Hidden Markov Model for Return Time-Series Based on Lambda Distribution


[Up] [Top]

Documentation for package ‘ldhmm’ version 0.1.0

Help Pages

ldhmm-package ldhmm: A package for HMM using lambda distribution.
ldhmm Constructor of ldhmm class
ldhmm-class The ldhmm class
ldhmm.calc_stats_from_obs Computing the statistics for each state
ldhmm.conditional_prob Computing the conditional probabilities
ldhmm.decoding Computing the minus log-likelihood (MLLK)
ldhmm.forecast_prob Computing the forecast probability distribution
ldhmm.forecast_state Computing the state forecast
ldhmm.ld_stats Computes the theoretical statistics per state
ldhmm.log_backward Computing the log forward and backward probabilities
ldhmm.log_forward Computing the log forward and backward probabilities
ldhmm.mle Computing the MLEs
ldhmm.mllk Computing the minus log-likelihood (MLLK)
ldhmm.n2w Transforming natural parameters to a linear working parameter array
ldhmm.pseudo_residuals Computing pseudo-residuals
ldhmm.state_ld Constructing the ecld objects per state
ldhmm.state_pdf Computing the PDF per state given the observations
ldhmm.ts_abs_acf Computing ACF of the absolute value of a time series
ldhmm.ts_log_rtn Get log-returns from historic prices of an index
ldhmm.viterbi Computing the global decoding by the Viterbi algorithm
ldhmm.w2n Transforming working parameter array to natural parameters
numericOrNull-class The numericOrNull class