
Package ‘UNF’
April 13, 2022

Version 2.0.8

Title Tools for Creating Universal Numeric Fingerprints for Data

Date 2022-04-11

Description Computes a 'universal numeric fingerprint' ('UNF') for an R data
object. 'UNF' is a hash or signature that can be used to uniquely
identify (a version of) a rectangular dataset, or a subset thereof. 'UNF' can
be used, in tandem with a 'DOI', to form a persistent citation to a versioned
dataset.

Imports utils, stats, tools, base64enc, digest

Suggests knitr, rmarkdown, testthat

License GPL-2

URL https://github.com/leeper/UNF

BugReports https://github.com/leeper/UNF/issues

VignetteBuilder knitr, rmarkdown

RoxygenNote 7.1.2

Encoding UTF-8

NeedsCompilation no

Author Thomas J. Leeper [aut, cre] (<https://orcid.org/0000-0003-4097-6326>),
Micah Altman [aut]

Maintainer Thomas J. Leeper <thosjleeper@gmail.com>

Repository CRAN

Date/Publication 2022-04-13 10:12:36 UTC

R topics documented:
UNF-package . 2
as.unfvector . 3
signifz . 3
unf . 4
%unf% . 9

Index 11

1

https://github.com/leeper/UNF
https://github.com/leeper/UNF/issues
https://orcid.org/0000-0003-4097-6326

2 UNF-package

UNF-package Tools for creating universal numeric fingerprints for data

Description

Computes a univeral numeric fingerprint of data objects.

Details

This package calculates a Universal Numeric Fingerprint (UNF) on an R data object. UNF is a
crypographic hash or signature that can be used to uniquely identify a (version of a) dataset, or a
subset thereof. UNF is used by the Dataverse archives and this package can be used to verify a
dataset against one listed available in a Dataverse study (e.g., as returned by the dataverse and dvn
packages).

A UNF is created by rounding data values (or truncating strings) to a known number of digits
(or characters), representing those values in a standard form (as 8-bit [for versions 4.1 and 5] or
32-bit [for versions 3 and 4] unicode-formatted strings), and applying a fingerprinting method (a
cryptographic hashing function) to this representation (md5 for versions 3 and 4 or sha256 for
versions 4.1, 5, and 6). UNFs are computed from data values (independent of variable naming and
column arrangement), so they directly reflect the internal representation of the data.

A UNF differs from an ordinary file checksum in several important ways:

1. UNFs are format independent. The UNF for a dataset will be the same regardless of whether
the data is saved as a R binary format, SAS formatted file, Stata formatted file, etc., but file
checksums will differ. The UNF is also independent of variable arrangement and naming,
which can be unintentionally changed during file reading.

2. UNFs are robust to insignificant rounding error. This important when dealing with floating-
point numeric values. A UNF will also be the same if the data differs in non-significant digits,
a file checksum not.

3. UNFs detect misinterpretation of the data by the statistical software. If the statistical software
misreads the file, the resulting UNF will not match the original, but the file checksums may
match. For example, numeric values read as character will produce a different UNF than those
values read in as numerics.

4. UNFs are strongly tamper resistant. Any accidental or intentional changes to data values will
change the resulting UNF. Most file checksums and descriptive statistics detect only certain
types of changes.

Author(s)

Thomas J. Leeper and Micah Altman.

See Also

unf %unf%

https://dataverse.org
https://cran.r-project.org/package=dataverse
https://cran.r-project.org/package=dvn

as.unfvector 3

as.unfvector UNF Vector Representation

Description

Standardize a vector according to UNF specifications

Usage

as.unfvector(x, ...)

Arguments

x A vector to be coerced to a character string representation according to the UNF
specification.

... Additional arguments passed to methods.

Details

The UNF specifications describes how to coerce all R data types to a standardized character repre-
sentation. This S3 method exposes that coercion functionality.

Value

A character string with class “unfvector” manipulated to follow the UNF specification. These are
used internally by unf6.

Author(s)

Thomas J. Leeper (<thosjleeper@gmail.com>)

See Also

unf, unf6, %unf%

signifz Round values to specified number of significant digits

Description

Rounds the value to a specified number of significant digits, using IEEE 754 rounding towards zero
rounding mode.

Usage

signifz(x, digits = 6)

4 unf

Arguments

x A numeric vector.

digits An integer indicating the precision to be used.

Details

This function rounds the values in its first argument to the specified number of significant digits,
using IEC 60559/IEEE 754 “round towards zero” mode. This is an alternative to the round function,
which rounds toward nearest, ties to even. This is designed to be used internally by unf3 and
unf4 (though the original implementations do not seem to actually use the function). unf5 uses
round instead. Rounding toward zero assures that signifz(signifz(x,digits=m),digits=n)
= signifz(x,digits=n) for $m>n$, an important property for creating approximate fingerprints.
It can, however, produce more rounding error than rounding toward nearest. The maximum log
relative error (LRE) for the former is (digits-1) while the maximum LRE for the latter is ‘digits’.
Hence, you may wish to use one more significant digit with signifz than with signif.

Author(s)

Micah Altman

See Also

signif, unf

Examples

note the difference
signif(pi,digits=5)
signifz(pi,digits=5)

unf Universal Numeric Fingerprint

Description

UNF is a cryptographic hash or signature that can be used to uniquely identify (a version of) a
dataset, or a subset thereof.

Usage

unf(x, version = 6, ...)

unf3(
x,
digits = 7L,
characters = 128L,

unf 5

factor_as_character = TRUE,
nonfinites_as_missing = FALSE,
empty_character_as_missing = FALSE,
dvn_zero = FALSE,
...

)

unf4(
x,
digits = 7L,
characters = 128L,
truncation = 128L,
version = 4,
factor_as_character = TRUE,
nonfinites_as_missing = FALSE,
empty_character_as_missing = FALSE,
dvn_zero = FALSE,
...

)

unf5(
x,
digits = 7L,
characters = 128L,
truncation = 128L,
raw_as_character = TRUE,
factor_as_character = TRUE,
nonfinites_as_missing = FALSE,
empty_character_as_missing = FALSE,
dvn_zero = FALSE,
timezone = "",
date_format = "%Y-%m-%d",
decimal_seconds = 5,
...

)

unf6(
x,
digits = 7L,
characters = 128L,
truncation = 128L,
raw_as_character = TRUE,
factor_as_character = TRUE,
complex_as_character = TRUE,
nonfinites_as_missing = FALSE,
timezone = "",
date_format = "%Y-%m-%d",
decimal_seconds = 5,

6 unf

...
)

Arguments

x For unf, a vector, matrix, dataframe, or list; for unf3, unf4, unf5, a vector. If x
is a dataframe or list with one variable or one vector element, respectively, unf
returns the UNF for the single vector (which is consistent with the Dataverse
implementation but ambiguous in the UNF standard). For algorithm versions <
5, all non-numeric vectors are treated as character.

version Version of the UNF algorithm. Allowed values are 3, 4, 4.1, 5, and 6. Always
use the same version of the algorithm to check a UNF. Default for unf is 6 and
default for unf4 is 4 (but can also be set to 4.1, which is identical except for
using SHA256 instead of MD5).

digits The number of significant digits for rounding for numeric values. Default is 7L.
Must be between 1 and 15.

characters The number of characters for truncation. Default is 128L. Must be greater than
1.

factor_as_character

A logical indicating whether to treat an factors as character. If FALSE, factor
variables are treated as integer (and thus handled as any numeric value).

nonfinites_as_missing

A logical indicating whether to treat nonfinite values (NaN, Inf, -Inf) as NA.
This is supplied to create compatibility with a Dataverse UNFv5 implementa-
tion.

empty_character_as_missing

A logical indicating whether to treat an empty character string as a missing
value. This is supplied to create compatibility with a Dataverse UNFv5 im-
plementation.

dvn_zero A logical indicating whether to format a zero (0) numeric value as +0.e-6 in-
stead of the default +0.e+. This is supplied to create compatibility with a Data-
verse UNFv5 implementation, backwards compatibility with v1.0 of the UNF
package (for UNFv3, UNFv4, UNFv4.1).

truncation The number of bits to truncate the UNF signature to. Default is 128L. Must be
one of: 128,192,196,256.

raw_as_character

A logical indicating whether to format raw vectors as character.
timezone A character string containing a valid timezone. This is used for formatting

“Date” and “POSIXt” class variables. Because of different implementations
of datetime classes across computer applications, UNF signatures may vary due
to the timezone in which they are calculated. This parameter allows for the
comparison of UNFs calculated in different timezones.

date_format A character string containing a formatting pattern for “Date” class variables.
One of '%Y-%m-%d' (the default), '%Y-%m', '%Y', '%F'.

decimal_seconds

A number indicating the number of decimal places to round fractional seconds
to. The UNF specification (and default) is 5.

unf 7

complex_as_character

A logical indicating whether to format raw vectors as character. If TRUE, UNF
should match Dataverse UNFv5 implementation. If FALSE, complex numbers
are formatted as A,iB.

... Additional arguments passed to specific algorithm functions. Ignored.

Details

The Dataverse Network implements a potentially incorrect version of the UNF algorithm with re-
gard to the handling of zero values and logical FALSE values in data (though the specification is
unclear). Setting the dvn argument to TRUE (the default), uses the Dataverse implementation (for
comparison to files stored in that archive).

Value

The unf function returns a list of class UNF, containing:

• unf: A character string containing the universal numeric fingerprint.

• hash: A raw vector expressing the unencoded universal numeric fingerprint. This can be
converted to a UNF using base64Encode.

• unflong: For unf5, a character string containing the un-truncated universal numeric finger-
print.

• formatted: A character string containing the formatted UNF, including version number and
header attributes.

The object additionally contains several attributes:

• version: A one-element numeric vector specifying which version of the UNF algorithm was
used to generate the object.

• digits: A one-element numeric vector specifying how many significant digits were used in
rounding numeric values.

• characters: A one-element numeric vector specifying how many characters were preserved
during truncation of character values.

• truncation: A one-element numeric vector specifying how many bits the UNF hash was
truncated to.

The default print method displays the UNF along with these attributes. For example: UNF:3:4,128:ZNQRI14053UZq389x0Bffg==
This representation identifies the signature as UNF, using version 3 of the algorithm, computed to 4
significant digits for numbers and 128 for characters. The segment following the final colon is the
actual fingerprint in base64-encoded format.

References

https://guides.dataverse.org/en/latest/developers/unf/index.html

Altman, M., J. Gill and M. P. McDonald. 2003. Numerical Issues in Statistical Computing for the
Social Scientist. John Wiley \& Sons. [Describes version 3 of the algorithm]

Altman, M., \& G. King. 2007. A Proposed Standard for the Scholarly Citation of Quantitative
Data. D-Lib 13(3/4). http://dlib.org/dlib/march07/altman/03altman.html [Describes a
citation standard using UNFs]

https://guides.dataverse.org/en/latest/developers/unf/index.html
http://dlib.org/dlib/march07/altman/03altman.html

8 unf

Altman, M. 2008. A Fingerprint Method for Scientific Data Verification. In T. Sobh, editor,
Advances in Computer and Information Sciences and Engineering, chapter 57, pages 311–316.
Springer Netherlands, Netherlands, 2008. https://link.springer.com/chapter/10.1007/978-1-4020-8741-7_
57 [Describes version 5 of the algorithm]

Data Citation Synthesis Group. 2013. Declaration of Data Citation Principles [DRAFT]. https://
force11.org/info/joint-declaration-of-data-citation-principles-final/. [Describes
general principles of data citation, of which UNF is likely to be a part]

See Also

%unf%

Examples

Version 6

FORTHCOMING

Version 5
vectors

just numerics
unf5(1:20) # UNF:5:/FIOZM/29oC3TK/IE52m2A==
unf5(-3:3, dvn_zero = TRUE) # UNF:5:pwzm1tdPaqypPWRWDeW6Jw==

characters and factors
unf5(c('test','1','2','3')) # UNF:5:fH4NJMYkaAJ16OWMEE+zpQ==
unf5(as.factor(c('test','1','2','3'))) # UNF:5:fH4NJMYkaAJ16OWMEE+zpQ==

logicals
unf5(c(TRUE,TRUE,FALSE), dvn_zero=TRUE)# UNF:5:DedhGlU7W6o2CBelrIZ3iw==

missing values
unf5(c(1:5,NA)) # UNF:5:Msnz4m7QVvqBUWxxrE7kNQ==

variable order and object structure is irrelevant
unf(data.frame(1:3,4:6,7:9)) # UNF:5:ukDZSJXck7fn4SlPJMPFTQ==
unf(data.frame(7:9,1:3,4:6))
unf(list(1:3,4:6,7:9))

Version 4
version 4
data(longley)
unf(longley, ver=4, digits=3) # PjAV6/R6Kdg0urKrDVDzfMPWJrsBn5FfOdZVr9W8Ybg=

version 4.1
unf(longley, ver=4.1, digits=3) # 8nzEDWbNacXlv5Zypp+3YCQgMao/eNusOv/u5GmBj9I=

Version 3
x1 <- 1:20
x2 <- x1 + .00001

https://link.springer.com/chapter/10.1007/978-1-4020-8741-7_57
https://link.springer.com/chapter/10.1007/978-1-4020-8741-7_57
https://force11.org/info/joint-declaration-of-data-citation-principles-final/
https://force11.org/info/joint-declaration-of-data-citation-principles-final/

%unf% 9

unf3(x1) # HRSmPi9QZzlIA+KwmDNP8w==
unf3(x2) # OhFpUw1lrpTE+csF30Ut4Q==

UNFs are identical at specified level of rounding
identical(unf3(x1), unf3(x2))
identical(unf3(x1, digits=5),unf3(x2, digits=5))

dataframes, matrices, and lists are all treated identically:
unf(cbind.data.frame(x1,x2),ver=3) # E8+DS5SG4CSoM7j8KAkC9A==
unf(list(x1,x2), ver=3)
unf(cbind(x1,x2), ver=3)

%unf% Compare two objects

Description

Function to compare the size, structure, arrangement, and UNFs of two objects.

Usage

x %unf% y

unf_equal(x, y, ...)

Arguments

x A vector, matrix, dataframe, list, or object of class “UNF”, or a one-element
character vector containing a UNF signature.

y A vector, matrix, dataframe, list, or object of class “UNF”, or a one-element
character vector containing a UNF signature.

... Additional arguments passed to unf.

Details

Compares two objects using all.equal and additional details based on the UNF of the two objects
(and, for lists, dataframes, and matrices) the constituent vectors thereof. The print method for class
UNFtest prints the UNFs for both objects and summarizes any differences between the objects.
This is helpful for identifying mismatching variables.

Value

An object of class UNFtest containing the results of unf for both objects and both identical and
all.equal for the comparison of the two.

Author(s)

Thomas J. Leeper

10 %unf%

See Also

unf

Examples

a <- data.frame(x1=1:10, x2=11:20)
b <- data.frame(x1=1:10, x2=11:20+.0005)
a %unf% a
a %unf% b
unf_equal(a, b, digits = 3)

unf(a) %unf% "UNF6:aKW4lAFNBH8vfrnrDbQZjg=="

Index

∗ package
UNF-package, 2

%unf%, 2, 3, 8, 9

as.unfvector, 3

print.UNFtest (%unf%), 9

round, 4

signif, 4
signifz, 3

UNF (UNF-package), 2
unf, 2–4, 4, 9, 10
UNF-package, 2
unf3, 4
unf3 (unf), 4
unf4, 4
unf4 (unf), 4
unf5, 4
unf5 (unf), 4
unf6, 3
unf6 (unf), 4
unf_equal (%unf%), 9

11

	UNF-package
	as.unfvector
	signifz
	unf
	%unf%
	Index

