Package 'SimSurvey'

April 6, 2022

Type Package

Title Test Surveys by Simulating Spatially-Correlated Populations

Version 0.1.5

Maintainer Paul Regular <Paul.Regular@dfo-mpo.gc.ca>

Description Simulate age-structured populations that vary in space and time and explore the efficacy of a range of built-in or user-defined sampling protocols to reproduce the population parameters of the known population. (See Regular et al. (2020) <doi:10.1371/journal.pone.0232822> for more details).

Depends R (>= 3.3.0)

License GPL-3

Additional_repositories https://inla.r-inla-download.org/R/stable/

LazyData true

ByteCompile true

URL https://paulregular.github.io/SimSurvey/

BugReports https://github.com/PaulRegular/SimSurvey/issues

Imports sp, raster, data.table, magrittr, progress, doParallel, parallel, foreach, plotly, rlang

Suggests fields, rmarkdown, flexdashboard, shiny, crosstalk, htmltools, viridis, lme4, ggplot2, INLA, rgdal, rgeos, knitr, bezier

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Paul Regular [aut, cre] (<https://orcid.org/0000-0003-0318-2615>), Jonathan Babyn [ctb], Greg Robertson [ctb]

Repository CRAN

Date/Publication 2022-04-06 11:12:29 UTC

R topics documented:

bathy	. 2
convert_N	. 3
error_stats	. 3
expand_surveys	. 4
fibonacci	. 4
group_lengths	
icc	
land	
make_grid	
make_mesh	
object_size	
plot_trend	
round_sim	
run_strat	
sim_abundance	
sim_ays_covar	
sim_ays_covar_spde	
sim_distribution	
sim_logistic	
sim_parabola	
sim_R	
sim_sets	
sim_survey	
sim_survey_parallel	
strat data	
strat error	
strat means	
survey_grid	
survey_lite_mesh	
survey_mesh	
test surveys	
vis sim	
vis_ami	. 52
	34

Index

```
bathy
```

Southern Newfoundland bathymetry

Description

Southern Newfoundland bathymetry

Usage

bathy

convert_N

Format

A RasterLayer

Derived from data downloaded from http://www.gebco.net/. Details provided in the data-raw folder for this package.

convert_N

Convert abundance-at-age matrix to abundance-at-length

Description

Function for converting abundance-at-age matrix to abundance-at-length given a length-age-key. Expects matrices to be named.

Usage

convert_N(N_at_age = NULL, lak = NULL)

Arguments

N_at_age	Abundance-at-age matrix
lak	Length-age-key (i.e. probability of being in a specific length group given age)

Value

Returns abundance-at-length matrix

error_stats Calcul	ate common error statistics
--------------------	-----------------------------

Description

Calculate common error statistics

Usage

error_stats(error)

Arguments

error Vector of errors

Value

Returns a named vector of error statistics including mean error ("ME"), mean absolute error ("MAE"), mean squared error ("MSE") and root mean squared error ("RMSE")

expand_surveys

Description

Function is simply a wrapper for expand.grid that adds a survey number to the returned object

Usage

```
expand_surveys(
   set_den = c(0.5, 1, 2, 5, 10)/1000,
   lengths_cap = c(5, 10, 20, 50, 100, 500, 1000),
   ages_cap = c(2, 5, 10, 20, 50)
)
```

Arguments

set_den	Vector of set densities (number of sets per [grid unit] squared)
lengths_cap	Vector of maximum number of lengths measured per set
ages_cap	Vector of maximum number of otoliths to collect per length group per division per year

fibonacci	Generate Fibonacci sequence	
-----------	-----------------------------	--

Description

Generate Fibonacci sequence

Usage

```
fibonacci(from, to)
```

Arguments

from, to Approximate start and end values of the sequence

Examples

fibonacci(2, 200)

group_lengths

Description

Helper function for converting lengths to length groups (Note: this isn't a general function; the output midpoints defining the groups aligns with DFO specific method/labeling)

Usage

group_lengths(length, group)

Arguments

length	Interval from findInterval
group	Length group used to cut the length data

Description

This is a simple function for calculating intraclass correlation. It uses lmer to run the formula described here: https://en.wikipedia.org/wiki/Intraclass_correlation

Usage

icc(x, group)

Arguments

х	Response variable
group	Group

land

Description

Southern Newfoundland coastline

Usage

land

Format

A SpatialPolygons object

Derived from global administrative boundaries data (http://gadm.org/) downloaded using the getData function. Details provided in the data-raw folder for this package.

make_grid

Make a depth stratified survey grid

Description

This function sets up a depth stratified survey grid. A simple gradient in depth is simulated using spline with a shallow portion, shelf and deep portion. Adding covariance to the depth simulation is an option.

Usage

```
make_grid(
    x_range = c(-140, 140),
    y_range = c(-140, 140),
    res = c(3.5, 3.5),
    shelf_depth = 200,
    shelf_width = 100,
    depth_range = c(0, 1000),
    n_div = 1,
    strat_breaks = seq(0, 1000, by = 40),
    strat_splits = 2,
    method = "spline"
)
```

make_mesh

Arguments

x_range	Range (min x, max x) in x dimension in km
y_range	Range (min y, max y) in y dimension in km
res	Resolution, in km, of the grid cells
shelf_depth	Approximate depth of the shelf in m
shelf_width	Approximate width of the shelf in km
depth_range	Range (min depth, max depth) in depth in m
n_div	Number of divisions to include
strat_breaks	Define strata given these depth breaks
<pre>strat_splits</pre>	Number of times to horizontally split strat (i.e. easy way to increase the number of strata)
method	Use a "spline", "loess" or "bezier" to generate a smooth gradient or simply use "linear" interpolation?

Value

Returns RasterBrick of the same structure as survey_grid

Examples

```
r <- make_grid(res = c(10, 10))
raster::plot(r)
p <- raster::rasterToPolygons(r$strat, dissolve = TRUE)
sp::plot(p)</pre>
```

make_mesh

Make an R-INLA mesh based off a grid

Description

This will make a mesh based off a given grid. Ideally the mesh construction and validation should be done by hand, but this exists for convenience. Meshes are used for sim_ays_covar_spde. The defaults are designed for the default grid. Just a basic interface between the grid and inla.mesh.2d.

Usage

```
make_mesh(
  grid = make_grid(),
  max.edge = 50,
  bound.outer = 150,
  cutoff = 10,
  offset = c(max.edge, bound.outer),
  ...
)
```

Arguments

grid	grid object to make a mesh of
max.edge	The largest allowed triangle edge length. One or two values. This is passed to inla.mesh.2d
bound.outer	The optional outer extension value given to offset.
cutoff	Minimum distance allowed between points
offset	The automatic extension distance given to inla.mesh.2d
	Other options to pass to inla.mesh.2d

Examples

```
basic_mesh <- make_mesh()
plot(basic_mesh)</pre>
```

object_size	Print object size

Description

A wrapper for object.size that prints in Mb by default

Usage

object_size(x, units = "Mb")

Arguments

х	an R object
units	the units to be used in printing the size

plot_trend

Description

These functions are simple plotting helpers to get some quick visuals of values produced by sim_abundance, sim_distribution, etc.

Usage

```
plot_trend(sim, sum_ages = sim$ages, col = viridis::viridis(1), ...)
plot_surface(sim, mat = "N", xlab = "Age", ylab = "Year", zlab = mat, ...)
plot_grid(grid, ...)
plot_distribution(
  sim,
  ages = sim$ages,
 years = sim$years,
  type = "contour",
  scale = "natural",
  . . .
)
plot_survey(sim, which_year = 1, which_sim = 1)
plot_total_strat_fan(sim, surveys = 1:5, quants = seq(90, 10, by = -10), ...)
plot_length_strat_fan(
  sim,
  surveys = 1:5,
 years = 1:10,
  lengths = 1:50,
  select_by = "year",
  quants = seq(90, 10, by = -10),
  . . .
)
plot_age_strat_fan(
  sim,
  surveys = 1:5,
 years = 1:10,
  ages = 1:10,
  select_by = "year",
  quants = seq(90, 10, by = -10),
  . . .
```

round_sim

```
plot_error_surface(sim, plot_by = "rule")
```

```
plot_survey_rank(sim, which_strat = "age")
```

Arguments

)

sim	Object returned by sim_abundance, sim_distribution, etc.
sum_ages	Sum across these ages
col	Plot color
	Additional arguments to pass to plot_ly.
mat	Name of matrix in sim list to plot.
xlab,ylab,zla	b
	Axes labels.
grid	Grid produced by make_grid.
ages	Subset data to one or more ages.
years	Subset data to one or more years.
type	Plot type: "contour" or "heatmap".
scale	Plot response on "natural" or "log" scale?
which_year	Subset to specific year
which_sim	Subset to specific sim
surveys	Subset data to one or more surveys.
quants	Quantile intervals to display on fan plot
lengths	Subset data to one or more length groups.
select_by	Select plot by "age", "length" or "year"?
plot_by	Plot error surface by "rule" or "samples"?
which_strat	Which strat values to focus on? (total, length, or age)

round_sim

Round simulated population

Description

Round simulated population

Usage

round_sim(sim)

Arguments

sim

Simulation from sim_distribution

10

run_strat

Description

Run stratified analysis on simulated data

Usage

```
run_strat(
   sim,
   length_group = "inherit",
   alk_scale = "division",
   strat_data_fun = strat_data,
   strat_means_fun = strat_means
)
```

Arguments

sim	Simulation from sim_survey
length_group	Size of the length frequency bins for both abundance at length calculations and age-length-key construction. By default this value is inherited from the value defined in sim_abundance from the closure supplied to sim_length ("inherit"). A numeric value can also be supplied, however, a mismatch in length groupings will cause issues with strat_error as true vs. estimated length groupings will be mismatched.
alk_scale	Spatial scale at which to construct and apply age-length-keys: "division" or "strat".
strat_data_fun	Function for preparing data for stratified analysis (e.g. strat_data)
strat_means_fun	
	Function for calculating stratified means (e.g. strat_means)

Details

The "strat_data_fun" and "strat_means_fun" allow the use of custom strat_data and strat_means functions.

Value

Adds stratified analysis results for the total population ("total_strat") and the population aggregated by length group and age ("length_strat" and "age_strat", respectively) to the sim list.

Examples

sim_abundance

Simulate basic population dynamics model

Description

Simulate basic population dynamics model

Usage

```
sim_abundance(
    ages = 1:20,
    years = 1:20,
    Z = sim_Z(),
    R = sim_R(),
    N0 = sim_N0(),
    growth = sim_vonB()
)
```

Arguments

ages	Ages to include in the simulation.
years	Years to include in the simulation.
Z	Total mortality function, like sim_Z, for generating mortality matrix.
R	Recruitment (i.e. abundance at min(ages)) function, like sim_R, for generating recruitment vector.
NØ	Starting abundance (i.e. abundance at min(years)) function, like sim_N0, for generating starting abundance vector.
growth	Closure, such as sim_vonB, for simulating length given age. The function is used here to generate a abundance-at-age matrix and it is carried forward for later use in sim_survey to simulate lengths from survey catch at age.

Details

Abundance from is calculated using a standard population dynamics model. An abundance-atlength matrix is generated using a growth function coded as a closure like sim_vonB. The function is retained for later use in sim_survey to simulate lengths given simulated catch at age in a simulated survey. The ability to simulate distributions by length is yet to be implemented.

sim_abundance

Value

A list of length 9:

- ages Vector of ages in the simulation
- lengths Vector of length groups (depends on growth function)
- years Vector of years in the simulation
- R Vector of recruitment values
- N0 Vector of starting abundance values
- Z Matrix of total mortality values
- N Matrix of abundance values
- N_at_length Abundance at length matrix
- sim_length Function for simulating lengths given ages

Examples

```
R_fun <- sim_R(log_mean = log(100000), log_sd = 0.1, random_walk = TRUE, plot = TRUE)
R_fun(years = 1:100)
sim_abundance(R = sim_R(log_mean = log(100000), log_sd = 0.5))
sim_abundance(years = 1:20,
            R = sim_R(log_mean = log(c(rep(100000, 10), rep(10000, 10))), plot = TRUE))
Z_fun <- sim_Z(log_mean = log(0.5), log_sd = 0.1, phi_age = 0.9, phi_year = 0.9, plot = TRUE)
Z_fun(years = 1:100, ages = 1:20)
sim_abundance(Z = sim_Z(log_mean = log(0.5), log_sd = 0.1, plot = TRUE))
Za_dev <- c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0)
Z_mat <- outer(Za_dev, Zy_dev, "+") + 0.5</pre>
sim_abundance(ages = 1:10, years = 1:20,
             Z = sim_Z(log_mean = log(Z_mat), plot = TRUE))
sim_abundance(ages = 1:10, years = 1:20,
        Z = sim_Z(log_mean = log(Z_mat), log_sd = 0, phi_age = 0, phi_year = 0, plot = TRUE))
N0_fun <- sim_N0(N0 = "exp", plot = TRUE)
N0_fun(R0 = 1000, Z0 = rep(0.5, 20), ages = 1:20)
sim_abundance(N0 = sim_N0(N0 = "exp", plot = TRUE))
growth_fun <- sim_vonB(Linf = 100, L0 = 5, K = 0.2, log_sd = 0.05, length_group = 1, plot = TRUE)
growth_fun(age = rep(1:15, each = 100))
growth_fun(age = 1:15, length_age_key = TRUE)
sim_abundance(growth = sim_vonB(plot = TRUE))
sim <- sim_abundance()</pre>
plot_trend(sim)
plot_surface(sim, mat = "N")
plot_surface(sim, mat = "Z")
plot_surface(sim, mat = "N_at_length", xlab = "Length", zlab = "N")
```

sim_ays_covar

Description

These functions return a function to use inside sim_distribution.

Usage

```
sim_ays_covar(
    sd = 2.8,
    range = 300,
    lambda = 1,
    model = "matern",
    phi_age = 0.5,
    phi_year = 0.9,
    group_ages = 5:20,
    group_years = NULL
)
```

Arguments

sd	Variance (can be age specific).
range	Decorrelation range
lambda	Controls the degree of smoothness of Matern covariance process
model	String indicating either "exponential" or "matern" as the correlation function
phi_age	Defines autocorrelation through ages. Can be one value or a vector of the same length as ages
phi_year	Defines autocorrelation through years. Can be one value or a vector of the same length as years
group_ages	Make space-age-year noise equal across these ages
group_years	Make space-age-year noise equal across these years

sim_ays_covar_spde Simulate age-year-space covariance using SPDE approach

Description

Returns a function to use inside sim_distribution to generate the error term.

sim_ays_covar_spde

Usage

```
sim_ays_covar_spde(
   sd = 2.8,
   range = 300,
   model = "barrier",
   phi_age = 0.5,
   phi_year = 0.9,
   group_ages = 5:20,
   group_years = NULL,
   mesh,
   barrier.triangles
```

```
)
```

Arguments

sd	Variance (can be age specific)
range	Decorrelation range
model	String indicating "barrier" or "spde" to generate Q with
phi_age	Defines autocorrelation through ages. Can be one value or a vector of the same length as ages.
phi_year	Defines autocorrelation through years. Can be one value or a vector of the same length as years.
group_ages	Make space-age-year variance equal across these ages
group_years	Make space-age-year variance equal across these years
mesh	The mesh used to generate the precision matrix
barrier.triangles	
	the set of triangles in the barrier of the mesh for the barrier model

Value

Returns a function for use in sim_distribution.

Examples

##SPDE Approach

```
## Make a grid
my_grid <- make_grid(res = c(10,10))
## Make a mesh based off it
my_mesh <- make_mesh(my_grid)
sim <- sim_abundance(ages = 1:10, years = 1:10) %>%
sim_distribution(grid = my_grid,
```

```
ays_covar = sim_ays_covar_spde(phi_age = 0.8,
                                                         phi_year = 0.1,
                                                         model = "spde",
                                                         mesh = my_mesh),
                          depth_par = sim_parabola(mu = 200,
                                                   sigma = 50))
plot_distribution(sim,ages = 1:5, years = 1:5, type = "heatmap")
## Barrier Approach
sim <- sim_abundance(ages = 1:10, years = 1:10) %>%
         sim_distribution(grid = survey_grid,
                          ays_covar = sim_ays_covar_spde(phi_age = 0.8,
                                                         phi_year = 0.1,
                                                         model = "barrier",
                                                         mesh = survey_lite_mesh$mesh,
                                                         barrier.triangles =
                                                          survey_lite_mesh$barrier_tri),
                          depth_par = sim_parabola())
plot_distribution(sim, ages = 1:5, years = 1:5, type = "heatmap")
```

sim_distribution Simulate spatial and temporal distribution

Description

Provided an abundance at age matrix and a survey grid to populate, this function applies correlated space, age and year error to simulate the distribution of the population. The ability to simulate distributions by length is yet to be implemented.

Usage

```
sim_distribution(
   sim,
   grid = make_grid(),
   ays_covar = sim_ays_covar(),
   depth_par = sim_parabola()
)
```

Arguments

sim	A list with ages, years and an abundance at age matrix like produced by sim_abundance.
grid	A raster object defining the survey grid, like <pre>survey_grid</pre> or one produced by <pre>make_grid</pre>
ays_covar	Closure for simulating age-year-space covariance, like sim_ays_covar
depth_par	Closure for defining relationship between abundance and depth, like sim_parabola

sim_logistic

Details

This function simulates the probability of simulated fish inhabiting a cell as a function of a parabolic relationship with depth and space, age, and year autocorrelated errors. WARNING: it make take a long time to simulate abundance in a large grid across many ages and years - start small first.

Value

Appends three objects to the sim list:

- grid RasterBrick with the grid details
- grid_xy Grid details as a data.table in xyz format
- sp_N A data.table with abundance split by age, year and cell

Examples

head(sim\$grid_xy)

sim_logistic Closure for simulating logistic curve

Description

This closure is useful for simulating q inside the sim_survey function

Usage

sim_logistic(k = 2, x0 = 3, plot = FALSE)

Arguments

k	The steepness of the curve
x0	The x-value of the sigmoid's midpoint
plot	Plot relationship

Examples

logistic_fun <- sim_logistic(k = 2, x0 = 3, plot = TRUE)
logistic_fun(x = 1:10)</pre>

```
sim_parabola
```

Description

Closure to be used in sim_distribution. Form is based on the bi-gaussian function described here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993707/.

Usage

```
sim_parabola(
    alpha = 0,
    mu = 200,
    sigma = 70,
    sigma_right = NULL,
    log_space = FALSE,
    plot = FALSE
)
```

Arguments

```
alpha, mu, sigma
```

	Parameters that control the shape of the parabola. Can be one value or a vector of equal length to the number of ages in the simulation (e.g. age-specific depth associations can be specified).
sigma_right	Optional parameter to impose asymmetry by supplying a sigma parameter for the right side. If used, 'sigma' will be used to define the width of the left side. Ignored if 'NULL'.
log_space	Should shape of the parabola be defined in log space? If 'TRUE', logged parameters are assumed to be supplied and x values used in the parabola equation are log transformed. This allows a more lognormal curve to be defined and, hence, allows a heavier tail and it forces very low values near zero.
plot	Produce a simple plot of the simulated values?

Examples

parabola_fun <- sim_parabola(mu = 50, sigma = 5, plot = TRUE) parabola_fun(x = 0:100)

parabola_fun <- sim_parabola(mu = log(40), sigma = 0.5, log_space = FALSE, plot = TRUE)
parabola_fun(x = 1:1000)</pre>

parabola_fun <- sim_parabola(mu = c(50, 120), sigma = c(5, 3), plot = TRUE) parabola_fun(x = rep(1:200, 2), age = rep(c(1, 2), each = 200)) sim_R

Description

These functions return a function to use inside sim_abundance. Given parameters, it generates N0, R and Z values.

Usage

```
sim_R(log_mean = log(3e+07), log_sd = 0.5, random_walk = TRUE, plot = FALSE)
sim_Z(
    log_mean = log(0.5),
    log_sd = 0.2,
    phi_age = 0.9,
    phi_year = 0.5,
    plot = FALSE
)
sim_N0(N0 = "exp", plot = FALSE)
```

Arguments

log_mean	One mean value or a vector of means, in log scale, of length equal to years for sim_R or a matrix of means with rows equaling the number of ages and columns equaling the number of years for sim_Z.
log_sd	Standard deviation of the variable in the log scale.
random_walk	Simulate recruitment as a random walk?
plot	produce a simple plot of the simulated values?
phi_age	Autoregressive parameter for the age dimension.
phi_year	Autoregressive parameter for the year dimension.
NØ	Either specify "exp" or numeric vector of starting abundance excluding the first age. If "exp" is specified using sim_N0, then abundance at age are calculated using exponential decay.

Details

sim_R generates uncorrelated recruitment values or random walk values from a log normal distribution. sim_Z does the same as sim_R when phi_age and phi_year are both 0, otherwise values are correlated in the age and/or year dimension. The covariance structure follows that described in Cadigan (2015).

References

Cadigan, Noel G. 2015. A State-Space Stock Assessment Model for Northern Cod, Including Under-Reported Catches and Variable Natural Mortality Rates. Canadian Journal of Fisheries and Aquatic Sciences 73 (2): 296-308.

Examples

```
R_fun <- sim_R(log_mean = log(100000), log_sd = 0.1, random_walk = TRUE, plot = TRUE)
R_fun(years = 1:100)
sim_abundance(R = sim_R(log_mean = log(100000), log_sd = 0.5))
sim_abundance(years = 1:20,
            R = sim_R(log_mean = log(c(rep(100000, 10), rep(10000, 10))), plot = TRUE))
Z_fun <- sim_Z(log_mean = log(0.5), log_sd = 0.1, phi_age = 0.9, phi_year = 0.9, plot = TRUE)
Z_fun(years = 1:100, ages = 1:20)
sim_abundance(Z = sim_Z(log_mean = log(0.5), log_sd = 0.1, plot = TRUE))
Za_dev <- c(-0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.3, 0.2, 0.1, 0)
Z_mat <- outer(Za_dev, Zy_dev, "+") + 0.5</pre>
sim_abundance(ages = 1:10, years = 1:20,
             Z = sim_Z(log_mean = log(Z_mat), plot = TRUE))
sim_abundance(ages = 1:10, years = 1:20,
        Z = sim_Z(log_mean = log(Z_mat), log_sd = 0, phi_age = 0, phi_year = 0, plot = TRUE))
N0_fun <- sim_N0(N0 = "exp", plot = TRUE)
N0_fun(R0 = 1000, Z0 = rep(0.5, 20), ages = 1:20)
sim_abundance(N0 = sim_N0(N0 = "exp", plot = TRUE))
```

sim_sets

Simulate survey sets

Description

Simulate survey sets

Usage

```
sim_sets(
    sim,
    subset_cells,
    n_sims = 1,
    trawl_dim = c(1.5, 0.02),
    min_sets = 2,
    set_den = 2/1000,
    resample_cells = FALSE
)
```

sim_survey

Arguments

sim	Simulation object from sim_distribution
<pre>subset_cells</pre>	Logical expression indicating the elements (x,y,depth,cell,division,strat,year) of the survey grid to keep (e.g., cell < 100)
n_sims	Number of simulations to produce
trawl_dim	Trawl width and distance (same units as grid)
<pre>min_sets</pre>	Minimum number of sets per strat
set_den	Set density (number of sets per grid unit squared)
resample_cells	Allow resampling of sampling units (grid cells)? (Note: allowing resampling may create bias because depletion is imposed at the cell level)

Examples

```
sim <- sim_abundance(ages = 1:10, years = 1:5) %>%
    sim_distribution(grid = make_grid(res = c(12, 12)))
```

```
## Multiple calls can be useful for defining a custom series of sets
standard_sets <- sim_sets(sim, year <= 2, set_den = 2 / 1000)
reduced_sets <- sim_sets(sim, year > 2 & !cell %in% 1:100, set_den = 1 / 1000)
sets <- rbind(standard_sets, reduced_sets)
sets$set <- seq(nrow(sets)) # Important - make sure set has a unique ID.</pre>
```

```
survey <- sim_survey(sim, custom_sets = sets)
plot_survey(survey, which_year = 4, which_sim = 1)</pre>
```

sim_survey

Simulate stratified-random survey

Description

Simulate stratified-random survey

Usage

```
sim_survey(
    sim,
    n_sims = 1,
    q = sim_logistic(),
    trawl_dim = c(1.5, 0.02),
    resample_cells = FALSE,
    binom_error = TRUE,
    min_sets = 2,
    set_den = 2/1000,
```

```
lengths_cap = 500,
ages_cap = 10,
age_sampling = "stratified",
age_length_group = 1,
age_space_group = "division",
custom_sets = NULL,
light = TRUE
)
```

Arguments

sim	Simulation from sim_distribution
n_sims	Number of surveys to simulate over the simulated population. Note: requesting a large number of simulations may max out your RAM. Use sim_survey_parallel if many simulations are required.
q	Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)
trawl_dim	Trawl width and distance (same units as grid)
resample_cells	Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.
binom_error	Impose binomial error? Setting to FALSE may introduce bias in stratified esti- mates at older ages because of more frequent rounding to zero.
min_sets	Minimum number of sets per strat
set_den	Set density (number of sets per [grid unit] squared). WARNING: may return an error if set_den is high and resample_cells = FALSE because the number of sets allocated may exceed the number of cells in a strata.
lengths_cap	Maximum number of lengths measured per set
ages_cap	If age_sampling = "stratified", this cap represents the maximum number of ages to sample per length group (defined using the age_length_group ar- gument) per division or strat (defined using the age_space_group argument) per year. If age_sampling = "random", it is the maximum number of ages to sample from measured fish per set.
age_sampling	Should age sampling be "stratified" (default) or "random"?
age_length_grou	•
	Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".
age_space_group	
	Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".
custom_sets	Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.
light	Drop some objects from the output to keep object size low?

22

Value

A list including rounded population simulation, set locations and details and sampling details. Note that that N = "true" population, I = population available to the survey, n = number caught by survey.

Examples

sim_survey_parallel Simulate stratified random surveys using parallel computation

Description

This function is a wrapper for sim_survey except it allows for many more total iterations to be run than sim_survey before running into RAM limitations. Unlike test_surveys, this function retains the full details of the survey and it may therefore be more useful for testing alternate approaches to a stratified analysis for obtaining survey indices.

Usage

```
sim_survey_parallel(
    sim,
    n_sims = 1,
    n_loops = 100,
    cores = 1,
    quiet = FALSE,
    ...
)
```

Arguments

sim	Simulation from sim_distribution
n_sims	Number of times to simulate a survey over the simulated population. Requesting a large number of simulations here may max out your RAM.
n_loops	Number of times to run the sim_survey function. Total simulations run will be the product of n_sims and n_loops arguments. Low numbers of n_sims and high numbers of n_loops will be easier on RAM, but may be slower.
cores	Number of cores to use in parallel. More cores should speed up the process.
quiet	Print message on what to expect for duration?
	Arguments passed on to sim_survey

- q Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)
- trawl_dim Trawl width and distance (same units as grid)
- resample_cells Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.
- binom_error Impose binomial error? Setting to FALSE may introduce bias in stratified estimates at older ages because of more frequent rounding to zero.
- min_sets Minimum number of sets per strat
- set_den Set density (number of sets per [grid unit] squared). WARNING: may
 return an error if set_den is high and resample_cells = FALSE because
 the number of sets allocated may exceed the number of cells in a strata.
- lengths_cap Maximum number of lengths measured per set
- ages_cap If age_sampling = "stratified", this cap represents the maximum
 number of ages to sample per length group (defined using the age_length_group
 argument) per division or strat (defined using the age_space_group argu ment) per year. If age_sampling = "random", it is the maximum number
 of ages to sample from measured fish per set.
- age_sampling Should age sampling be "stratified" (default) or "random"?
- age_length_group Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".
- age_space_group Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".
- custom_sets Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.

light Drop some objects from the output to keep object size low?

Details

sim_survey is hard-wired here to be "light" to minimize object size.

Examples

sim_vonB

Description

This function outputs a function which holds the parameter values supplied and the function either simulates lengths given ages or generates a length age key give a sequence of ages.

Usage

```
sim_vonB(
  Linf = 120,
  L0 = 5,
  K = 0.1,
  log_sd = 0.1,
  length_group = 3,
  digits = 0,
  plot = FALSE
)
```

Arguments

Linf	Mean asymptotic length
LØ	Length at birth
К	Growth rate parameter
log_sd	Standard deviation of the relationship in log scale
length_group	Length group for length age key. Note that labels on the matrix produced are midpoints using the DFO conventions; see group_lengths. Also note that this length group will dictate the length group used in the stratified analysis run by run_strat.
digits	Integer indicating the number of decimal places to round the values to
plot	Produce a simple plot of the simulated values?

Examples

```
growth_fun <- sim_vonB(Linf = 100, L0 = 5, K = 0.2, log_sd = 0.05, length_group = 1, plot = TRUE)
growth_fun(age = rep(1:15, each = 100))
growth_fun(age = 1:15, length_age_key = TRUE)
sim_abundance(growth = sim_vonB(plot = TRUE))</pre>
```

strat_data

Description

Generate set details (setdet), length-frequency (lf) and age-frequency (af) data for stratified analysis

Usage

```
strat_data(sim, length_group = 3, alk_scale = "division")
```

Arguments

sim	Simulation from sim_survey
length_group	Size of the length frequency bins
alk_scale	Spatial scale at which to construct and apply age-length-keys: "division", "strat" or "set".

strat_error	Calculate error of stratified estimates
-------------	---

Description

Calculate error of stratified estimates

Usage

```
strat_error(sim)
```

Arguments

sim

Object from run_strat (includes simulated population and survey along with stratified analysis results)

Value

Adds details and summary stats of stratified estimate error to the sim list, ending with "_strat_error" or "_strat_error_stats". Error statistics includes mean absolute error ("MAE"), mean squared error ("MSE"), and root mean squared error ("RMSE")

strat_means

Examples

strat_means	Calculate stratified means, variances and confidence intervals across
	groups

Description

Calculate stratified means, variances and confidence intervals across groups

Usage

```
strat_means(
   data = NULL,
   metric = NULL,
   strat_groups = NULL,
   survey_groups = NULL,
   confidence = 95
)
```

Arguments

data	Expects data.table with all grouping variables in stacked format (must include strat_area and tow_area for scaling values)
metric	Variable in specified data.table. e.g. "number", "mass"
strat_groups	Grouping variables for calculations of the fine-scale strat-level means (strat and strat_area are required). e.g. c("year", "species", "shiptrip", "NAFOdiv", "strat", "strat_area", "age")
survey_groups	Grouping variables for large-scale summary calculations. e.g. ("year", "species")
confidence	Percent for confidence limits

Details

Function was mainly created for use in the run_strat function. It first calculates strat-level statistics and then the larger-scale statistics like total abundance survey_grid

Description

A exemplar for the structure of a survey grid object to supply to the functions in this package.

Usage

survey_grid

Format

A RasterStack with 4 variables:

cell Survey cell identifier

division NAFO division

strat Survey strata number

depth Mean depth of the waters under each cell, units = m

For further details on how this file was created, see the data-raw folder for this package.

survey_lite_mesh Lite sample survey mesh and related items

Description

Lite sample survey mesh and related items

Usage

survey_lite_mesh

Format

A list containing the same items as survey_mesh, but with fewer nodes to save on computational time

survey_mesh

Description

@format A list containing the R-INLA survey mesh, the set of triangles in the barrier and the barrier polygons for plotting

Usage

survey_mesh

Format

An object of class list of length 3.

Details

An example of a mesh containing barrier information for use with sim_ays_covar_spde. Also derived from global administrative boundaries data (http://gadm.org). Details on creation provided in the data-raw folder of this package in the survey_mesh.R file. Includes the set of barrier triangles needed to use the barrier approach, barrier polygons for plotting and the set of triangles in the barrier.

test_surveys

Test sampling design of multiple surveys using a stratified analysis

Description

This function allows a series of sampling design settings to be set and tested on the simulated population. True population values are compared to stratified estimates of abundance.

Usage

```
test_surveys(
   sim,
   surveys = expand_surveys(),
   keep_details = 1,
   n_sims = 1,
   n_loops = 100,
   cores = 2,
   export_dir = NULL,
   length_group = "inherit",
   alk_scale = "division",
   progress = TRUE,
   ...
```

)

resume_test(export_dir = NULL, ...)

Arguments

sim	Simulation from sim_distribution.
surveys	A data.frame or data.table with a sequence of surveys and their settings with a format like the data.table returned by expand_surveys.
keep_details	Survey and stratified analysis details are dropped here to minimize object size. This argument allows the user to keep the details of one survey by specifying the survey number in the data.frame supplied to surveys.
n_sims	Number of times to simulate a survey over the simulated population. Requesting a large number of simulations here may max out your RAM.
n_loops	Number of times to run the sim_survey function. Total simulations run will be the product of n_sims and n_loops arguments. Low numbers of n_sims and high numbers of n_loops will be easier on RAM, but may be slower.
cores	Number of cores to use in parallel. More cores should speed up the process.
export_dir	Directory for exporting results as they are generated. Main use of the export is to allow this process to pick up where test_survey left off by calling resume_test. If NULL, nothing is exported.
length_group	Size of the length frequency bins for both abundance at length calculations and age-length-key construction. By default this value is inherited from the value defined in sim_abundance from the closure supplied to sim_length ("inherit"). A numeric value can also be supplied, however, a mismatch in length groupings will cause issues with strat_error as true vs. estimated length groupings will be mismatched.
alk_scale	Spatial scale at which to construct and apply age-length-keys: "division" or "strat".
progress	Display progress bar and messages?
	Arguments passed on to sim_survey
	q Closure, such as sim_logistic, for simulating catchability at age (returned values must be between 0 and 1)
	trawl_dim Trawl width and distance (same units as grid)
	resample_cells Allow resampling of sampling units (grid cells)? Setting to TRUE may introduce bias because depletion is imposed at the cell level.
	binom_error Impose binomial error? Setting to FALSE may introduce bias in stratified estimates at older ages because of more frequent rounding to zero.
	min_sets Minimum number of sets per strat
	age_sampling Should age sampling be "stratified" (default) or "random"?
	<pre>age_length_group Numeric value indicating the size of the length bins for stratified age sampling. Ignored if age_sampling = "random".</pre>

- age_space_group Should age sampling occur at the "division" (default), "strat" or "set" spatial scale? That is, age sampling can be spread across each "division", "strat" or "set" in each year to a maximum number within each length bin (cap is defined using the age_cap argument). Ignored if age_sampling = "random".
- custom_sets Supply an object of the same structure as returned by sim_sets which specifies a custom series of set locations to be sampled. Set locations are automated if custom_sets = NULL.

Details

Depending on the settings, test_surveys may take a long time to run. The resume_test function is for resuming partial runs of test_surveys. Note that progress bar time estimates will be biased here by previous completions. test_loop is a helper function used in both test_surveys and resume_test. CAUTION: while the dots construct is available in the resume_test function, be careful adding arguments as it will change the simulation settings if the arguments added were not specified in the initial test_surveys run.

Value

Adds a table of survey designs tested. Also adds details and summary stats of stratified estimate error to the sim list, ending with "_strat_error" or "_strat_error_stats". Error statistics includes mean error ("ME"), mean absolute error ("MAE"), mean squared error ("MSE"), and root mean squared error ("RMSE"). Also adds a sample size summary table ("samp_totals") to the list. Survey and stratified analysis details are not kept to minimize object size.

Examples

```
pop <- sim_abundance(ages = 1:20, years = 1:5) %>%
           sim_distribution(grid = make_grid(res = c(10, 10)))
surveys <- expand_surveys(set_den = c(1, 2) / 1000,
                          lengths_cap = c(100, 500),
                          ages_cap = c(5, 20))
## This call runs 25 simulations of 8 different surveys over the same
## population, and then runs a stratified analysis and compares true vs
## estimated values. (Note: total number of simulations are low to decrease
## computation time for the example)
tests <- test_surveys(pop, surveys = surveys, keep_details = 1,</pre>
                      n_sims = 5, n_loops = 5, cores = 1)
library(plotly)
tests$total_strat_error %>%
    filter(survey == 8, sim %in% 1:50) %>%
   group_by(sim) %>%
   plot_ly(x = \simyear) %>%
   add_lines(y = ~I_hat, alpha = 0.5, name = "estimated") %>%
    add_lines(y = ~I, color = I("black"), name = "true") %>%
```

vis_sim

Make a flexdashboard for visualizing the simulation

Description

Assumes the working directory is the project directory

Usage

vis_sim(sim, ...)

Arguments

sim	Object produced by sim_abundance, sim_distribution, sim_survey or test_surveys.
	Additional arguments to send to run

Examples

```
if (interactive()) {
```

```
pop <- sim_abundance(ages = 1:20, years = 1:20)
vis_sim(pop)
dist <- sim_distribution(pop, grid = make_grid(res = c(10, 10)))
vis_sim(dist)
## Run one survey design
survey <- sim_survey(dist, n_sims = 5)
vis_sim(survey)</pre>
```

}

Index

* datasets bathy, 2 1and, 6survey_grid, 28 survey_lite_mesh, 28 survey_mesh, 29 bathy, 2 convert_N, 3 error_stats, 3 expand.grid, 4 expand_surveys, 4, 30 fibonacci, 4 findInterval, 5 getData, 6 group_lengths, 5, 25 icc, 5 land, 6 lmer, 5 make_grid, 6, 10, 16 make_mesh, 7 object.size, 8 object_size, 8 plot_age_strat_fan (plot_trend), 9 plot_distribution (plot_trend), 9 plot_error_surface (plot_trend), 9 plot_grid (plot_trend), 9 plot_length_strat_fan (plot_trend), 9 plot_ly, 10 plot_surface (plot_trend), 9 plot_survey (plot_trend), 9 plot_survey_rank (plot_trend), 9

plot_total_strat_fan (plot_trend), 9 plot_trend, 9 resume_test (test_surveys), 29 round_sim, 10 run, <u>32</u> run_strat, 11, 25-27 sim_abundance, 9-11, 12, 16, 19, 30, 32 sim_ays_covar, 14, 16 sim_ays_covar_spde, 14 sim_distribution, 9, 10, 14, 15, 16, 18, 21-23, 30, 32 sim_logistic, 17, 22, 24, 30 sim_N0, 12 sim_N0 (sim_R), 19 sim_parabola, 16, 18 sim_R, 12, 19 sim_sets, 20, 22, 24, 31 sim_survey, 11, 12, 17, 21, 23, 24, 26, 30, 32 sim_survey_parallel, 22, 23 sim_vonB, 12, 25 sim_Z, <u>12</u> sim_Z (sim_R), 19 spline, 6 strat_data, 11, 26 strat_error, 11, 26, 30 strat_means, *11*, 27 survey_grid, 7, 16, 28 survey_lite_mesh, 28 survey_mesh, 29

test_surveys, 23, 29, 32

vis_sim, 32