| GPCERF-package | The 'GPCERF' package. |
| compute_deriv_weights_gp | Calculate Derivatives of CERF |
| compute_inverse | Compute Matrix Inverse For a Covariate Matrix |
| compute_m_sigma | Compute mean, credible interval, and covariate balance in Full Gaussian Process (GP) |
| compute_posterior_m_nn | Calculate Posterior Means for nnGP Model |
| compute_posterior_sd_nn | Calculate Posterior Standard Deviations for nnGP Model |
| compute_rl_deriv_gp | Change-point Detection in Full GP |
| compute_rl_deriv_nn | Calculate Right Minus Left Derivatives for Change-point Detection in nnGP |
| compute_weight_gp | Calculate Weights for Estimation of a Point on CERF |
| compute_w_corr | Compute Weighted Correlation |
| estimate_cerf_gp | Estimate the Conditional Exposure Response Function using Gaussian Process |
| estimate_cerf_nngp | Estimate the Conditional Exposure Response Function using Nearest Neighbor Gaussian Process |
| estimate_mean_sd_nn | Estimate the CERF with the nnGP Model |
| estimate_noise_gp | Estimate the Standard Deviation of the Nugget Term in Full Gaussian Process |
| estimate_noise_nn | Estimate the Standard Deviation (noise) of the Nugget Term in nnGP |
| find_optimal_nn | Find the Optimal Hyper-parameter for the Nearest Neighbor Gaussian Process |
| generate_synthetic_data | Generate Synthetic Data for GPCERF Package |
| get_logger | Get Logger Settings |
| GPCERF | The 'GPCERF' package. |
| plot.cerf_gp | Extend generic plot functions for cerf_gp class |
| plot.cerf_nngp | Extend generic plot functions for cerf_nngp class |
| print.cerf_gp | Extend print function for cerf_gp object |
| print.cerf_nngp | Extend print function for cerf_nngp object |
| set_logger | Set Logger Settings |
| summary.cerf_gp | print summary of cerf_gp object |
| summary.cerf_nngp | print summary of cerf_nngp object |
| train_GPS | Train A Model for GPS |