naniar-package | naniar |
add_any_miss | Add a column describing presence of any missing values |
add_label_missings | Add a column describing if there are any missings in the dataset |
add_label_shadow | Add a column describing whether there is a shadow |
add_n_miss | Add column containing number of missing data values |
add_prop_miss | Add column containing proportion of missing data values |
add_shadow | Add a shadow column to dataframe |
add_shadow_shift | Add a shadow shifted column to a dataset |
add_span_counter | Add a counter variable for a span of dataframe |
all_row_complete | Helper function to determine whether all rows are complete |
all_row_miss | Helper function to determine whether all rows are missing |
any_row_miss | Helper function to determine whether there are any missings |
as_shadow | Create shadows |
as_shadow.data.frame | Create shadow data |
bind_shadow | Bind a shadow dataframe to original data |
cast_shadow | Add a shadow column to a dataset |
cast_shadow_shift | Add a shadow and a shadow_shift column to a dataset |
cast_shadow_shift_label | Add a shadow column and a shadow shifted column to a dataset |
gather_shadow | Long form representation of a shadow matrix |
GeomMissPoint | naniar-ggroto |
geom_miss_point | geom_miss_point |
gg_miss_case | Plot the number of missings per case (row) |
gg_miss_case_cumsum | Plot of cumulative sum of missing for cases |
gg_miss_fct | Plot the number of missings for each variable, broken down by a factor |
gg_miss_span | Plot the number of missings in a given repeating span |
gg_miss_var | Plot the number of missings for each variable |
gg_miss_var_cumsum | Plot of cumulative sum of missing value for each variable |
gg_miss_which | Plot which variables contain a missing value |
group_by_fun | Group By Helper |
label_missings | Is there a missing value in the row of a dataframe? |
label_miss_1d | Label a missing from one column |
label_miss_2d | label_miss_2d |
label_shadow | Label shadow values as missing or not missing |
label_shadow_matrix | Give NAs a more meaningful label |
miss_case_cumsum | Summarise the missingness in each case |
miss_case_pct | Percentage of cases that contain a missing values. |
miss_case_prop | Proportion of cases that contain a missing values. |
miss_case_summary | Summarise the missingness in each case |
miss_case_table | Tabulate missings in cases. |
miss_prop_summary | Proportions of missings in data, variables, and cases. |
miss_summary | Collate summary measures from naniar into one tibble |
miss_var_cumsum | Cumulative sum of the number of missings in each variable |
miss_var_pct | Percentage of variables containing missings |
miss_var_prop | Proportion of variables containing missings |
miss_var_run | Find the number of missing and complete values in a single run |
miss_var_span | Summarise the number of missings for a given repeating span on a variable |
miss_var_summary | Summarise the missingness in each variable |
miss_var_table | Tabulate the missings in the variables |
naniar | naniar |
naniar-ggproto | naniar-ggroto |
n_complete | Return the number of complete values |
n_miss | Return the number of missing values |
oceanbuoys | West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997. |
pct_complete | Return the percent of complete values |
pct_miss | Return the percent of missing values |
pedestrian | Pedestrian count information around Melbourne for 2016 |
prop_complete | Return the proportion of complete values |
prop_miss | Return the proportion of missing values |
replace_to_na | Replace values with missings |
riskfactors | The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009. |
shadow_shift | Shift missing values to facilitate missing data exploration/visualisation |
StatMissPoint | naniar-ggroto |
stat_miss_point | stat_miss_point |
test_if_dataframe | Test if input is a data.frame |
test_if_missing | Test if the input is Missing |
test_if_null | Test if the input is NULL |
where_na | Which rows and cols contain missings? |
which_na | Which elements contain missings? |