Large-Scale Bayesian Variable Selection Using Variational Methods


[Up] [Top]

Documentation for package ‘varbvs’ version 2.4-0

Help Pages

varbvs-package Large-scale Bayesian variable selection using variational methods
bayesfactor Compute numerical estimate of Bayes factor.
cred Estimate credible interval.
cytokine Cytokine signaling genes SNP annotation.
leukemia Expression levels recorded in leukemia patients.
normalizelogweights Compute normalized probabilities.
plot.varbvs Summarize variable selection results in a single plot.
predict.varbvs Make predictions from a model fitted by varbvs.
print.summary.varbvs Summarize a fitted variable selection model.
rand Return matrices of pseudorandom values.
randn Return matrices of pseudorandom values.
subset.varbvs Select hyperparameter settings from varbvs analysis.
summary.varbvs Summarize a fitted variable selection model.
varbvs Fit variable selection model using variational approximation methods.
varbvsbf Compute numerical estimate of Bayes factor.
varbvscoefcred Compute credible intervals for regression coefficients.
varbvsindep Compute posterior statistics, ignoring correlations.
varbvsmix Fit linear regression with mixture-of-normals priors using variational approximation methods.