balanced.cv.fold | Split a dataset for Cross Validation taking into account class balance |
binaryClassificationLoss | Loss functions for binary classification |
costMatrix | Compute or check the structure of a cost matrix |
epsilonInsensitiveRegressionLoss | Loss functions to perform a regression |
fbetaLoss | Loss functions for binary classification |
gradient | Return or set gradient attribute |
gradient.default | Return or set gradient attribute |
gradient<- | Return or set gradient attribute |
gradient<-.default | Return or set gradient attribute |
hingeLoss | Loss functions for binary classification |
is.convex | Return or set is.convex attribute |
is.convex.default | Return or set is.convex attribute |
is.convex<- | Return or set is.convex attribute |
is.convex<-.default | Return or set is.convex attribute |
ladRegressionLoss | Loss functions to perform a regression |
linearRegressionLoss | Loss functions to perform a regression |
lmsRegressionLoss | Loss functions to perform a regression |
logisticLoss | Loss functions for binary classification |
lpSVM | Linearly Programmed SVM |
lvalue | Return or set lvalue attribute |
lvalue.default | Return or set lvalue attribute |
lvalue<- | Return or set lvalue attribute |
lvalue<-.default | Return or set lvalue attribute |
mmc | Convenient wrapper function to solve max-margin clustering problem on a dataset |
mmcLoss | Loss function for max-margin clustering |
nrbm | Convex and non-convex risk minimization with L2 regularization and limited memory |
nrbmL1 | Convex and non-convex risk minimization with L2 regularization and limited memory |
ontologyLoss | Ontology Loss Function |
ordinalRegressionLoss | The loss function for ordinal regression |
predict.mmc | Predict class of new instances according to a mmc model |
predict.svmLP | Linearly Programmed SVM |
predict.svmMLP | Linearly Programmed SVM |
quantileRegressionLoss | Loss functions to perform a regression |
roc.stat | Compute statistics for ROC curve plotting |
rocLoss | Loss functions for binary classification |
softMarginVectorLoss | Soft Margin Vector Loss function for multiclass SVM |
svmLP | Linearly Programmed SVM |
svmMulticlassLP | Linearly Programmed SVM |
tsvmLoss | Non convex loss function for transductive SVM |
wolfe.linesearch | Wolfe Line Search |