aa_getATestResults |
Calculates the A-Test scores observed for all sets, for each sample size |
aa_graphATestsForSampleSize |
Produce a plot for each sample size, showing the A-Test scores for each set of that size |
aa_graphSampleSizeSummary |
Plots a comparison of the maximum A-Test score for each sample size |
aa_sampleSizeSummary |
Determines the median and maximum A-Test score observed for each sample size |
aa_summariseReplicateRuns |
Summarise results in set folder structure into one single CSV file |
analysenetwork_structures |
Analyse each network structure provided as a potential NN structure |
atest |
Calculates the A-test score for two distributions |
calculate_fold_MSE |
Calculate the mean squared error for this fold in k-fold cross validation |
calculate_weights_for_ensemble_model |
Internal function to calculate the weights for all emulators in the ensemble |
createAndEvaluateFolds |
Create and evaluate folds within k-fold cross validation |
createtest_fold |
Create test data fold for k-fold cross validation |
createTrainingFold |
Create training data fold for k-fold cross validation |
create_abc_settings_object |
Creates ensemble-specific parameters for ABC analysis |
create_ensemble |
Internal function to create the ensemble |
create_neural_network |
Create neural network emulator, using neuralnet package |
determine_optimal_neural_network_structure |
Determine the optimal hidden layer structure from those provided |
efast_generate_medians_for_all_parameter_subsets |
Generates summary file for stochastic simulations stored in multiple files |
efast_generate_sample |
Generates parameter sets for variance-based eFAST Sensitivity Analysis |
efast_generate_sample_netlogo |
Prepares Netlogo experiment files for a variance-based sensitivity analysis, using eFAST |
efast_get_overall_medians |
Calculates the summary stats for each parameter set (median of any replicates) |
efast_graph_Results |
Plot the parition of variance in a simulation response for each measure |
efast_netlogo_get_overall_medians |
Deprecated: Use 'efast_netlogo_get_overall_medians' |
efast_netlogo_run_Analysis |
Deprecated: Use 'efast_run_Analysis' |
efast_process_netlogo_result |
Analyses Netlogo simulation data for parameter sets generated for eFAST |
efast_run_Analysis |
Runs the eFAST Analysis for the pre-generated summary file |
emulated_lhc_values |
Latin-hypercube value set use to demonstrate emulated sensitivity analysis |
emulate_efast_sampled_parameters |
Emulate simulations for a set of eFAST generated parameter values |
emulate_lhc_sampled_parameters |
Emulate simulations for a set of latin-hypercube generated parameter values |
emulation_algorithm_settings |
Initialise machine-learning algorithms settings for emulation creation |
emulator_parameter_evolution |
Evolve parameter sets that meet a desired ensemble outcome |
emulator_predictions |
Used to generate predictions from an emulator, normalising data if required |
ensemble_abc_wrapper |
Wrapper to allow EasyABC functions to run using Ensemble |
generate_emulators_and_ensemble |
Generate a set of emulators and combine into an ensemble |
generate_ensemble_from_existing_emulations |
Generate an ensemble from previously created spartan emulation objects |
generate_ensemble_training_set |
Internal function used to combine test set predictions from emulators to form the ensemble training set |
generate_requested_emulations |
Generate emulators for specified machine learning techniques with provided data |
graph_Posteriors_All_Parameters |
Graph posterior distributions generated for all parameters, to PDF file |
kfoldCrossValidation |
Perform k-fold cross validation for assessing neural network structure performance |
lhc_calculatePRCCForMultipleTimepoints |
Calculates the PRCC for each parameter at each timepoint, storeing PRCC and P-Value in two different files to make the plot function easier |
lhc_countSignificantParametersOverTime |
Count number of significant (p<0.01) parameters over a timecourse |
lhc_generateLHCSummary |
Summarises simulation behaviour for each parameter set, by median of distribution of replicate runs |
lhc_generatePRCoEffs |
Generate Partial Rank Correlation Coefficients for parameter/response pairs |
lhc_generateTimepointFiles |
Generates spartan-compatible timepoint files if simulation results over time are in one file |
lhc_generate_lhc_sample |
Generates sets of simulation parameters using latin-hypercube sampling |
lhc_generate_lhc_sample_netlogo |
Prepares Netlogo experiment files for a sampling-based sensitivity analysis, using latin-hypercube sampling |
lhc_generate_netlogo_PRCoEffs |
Deprecated. Use 'lhc_generatePRCoEffs' instead |
lhc_graphMeasuresForParameterChange |
Generates parameter/measure plot for each pairing in the analysis |
lhc_graphPRCCForMultipleTimepoints |
Produce a plot of PRCC values obtained at multiple timepoints |
lhc_netlogo_graphMeasuresForParameterChange |
Deprecated. Use 'lhc_graphMeasuresForParameterChange' instead |
lhc_plotCoEfficients |
Plots the PRCC coefficients against each other for ease of comparison |
lhc_polarplot |
Creates a polar plot for each response, showing PRCC for each parameter |
lhc_process_netlogo_result |
Analyses Netlogo simulations generated for a latin-hypercube based sensitivity analysis |
lhc_process_sample_run_subsets |
Summarises results of runs for parameter sets generated by a latin-hypercube |
normaliseATest |
Normalises the A-Test such that it is above 0.5 |
normalise_dataset |
Normalise a dataset such that all values are between 0 and 1 |
nsga2_set_user_params |
Initialise analysis specific parameters for NSGA-2 |
num.decimals |
Diagnostic function used to determine number of decimal places |
oat_countResponsesOfDesiredValue |
Counts the number of simulation responses where a output response equals a desired result, for a specified parameter. |
oat_csv_result_file_analysis |
Performs a robustness analysis for supplied simulation data, comparing simulation behaviour at different parameter values |
oat_generate_netlogo_behaviour_space_XML |
Creates a Netlogo compatible behaviour space experiment for robustness analysis |
oat_graphATestsForSampleSize |
Takes each parameter in turn and creates a plot showing A-Test score against parameter value. |
oat_parameter_sampling |
Create parameter samples for robustness (local) analysis |
oat_plotResultDistribution |
For stochastic simulations plots the distribution of results for each parameter value |
oat_processParamSubsets |
Summarises stochastic, repeated, simulations for all robustness parameter sets into a single file. |
oat_process_netlogo_result |
Takes a Netlogo behaviour space file and performs a robustness analysis from that simulation data |
partition_dataset |
Partition latin-hypercube summary file to training, testing, and validation |
perform_aTest_for_all_sim_measures |
Performs A-Test to compare all simulation measures |
plotATestsFromTimepointFiles |
Plots the A-Tests for all timepoints being examined |
ploteFASTSiFromTimepointFiles |
Plot the Si value for all parameters for multiple simulation timepoints |
plotPRCCSFromTimepointFiles |
Plots Graphs for Partial Rank Correlation Coefficients Over Time |
plot_compare_sim_observed_to_model_prediction |
Internal function used to create accuracy plots of the emulation against observed data |
produce_accuracy_plots_all_measures |
Internal function used to create accuracy plots of the emulation against observed data, for all measures |
produce_accuracy_plots_single_measure |
Internal function used to create accuracy plots of the emulation against observed data |
screen_nsga2_parameters |
Screens NSGA-2 related parameters, guiding which to select for evolving parameter sets |
selectSuitableStructure |
Selects the most suitable neural network structure from the potentials made |
set.nsga_sensitivity_params |
Set parameters for NSGA-2 sensitivity analysis |
sim_data_for_emulation |
Set of parameter and response pairs for training an emulator of a simulation |
tutorial_consistency_set |
Example dataset showing the structure for consistency analysis data |
updateErrorForStructure |
Add the MSE for a newly examined structure to the list of those already seen |
use_ensemble_to_generate_predictions |
Predict simulation responses for a parameter set using an ensemble |
visualise_data_distribution |
Used to diagnose skew in a training dataset before use in emulation |
weight_emulator_predictions_by_ensemble |
Internal function to weight emulator predictions by that calculated for the ensemble |