accuracy |
Classification Metrics on Predited Classes |
accuracy.data.frame |
Classification Metrics on Predited Classes |
accuracy.matrix |
Classification Metrics on Predited Classes |
accuracy.table |
Classification Metrics on Predited Classes |
ccc |
Calculate Metrics for Numeric Outcomes |
ccc.data.frame |
Calculate Metrics for Numeric Outcomes |
conf_mat |
Confusion Matrix for Categorical Data |
conf_mat.data.frame |
Confusion Matrix for Categorical Data |
conf_mat.default |
Confusion Matrix for Categorical Data |
conf_mat.table |
Confusion Matrix for Categorical Data |
f_meas |
Calculate recall, precision and F values |
f_meas.default |
Calculate recall, precision and F values |
f_meas.table |
Calculate recall, precision and F values |
hpc_cv |
Class Probability Predictions |
j_index |
Other Metrics for 2x2 Tables |
j_index.data.frame |
Other Metrics for 2x2 Tables |
j_index.table |
Other Metrics for 2x2 Tables |
mae |
Calculate Metrics for Numeric Outcomes |
mae.data.frame |
Calculate Metrics for Numeric Outcomes |
mcc |
Other Metrics for 2x2 Tables |
mcc.data.frame |
Other Metrics for 2x2 Tables |
mcc.table |
Other Metrics for 2x2 Tables |
metrics |
General Function to Estimate Performance |
metrics.data.frame |
General Function to Estimate Performance |
mnLogLoss |
Metrics Based on Class Probabilities |
mnLogLoss.data.frame |
Metrics Based on Class Probabilities |
npv |
Calculate sensitivity, specificity and predictive values |
npv.default |
Calculate sensitivity, specificity and predictive values |
npv.matrix |
Calculate sensitivity, specificity and predictive values |
npv.table |
Calculate sensitivity, specificity and predictive values |
pathology |
Liver Pathology Data |
ppv |
Calculate sensitivity, specificity and predictive values |
ppv.default |
Calculate sensitivity, specificity and predictive values |
ppv.matrix |
Calculate sensitivity, specificity and predictive values |
ppv.table |
Calculate sensitivity, specificity and predictive values |
precision |
Calculate recall, precision and F values |
precision.data.frame |
Calculate recall, precision and F values |
precision.default |
Calculate recall, precision and F values |
precision.matrix |
Calculate recall, precision and F values |
precision.table |
Calculate recall, precision and F values |
pr_auc |
Metrics Based on Class Probabilities |
pr_auc.data.frame |
Metrics Based on Class Probabilities |
pr_auc.default |
Metrics Based on Class Probabilities |
recall |
Calculate recall, precision and F values |
recall.data.frame |
Calculate recall, precision and F values |
recall.default |
Calculate recall, precision and F values |
recall.table |
Calculate recall, precision and F values |
rmse |
Calculate Metrics for Numeric Outcomes |
rmse.data.frame |
Calculate Metrics for Numeric Outcomes |
roc_auc |
Metrics Based on Class Probabilities |
roc_auc.data.frame |
Metrics Based on Class Probabilities |
roc_auc.default |
Metrics Based on Class Probabilities |
rsq |
Calculate Metrics for Numeric Outcomes |
rsq.data.frame |
Calculate Metrics for Numeric Outcomes |
rsq_trad |
Calculate Metrics for Numeric Outcomes |
rsq_trad.data.frame |
Calculate Metrics for Numeric Outcomes |
sens |
Calculate sensitivity, specificity and predictive values |
sens.data.frame |
Calculate sensitivity, specificity and predictive values |
sens.default |
Calculate sensitivity, specificity and predictive values |
sens.matrix |
Calculate sensitivity, specificity and predictive values |
sens.table |
Calculate sensitivity, specificity and predictive values |
solubility_test |
Solubility Predictions from MARS Model |
spec |
Calculate sensitivity, specificity and predictive values |
spec.data.frame |
Calculate sensitivity, specificity and predictive values |
spec.default |
Calculate sensitivity, specificity and predictive values |
spec.matrix |
Calculate sensitivity, specificity and predictive values |
spec.table |
Calculate sensitivity, specificity and predictive values |
summary.conf_mat |
Summary Statistics for Confusion Matrices |
tidy.conf_mat |
Confusion Matrix for Categorical Data |
two_class_example |
Two Class Predictions |