = equilibrium_est@coef)

5 directional_est <- estimate(directional_mdl , method = "Nelder -Mead",

6 control = optimization_control)

7 deterministic_adjustment_est <- estimate(deterministic_adjustment_mdl ,

8 control = optimization_control)

2Additional methods and tools are available for the equilibrium model. See section 3 for more information.
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Table 2 presents the estimated coefficients for the four used models. The coefficients of the monthly indicators

are omitted for brevity. Parentheses contain the p-values for the estimated coefficients. The price elasticities

of demand (D RM) and supply (S RM) of the equilibrium, basic, and deterministic adjustment models have

the economically expected signs. In contrast, the demand elasticity (D RM) of the directional model has an

opposite sign than the expected one. The deterministic adjustment model suggests that price changes are

responsive to shortages and surpluses as the estimated response parameter (RM DIFF ) is greater than one

and has a p-value equal to one. The demand and supply equations of the directional model closely resemble the

corresponding equations in the analysis of Fair (1971) and Fair & Jaffee (1972), and its estimated coefficients

have identical signs and similar scales to the corresponding estimates of those articles.

Table 2: Estimation results.

Coefficients Equilibrium Basic Directional Deterministic adjustment

D RM −5.8707 (0.00) −8.1205 (0.00) 0.9294 (0.00) −4.5422 (0.00)

D CONST −3.5384 (0.00) −3.3352 (0.00) 104.2485 (0.00) 13.6044 (0.00)

D TREND −2.2583 (0.00) −34.7577 (0.00) 3.4024 (0.00) −2.6245 (0.00)

D W 3.2213 (0.01) −32.2648 (0.00) 5.4002 (0.00) 2.5180 (0.04)

D CSHS 0.0211 (0.00) 0.2031 (0.00) −0.0259 (0.00) 0.0244 (0.00)

D L1RM 7.8750 (0.00) 14.7104 (0.00) 0.3572 (0.41) 6.2722 (0.00)

D L2RM −1.9786 (0.00) −3.1749 (0.33) −1.5413 (0.00) −1.6969 (0.00)

S RM 0.9617 (0.00) 0.4015 (0.06) NA (NA) 0.6201 (0.00)

S CONST −57.8048 (0.00) −77.7746 (0.00) −39.5322 (0.00) −63.6607 (0.00)

S TREND −0.1787 (0.00) −0.1416 (0.00) −0.0714 (0.00) −0.1706 (0.00)

S W 2.9853 (0.00) 3.2784 (0.00) 3.7903 (0.00) 2.9240 (0.00)

S L1RM −0.9008 (0.00) −0.3259 (0.13) 0.0223 (0.02) −0.5449 (0.01)

S MA6DSF 0.0510 (0.00) 0.0522 (0.00) 0.0388 (0.00) 0.0494 (0.00)

S MA3DHF 0.0408 (0.00) 0.0393 (0.00) 0.0258 (0.00) 0.0343 (0.00)

RM DIFF NA (NA) NA (NA) NA (NA) 1.6103 (0.01)

D V ARIANCE 805.1174 (0.00) 786.2419 (0.00) 44.1599 (0.00) 810.0375 (0.00)

S V ARIANCE 116.1149 (0.00) 99.5034 (0.00) 25.2621 (0.00) 110.5647 (0.00)

3. Design and statistical background

The package currently supports the estimation of five market models. One of these five models assumes that

the studied market preternaturally clears. The remaining four models assume that the studied market switches
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between states of excess demand and excess supply. In the disequilibrium models, the market-clearing state

has zero probability and can be included in either the excess demand or excess supply state without losing

generality. Diseq provides a unified estimation framework for the implemented five models, irrespective of their

structural assumptions about the studied market.

The package organizes these classes in a simple object oriented hierarchy that is depicted in fig. 2. Five front-

end classes are exposed to the user; these are the (i) equilibrium_model, (ii) diseq_basic, (iii) diseq_directional,

(iv) diseq_deterministic_adjustment, and (v) diseq_stochastic_adjustment classes. The two back-end classes,

namely (i) market_model and (ii) disequilibrium_model, act as interfaces of functionality that is common in

market models and disequilibrium market models.

Figure 2: Design overview.

The equilibrium model is represented by a linear system of stochastic equations

Dn,t = αdPn,t + βd
0 +

kd
∑

j=1

βd
jX

j,d
n,t +

k
∑

j=1

ηdjX
j
n,t + ud

n,t (1)

Sn,t = αsPn,t + βs
0 +

ks
∑

j=1

βs
jX

j,s
n,t +

k
∑

j=1

ηsjX
j
n,t + us

n,t (2)

Qn,t = Dn,t = Sn,t, (3)

where D is the demanded quantity, S the supplied quantity, Q the traded quantity, P the price, Xj,d and

Xj,s are equation specific controlled variables, Xj are common controlled variables, and ud and us are jointly,

normally distributed shocks. Equation (3) is the market clearing condition that postulates that demanded and

supplied quantities are equal.

The equilibrium model can be estimated using either two-stage least squares or full information maximum
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likelihood (see Zellner & Theil (1962) and Maddala & Nelson (1974)). The two methods are asymptotically

equivalent (Balestra & Varadharajan-Krishnakumar, 1987). Substituting eq. (3) into eqs. (1) and (2) gives a

system of two stochastic equations on traded quantities and prices. Suppose that f denotes the joint distribution

of ud and us, and let θ =
(

αd, θd, α
s, θs

)

and Y = (Yd, Ys), where, for m = d, s,

θm =
(

βm
0 ,

{

βm
j

}

j
,
{

ηmj
}

j

)′

and Ym =

(

1,
{

X
j,m
j

}

j
,
{

Xj
}

j

)′

.

Then, the likelihood of the equilibrium model is obtained by

L (θ; q, p, Y ) =
dP

d (Q,P )
(q, p | Y ; θ) = f

(

q − αdp− θ′dYd, q − αsp− θ′sYs

)

.

Diseq implements both maximum likelihood and least squares estimation methodologies. The least square

estimation uses the systemfit package, while the maximum likelihood methodology uses optim via the bbmle,

or Gnu Scientific Library (henceforth GSL) optimization routines.

When building the package from source, If the C++20 version of execution.h is located in the target machine

during installation, the gradient calculations are performed in parallel using the std::execution::par_unseq

execution policy when the GSL optimization routines are employed in the estimation. The usage of native

optimization routines does not necessarily result in faster execution times because there is an overhead stemming

from the communication between R and GSL. For small datasets, machines without C++20 support, or machines

with few available processors, the communication cost is typically greater than the benefits of using native

routines, which results in slower execution times. Still, estimating the equilibrium model via GSL routines

allows the user to further customize the optimization call by choosing the step size and the gradient tolerance of

the BFGS algorithm. The two-stage least square is the least computationally intensive estimation methodology

as it merely involves linear algebra operations (see Henningsen & Hamann (2007) for the statistical background).

For well-behaved samples, all estimation methods and tools result in similar estimates. Table 3 exemplifies

this by comparing the estimates obtained by estimating the equilibrium model using simulated data with 20000

observations. The simulated equilibrium model has, besides prices and a constant, two demand covariates (Xd
1

and Xd
2 ), one supply covariate (Xs

1), two common covariates (X1 and X2), and allows for temporal correlation

between demand and supply shocks (ρ). The code that generates the sample data and performs the estimations

is given in listing 5.

The disequilibrium models keep eqs. (1) and (2) and replace the marketing-clearing condition (eq. (3)) with

the short side rule, i.e.,

Qnt = min {Dn,t, Sn,t} . (4)

This modification makes the systems of all the disequilibrium models non linear. The probability that the

traded quantity equals the demanded quantity is calculated by

πD = P (S > D | p, Y ; θ) = P
(

us − ud > αdp+ θ′dYd − αsp− θ′sYs | p, Y ; θ
)

,
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Table 3: Comparison of equilibrium estimation methods and tools.

Coefficients sim fiml optim fiml gsl 2sls

D P −0.70 −0.57 (0.13) −0.57 (0.13) −0.57 (0.13)

D CONST 28.90 27.45 (1.45) 27.40 (1.50) 27.42 (1.48)

D Xd1 0.30 0.26 (0.04) 0.26 (0.04) 0.26 (0.04)

D Xd2 −0.20 −0.24 (0.04) −0.24 (0.04) −0.24 (0.04)

D X1 −0.03 0.02 (0.05) 0.02 (0.05) 0.02 (0.05)

D X2 −0.01 −0.07 (0.06) −0.07 (0.06) −0.07 (0.06)

S P 0.60 0.56 (0.04) 0.56 (0.04) 0.56 (0.04)

S CONST 10.20 10.53 (0.33) 10.59 (0.39) 10.50 (0.30)

S Xs1 0.30 0.36 (0.06) 0.35 (0.05) 0.36 (0.06)

S X1 0.50 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

S X2 0.02 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)

D V ARIANCE 4.00 2.96 (1.04) 2.94 (1.06) 2.95 (1.05)

S V ARIANCE 9.00 8.34 (0.66) 8.28 (0.72) 8.38 (0.62)

RHO −0.30 −0.12 (0.18) −0.11 (0.19) −0.12 (0.18)

where the random variables us−ud is normally distributed as difference of normally distributed random variables.

The probability that the traded quantity equals the supplied quantity, denoted by πS , is defined analogously.

The basic model is defined by eqs. (1), (2) and (4), and its likelihood is given by

L (θ; q, p, Y ) =
dP

dQ
(q | S > D, p, Y ; θ)πD +

dP

dQ
(q | D ≥ S, p, Y ; θ)πS

=

∫ ∞

q

f
(

q − αdp− θ′dYd, S
)

dS +

∫ ∞

q

f (D, q − αsp− θ′sYs) dD.

In addition to eqs. (1), (2) and (4), the directional model separates the sample based on the rule

∆P ≥ 0 =⇒ D ≥ S. (5)

Its likelihood is

L (θ; q, p, Y ) =

(

dP

dQ
(q | S > D, p, Y ; θ)πD

)1−I∆P≥0
(

dP

dQ
(q | D ≥ S, p, Y ; θ)πS

)I∆P≥0

,

where I∆P≥0 is an indicator function taking the value one if eq. (5) is satisfied. The deterministic adjustment

model is defined by eqs. (1), (2) and (4), and the deterministic price dynamics

∆Pn,t =
1

γ
(Dn,t − Sn,t) . (6)
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Listing 5: Equilibrium estimation methods and tools

1 seed <- 25

2 parameters <- list(

3 nobs = 4000, tobs = 5,

4 alpha_d = -0.7, beta_d0 = 28.9, beta_d = c(0.3, -0.2), eta_d = c(-0.03, -0.01),

5 alpha_s = 0.6, beta_s0 = 10.2, beta_s = c(0.3) , eta_s = c(0.5, 0.02) ,

6 sigma_d = 2.0, sigma_s = 3.0, rho_ds = -0.3)

7 equilibrium_mdl <- simulate_model("equilibrium_model", parameters , seed , verbose)

8 fiml_optim_est <- estimate(equilibrium_mdl , control = optimization_control)

9 fiml_gsl_est <- maximize_log_likelihood(

10 equilibrium_mdl , step = .01, objective_tolerance = .01, gradient_tolerance = .01)

11 ls_est <- estimate(equilibrium_mdl , method = "2SLS")

Equation (6) also serves as a separation rule. Given the classification of an observation based on this rule, one

of the variables D an S can be eliminated from the system and the remaining variable equals to the traded

quantity. This, abusing slightly the notation so that the vector θ also contains γ, results to the likelihood

L := L (θ; q, p, p−1, Y )

=

(

dP

d (Q,P )
(q, p | S > D, p−1, Y ; θ)πD

)1−I∆P≥0
(

dP

d (Q,P )
(q, p | D ≥ S, p−1, Y ; θ)πS

)I∆P≥0

= f
(

q − αdp− θ′dYd, q − γ∆p− αsp− θ′sYs

)1−I∆P≥0

f
(

q − γ∆p− αdp− θ′dYd, q − αsp− θ′sYs

)I∆P≥0

.

Lastly, the system of the stochastic adjustment model is determined by eqs. (1), (2) and (4), and the stochastic

price dynamics

∆Pn,t =
1

γ
(Dn,t − Sn,t) + β

p
0 +

kp
∑

j=1

β
p
jX

j,p
n,t + u

p
n,t, (7)

where Xj,p are the controlled variables and up the disturbance term of the price dynamics. For this model,

let θp =
(

β
p
j

)′

j
, Yp =

(

Xj,p
)′

j
. Suppose also that θ contains the parameters γ and θp, and that Y contains Yp.

Moreover, let f denote the joint density of the shocks ud, us, and up. Since eq. (7) is stochastic, it cannot be

used to separate the sample. The likelihood of this model is given by

L (θ; q, p, p−1, Y ) =
dP

d (Q,P )
(q, p | S > D, p−1, Y ; θ)πD +

dP

d (Q,P )
(q, p | D ≥ S, p−1, Y ; θ)πS

=

∫ ∞

q

f

(

q − αdp− θ′dYd, S, ∆p−
1

γ
(q − S)− θ′pYp

)

dS +

∫ ∞

q

f

(

D, q − αsp− θ′sYs, ∆p−
1

γ
(D − q)− θ′pYp

)

dD.
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Diseq implements maximum likelihood estimation routines for the four disequilibrium models. The like-

lihoods are optimized using the bbmle package, which relies on optim. All five models of diseq have similar

implementation components. These are depicted in fig. 3. Each market model contains a logging object that

handles the exposed methods’ output depending on the level of verbosity that is chosen during initialization.

More importantly, it contains an object of its corresponding system class. The system class contains data and

methods that describe the system of stochastic equations that describes the model. In turn, the system class

contains an equation object for each stochastic equation of the system. Therefore, all models contain a demand

and supply equation, and diseq_stochastic_adjustment additionally contains a price equation class. Most of

the functionality of diseq is exposed via methods at the market class level. The system and equation classes are

primarily used to store and organize intermediate and final analysis data.

Figure 3: Market class implementation.

4. Functionality and alternatives

The main estimation functionality of diseq aims at disentangling demand and supply using various econometric

assumptions about the market structure. The package implements five model classes. The equilibrium model

(equilibrium_model) can be estimated with either two-stage least squares or full information maximum likeli-

hood3. The package systemfit can be directly used with the option 2SLS to obtain the estimates of the former

methodology. The maximum likelihood estimation does not have alternative implementations. The basic dise-

quilibrium model (diseq_basic) is also implemented by package the Disequilibrium. Disequilibrium estimates

the basic model using L-BFGS-B via optimr, and the likelihood’s gradient is numerically approximated. In-

stead, diseq allows the user to choose both the optimization method and whether numerical approximations or

analytic gradient calculations are used. In addition, diseq provides options for using analytic expressions for

3See also table 3
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the Hessian calculation when estimating standard errors. The remaining three disequilibrium provided mod-

els, namely the diseq_directional, diseq_deterministic_adjustment, and diseq_stochastic_adjustment, do not

have implementation alternatives.

The estimation methods implemented by diseq have macroeconomic origins (Fair, 1971; Maddala & Nelson,

1974), but have found applications in recent research of economics and finance using microdata (see for instance

(Bulligan et al., 2017) and (Carbó-Valverde et al., 2009)). In this respect, demand estimation methods such

as the Almost Ideal Demand Systems (AIDS) of Deaton & Muellbauer (1980) and the structural estimation of

Berry et al. (1995) (typically abbreviated as BLP) partially overlap with the methods described in this article.

The AIDS and BLP methodologies are micro-founded, but they focus only on the demand side and are not

concerned with the market-clearing assumption. Implementations of these methods can be correspondingly

found in the packages BLPestimatoR and micEconAids.

4.1. Initialization options

Model object initialization is performed via the new keyword (see listing 6 as well as listing 3). An initialization

call requires specifying after the intended initialed model class in order (i) the entity and time identification

columns of the dataset, (i.o) the time column for the dynamic models, (ii) the quantity column, (iii) the price

column, (iv) the demand specification, (v) the supply specification, (v.o) the price equation specification in

the case of diseq_stochastic_adjustment model, and (vi) the data. Two optional keyword arguments control

whether the shocks of the stochastic equations are correlated (correlated_shocks with default value equal to

TRUE), and the verbosity level of output messages that operations on the initialized object print (verbose with

default value equal to 0. The default verbosity level prints only errors; level 1 additionally prints warnings, 2

basic information, 3 verbose information, and 4 debug information.

The constructor prepares the model’s variables using the passed specifications, which are expected to follow

the syntax of formula. The demand variables are extracted by a formula that uses the quantity column (argument

(ii)) on the left hand side and the demand specification (argument (iv)) on the right hand side. The supply

variables are analogously constructed by arguments (ii) and (v). In the case of the diseq_stochastic_adjustment

model, the price dynamics’ variables are extracted using price specification. The price specification should contain

only terms other than that of excess demand, which after all is not observed. The constructor implicitly adds

the excess demand term. A call to the new returns an initialized S4 market model object. Basic and extended

information about the initialized object is correspondingly accessible via the show and summarymethods. Listing 6

and an example of initializing and summarizing a market model.

Listing 6: Initializing and summarizing a market model.

1 model <- new(

2 "diseq_stochastic_adjustment",

13



3 c("ID", "TREND"), "TREND", "HS", "RM",

4 "RM + TREND + W + CSHS + MONTH",

5 "RM + TREND + W + MA6DSF + MA3DHF + MONTH",

6 "TREND + L2RM + L3RM + L4RM",

7 fair_houses () %>% dplyr :: mutate(

8 HS = log(HS),

9 L1HS = dplyr ::lag(HS),

10 CSHS = cumsum(ifelse(is.na(L1HS), 0, L1HS)),

11 L3RM = dplyr ::lag(RM, 3), L4RM = dplyr ::lag(RM, 4)),

12 correlated_shocks = FALSE)

13 summary(model)

Stochastic Adjustment Model for Markets in Disequilibrium

Demand Equation : D_HS ~ D_RM + D_W + D_TREND + D_CSHS + D_MONTH

Supply Equation : S_HS ~ S_RM + S_W + S_TREND + S_MA6DSF + S_MA3DHF + S_MONTH

Price Equation : RM_DIFF ~ (D_HS - S_HS) + TREND + L2RM + L3RM

Shocks : Independent

Nobs : 128

Sample Separation : Not Separated

Quantity Var : HS

Price Var : RM

Key Var(s) : ID, TREND

Time Var : TREND

The main task of the constructor is to prepare the data for estimation. Specifically:

i. If the passed data set contains rows with NA values, then these are dropped. If the verbosity level allows

warnings, a warning reporting how many rows were dropped is emitted.

ii. After dropping the rows, factor levels may be invalidated. If needed, the constructor readjusts the factor

variables by removing the unobserved levels. Factor indicators and interaction terms are automatically

created according to the given specifications of the model’s equations.

iii. A single primary key column is constructed by pasting the values of the entity and time key columns.

iv. In the cases of the diseq_directional, diseq_deterministic_adjustment, and the diseq_stochastic_adjustment

models, a column with lagged prices is constructed. Since lagged prices are unavailable for the observa-

tions of the first time point, these observations are dropped. If the verbosity level allows the emission of

information messages, the constructor prints the number of dropped observations.
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v. In the cases of the diseq_directional and the diseq_stochastic_adjustment models, a column with price

differences is created.

4.2. Estimation options

A market model object can be estimated using the estimate command. A call to estimate requires only passing

an initialized model object. By default, the model is estimated by maximizing its likelihood using BFGS with

analytically calculated gradient expressions. The standard errors are calculated using analytic Hessian expres-

sions when these are available (diseq_basic and diseq_directional) and numerical approximations otherwise,

and the standard errors are assumed to be homoscedastic. The default options can be overridden using the

three available keyword arguments of the estimate methods.

The gradient keyword admits one of two potential values. Passing "numerical" instructs the estimatemethod

to use numerically approximated gradient, while "calculated" to use analytic expressions. The hessian keyword

can take one of three potential options. Passing "skip" does not calculate the Hessian (and hence standard

errors), and the options "numerical" and "calculated" are analogous to the gradient options. The keyword

argument standard_errors takes either one of the predefined values "homoscedastic" and "heteroscedastic"

, or a vector with data variables names for which standard error clusters are to be created. If the option

"heteroscedastic" is passed, the standard errors are calculated using the Huber-White heteroscedasticity ad-

justment, and the variance-covariance matrix is estimated using the sandwich estimator

V̂arh(θ̂) =
(

H(θ̂)
)−1

S(θ̂)′S(θ̂)
(

H(θ̂)
)−1

,

where H is the Hessian and S the score matrix. If a vector of data variables is supplied, the variance-covariance

matrix is calculated by grouping the score matrix based on the passed variables, i.e.

V̂arc(θ̂) =
(

H(θ̂)
)−1





M
∑

j=1

Sj(θ̂)
′Sj(θ̂)





(

H(θ̂)
)−1

,

where M is number of clusters created by the distinct rows of the combinations of the columns corresponding

to the given variable names and Sj is the score matrix containing only the likelihood contributions of the j-th

cluster. Listing 7 gives an example of estimating the model of listing 6 using clustered standard errors.

Listing 7: A customized estimation call.

1 est <- estimate(model , control = list(maxit = 1e+5, reltol = 1e-4),

2 standard_errors = c("W"))

3 bbmle:: summary(est)

Additional keyword arguments given to estimate are passed down to the bbmle::mle2. The caller can

customize the used optimization method, optimization options, and the estimations’ starting values through

15



this. By default, the estimation uses the estimates of linear regressions of equations of the model’s system to

initialize the optimizer. For the case of the equilibrium_model, setting the method keyword argument equal to

"2SLS" can be used to switch from maximum likelihood to two-stage least square estimation. Any additional

keyword arguments are then passed down to a systemfit::systemfit call.

4.3. Post-estimation options

The post-estimation functionality of diseq can be categorized into three groups. These are (i) methods that

return aggregated and dis-aggregated demanded and supplied quantities (i.e., predicted values), (ii) methods

for the analysis for shortages, and (iii) methods for calculating marginal effects for market variables.

4.3.1 Demand, supplied quantities, and aggregation

The methods demanded_quantities and supplied_quantities take as argument a model object and a parameter

vector and return the predicted values of the demand and supply equation at the given vector. The methods

aggregate_demand and aggregate_supply offer basic default aggregation functionality. They also receive a model

object and a parameter vector and calculate the sample’s aggregate demand or supply at the passed set of

parameters. If the model is static, as is the case of equilibrium_model, then all observations are aggregated. If

the model has a dynamic component, such as the diseq_stochastic_adjustment, then demanded and supplied

quantities are automatically aggregated within each time point. Listing 8 gives an example of calling all four

methods using the estimated coefficients of the model object of listing 6. The output is omitted for brevity.

Listing 8: Predicted and aggregated quantities.

1 demanded_quantities(model , est@coef)

2 supplied_quantities(model , est@coef)

3 aggregate_demand(model , est@coef)

4 aggregate_supply(model , est@coef)

4.3.2 Analysis of shortages

Six methods can be used in the analysis of shortages. All methods expect an initialized model object and a

vector of model parameters as input. Listing 9 offers an example of calling these methods for the model object

of listing 6. The method shortages returns the difference of predicted demanded and supplied quantities, i.e.

X̂D = D̂ − Ŝ.

A call to shortage_indicators returns a vector with Boolean values indicating whether the model predicts a

shortage (TRUE) or a surplus (FALSE) for the corresponding observation. The method shortage_standard_deviation
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calculates the estimated shortage standard deviation by

V̂ar(X̂D) =
√

σ̂2
d + σ̂2

s − 2ρ̂σ̂dσ̂s.

Normalized shortages are calculated by normalized_shortages according to

X̂Dn =
X̂D

V̂ar(X̂D)
.

The normalization is common for all observations in the sample. Instead, the method relative_shortages

idiosyncratically scales the shortages of the sample by the corresponding predicted supplied quantities, namely

X̂Dr =
X̂D

Ŝ
.

Lastly, the method shortage_probabilities calculates and returns the probabilities

π̂D = Φ(X̂Dn),

where Φ denotes the standard normal distribution.

Listing 9: Shortage methods.

1 shortages(model , est@coef)

2 shortage_indicators(model , est@coef)

3 shortage_standard_deviation(model , est@coef)

4 normalized_shortages(model , est@coef)

5 relative_shortages(model , est@coef)

6 shortage_probabilities(model , est@coef)

4.3.3 Marginal effects

The last functionality group of diseq concerns the calculation of marginal effects. Listing 10 exemplifies the

marginal effect functionality by calculating them for the object model of listing 6. For a shortage_marginal call,

besides specifying a model object and a parameter vector, one needs to specify the variable name for which the

marginal system effect is calculated. The variable name should be given to the method without any equation

prefix. The method returns

Mx =
1

V̂ar(X̂D)

∂X̂D

∂x
.

If the variable is found in both demand and supply sides, the returned value is named by prefixing the base

variable name with "B". Otherwise, the result is prefixed by "D" ("S") if it is only found on the demand (supply)

side. The system marginal effect Mx takes into account both sides of the market, but it is constant with respect
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to the coefficients of the demand and supply variable because demand and supply are linear functions of these

coefficients.

A state-dependent evaluation of the effect of available on the system can be obtained by calculating the

marginal effect on the probability of observing a shortage. The method shortage_probability_marginal expects

the same type of input arguments with shortage_marginal. In addition, it accepts an optional keyword argument

aggregate that controls how averaging over states is performed. When the aggregate is set to "mean" (the default

value), the method returns mean marginal effects, which are calculated by

Px = E
∂π̂D

∂x
= Mx Eϕ(X̂D),

where ϕ is the standard normal density. Marginal effects at the mean are calculated by

P̃x = Mx ϕ(E X̂D),

when aggregate is set to "at_the_mean".

Listing 10: Marginal effects.

1 shortage_probability_marginal(model , est@coef , "RM")

2 shortage_probability_marginal(model , est@coef , "CSHS", aggregate = "at_the_mean")

3 shortage_marginal(model , est@coef , "MA3DHF")

> B_RM

-0.0008854701

> D_CSHS

0.02019373

> S_MA3DHF

-0.001261552

5. Estimation benchmarks

Amajor difficulty in estimating models for markets in disequilibrium comes from their computational complexity.

Dorsey & Mayer (1995) classify the estimation of disequilibrium models among the most demanding econometric

estimation problems, as the likelihoods of these models have poles and non-unique local maxima. In addition,

the authors propose genetic algorithm optimization methods for estimating the basic model and compare its

computational performance with Nelder-Mead. As proposed by Maddala (1986), the classic estimation approach

obtains the maximum likelihood estimates using a global, iterative Newton method. Zilinskas & Bogle (2006)

use random interval arithmetic optimization for locating global maxima. They apply the technique to the basic

model with independent shocks using the dataset of Fair & Jaffee (1972) to assess its performance experimentally.
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Bowden (1978) considers the deterministic and stochastic adjustment models and proposes a re-parametrization

that allows them to be estimated using more straightforward procedures. Instead, Quandt & Ramsey (1978)

estimate the stochastic adjustment model with a methodology based on the moment generating function of the

likelihood.

This section compares the maximum likelihood estimation performance in terms of computation time for the

three optimization options that diseq provides. It examines the mean estimation time of likelihood maximization

via BFGS with analytically calculated gradients, BFGS with numerically approximated gradients, and the simplex

method of Nelder-Mead. Statistics on the execution times are collected via a series of benchmarking simulations

performed in the CSC cluster of Goethe University.

The models are simulated using both random parameters and samples. The independent and explanatory

variables of each model are drawn from normal distributions. The sample data are then generated using

the structure of the model and the randomly drawn parameters. Estimating the models using BFGS with

numerically approximated gradients is the most error-prone procedure among the three examined algorithms

because numerical differentiation fails in many occasions nearby poles. To ensure that the collected statistics

accurately measure execution times and are not biased from estimation failures, an untimed estimation using

BFGS with numerically approximated gradients is executed for each set of simulated parameters and sample. If

the estimation succeeds, the generated data are used in timed executions, and a new data sample is generated

otherwise.

Each model is simulated 100 times for a set of 14 different sample sizes and 14 different sets of model

parameters, and it is ensured that the simulated data are economically well behaved. If prices or quantities are

negative, or if shortages and surpluses represent more than 90% of the sample, the simulation round is repeated.

To keep things equal, each simulated data set is used to estimate the model with all three optimization tools.

The execution time is saved at the end of each round. The counted time concerns only the estimation of the

models and not their simulation or the calculations of standard errors. The estimation tolerance is kept constant

for all optimization methods. To spin up the processors, 2 untimed warm-up estimations are performed in the

beginning.

Appendix A details the data generating process of each model. Diseq exposes this simulation functionality

via the functions simulate_data and simulate_model. The results are depicted in figures 4 (equilibrium_model), 5

(diseq_basic), 6 (diseq_directional), 7 (diseq_deterministic_adjustment), and 8 (diseq_stochastic_adjustment

). The vertical axes of the figures measure the mean estimation time of each optimization method. The hori-

zontal axes of figs. 4a, 5a, 6a, 7a and 8a measure number of observations of the simulated sample for a constant

number of simulated parameters4. The horizontal axes of figs. 4b, 5b, 6b, 7b and 8b measure number simulated

4The number of parameters depends on the simulated model. The equilibrium and basic models use 14 parameters, namely

6 demand parameters, 5 supply parameters, 2 variances, and a correlation. The directional model uses 13 parameters because

prices cannot be used in both sides of the market. The deterministic adjustment model uses 15 parameters since it introduces
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Figure 4: Equilibrium model execution time benchmarks.

(a) Over observations. (b) Over parameters.

Figure 5: Basic model execution time benchmarks.

(a) Over observations. (b) Over parameters.

an additional parameter in the price dynamics. Lastly, the stochastic adjustment model uses 20 parameters, three of which are

introduced in the price dynamics, one additional variance, and two correlations.
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Figure 6: Directional model execution time benchmarks.

(a) Over observations. (b) Over parameters.

Figure 7: Deterministic adjustment model execution time benchmarks.

(a) Over observations. (b) Over parameters.
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Figure 8: Stochastic adjustment model execution time benchmarks.

(a) Over observations. (b) Over parameters.

parameters for a constant sample size of 40,960 observations. The points of solid lines represent mean execution

times over 100 estimations, and dotted lines depict 1 standard deviation intervals from the measured means.

The results exhibit similar patterns for all five models. The estimation time grows exponentially in the size of

the sample. Instead, small changes in the number of estimated parameters do not significantly affect estimation

times. Out of the three compared methods, Nelder-Mead results on average to the lengthiest estimation times

and the greatest execution time variability. In all cases, BFGS with analytically calculated gradients is the

most efficient estimation option among those available in diseq. For instance, the basic model, which is the

most used among all the disequilibrium models, is estimated on average at least 6.43 times faster when the

analytic expressions are used than when the gradient is numerically approximated (10.73 to 69.07 seconds

correspondingly).

6. Conclusion

This article has introduced the diseq R package. The package provides methods for estimating, simulating, and

analyzing markets in equilibrium and disequilibrium. The article offers a guided tour to the core functionality

of the five market models implemented in diseq via an overarching empirical example using the classic dataset

of Fair & Jaffee (1972) and details the remaining methods of the package using standalone examples.

The estimation functionality of diseq is based on analytic gradient and Hessian expressions of the likelihoods
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of the implemented market models, which are not available in other statistical software. This implementation

characteristic attributes a computational edge to diseq in terms of estimation time efficiency. The efficiency gains

are documented by gathering and presenting statistics of estimation performance in large-scale benchmarking

simulations.
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A. Simulation Details

Simulation methods are available for all five models provided by diseq. Two simulation options are available for

each market model. The user may choose to generate a dataset based on the stochastic process implied by the

model with and without initializing a model object. These two options are accessed by correspondingly calling

the methods simulate_model and simulate_data. Essential, the first method is a wrapper of the second method

combined with a constructor call. The first method is more helpful when only one model is to be examined, while

the second when the same data are to be used for comparing multiple models. The simulation functionality is

used in the unit tests of diseq, the documentation examples and vignettes, and the benchmarking exercise of

this article.

All simulations begin with the same baseline specifications for demand and supply, which are given by

eqs. (1) and (2). In the equilibrium case, prices are not simulated. Instead, they are calculated so that the

market clears, i.e.

Pn,t =

∑k

j=1

(

ηsj − ηdj
)

X
j
n,t + βs

0 − βd
0 +

∑ks

j=1
βs
jX

j,s
n,t −

∑kd

j=1
βd
jX

j,d
n,t + us

n,t − ud
n,t

αd − αs
.

In the basic model case, prices are simulated as a common control. The demanded and supplied quantities

are then calculated, and the observed quantity is determined by the short side rule (that is eq. (4)). In the
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directional model, prices are also simulated as the rest of the controls, and it is subsequently checked whether

the condition ∆Pnt ≥ 0 =⇒ Dnt ≥ Snt is true. If not, the simulation of controls and prices is repeated until

a sample draw that fulfills the condition is realized. In the deterministic adjustment model, an out of sample,

initial price value is drawn, and the remaining prices are then generated by the rule

Pn,t =

∑k

j=1

(

ηsj − ηdj
)

X
j
n,t + βs

0 − βd
0 +

∑ks

j=1
βs
jX

j,s
n,t −

∑kd

j=1
βd
jX

j,d
n,t − γPn,t−1 + us

n,t − ud
n,t

αd − αs − γ
.

For the stochastic adjustment model, the procedure is analogous to the one with deterministic price dynamics,

but the price generation rule is now given by

Pn,t =

(

ηsj − ηdj
)

X
j
n,t + βs

0 − βd
0 + βs

jX
j,s
n,t − βd

jX
j,d
n,t − γPn,t−1 + γβ

p
0 + γβ

p
jX

j,p
n,t + us

n,t − ud
n,t + γu

p
n,t

αd − αs − γ
,

where Einstein summation notation over j is used to save some space. The simulation methods perform various

validity checks in the generated data and instruct the user to reparametrize the model if any of them fails.

For instance, it is ensured that simulated quantities and prices are positive, and that the sample is balanced

between demand and supply observations.

A call to simulate_data requires specifying the model to be simulation as the first argument by passing the

model string as it used in initialization calls (see listing 5 for an simulation call example). The model separates

are specifying by keyword arguments to the function call. These keywords are nobs, tobs, alpha_d, beta_d0,

beta_d, eta_d, alpha_s, beta_s0, beta_s, eta_s, gamma, beta_p0, beta_p, sigma_d, sigma_s, sigma_p, rho_ds, rho_dp,

rho_sp. The names of the keywords follow the notation of this article, and correspond to the symbols of eqs. (1),

(2), (4), (6) and (7). The default values of the variances is one, and of the correlations is zero. The caller can

optionally also pass values the seed, verbose, price_generator, and control_generator input arguments. The

last two options expect a function callback that is given an integer n and returns n randomly generated values.

The default generators return normally distributed values with mean 2.5 and standard deviation 0.5.

The simulate_model call follows a similar calling convention. The difference is that the parameter and

generator arguments that are intended to be passed down to simulate_data have to be specified as a list through

the simulation_parameters input variable. The seed and the verbose keywords should be specified separately

from the simulation_parameters list. Any additional keyword arguments given to simulate_model are passed

down to the model’s construction call.
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