Data Structures, Summaries, and Visualisations for Missing Data


[Up] [Top]

Documentation for package ‘naniar’ version 0.1.0

Help Pages

naniar-package naniar
add_any_miss Add a column describing presence of any missing values
add_label_missings Add a column describing if there are any missings in the dataset
add_label_shadow Add a column describing whether there is a shadow
add_n_miss Add column containing number of missing data values
add_prop_miss Add column containing proportion of missing data values
add_shadow Add a shadow column to dataframe
add_shadow_shift Add a shadow shifted column to a dataset
add_span_counter Add a counter variable for a span of dataframe
all_row_complete Helper function to determine whether all rows are complete
all_row_miss Helper function to determine whether all rows are missing
any_row_miss Helper function to determine whether there are any missings
as_shadow Create shadows
as_shadow.data.frame Create shadow data
bind_shadow Bind a shadow dataframe to original data
cast_shadow Add a shadow column to a dataset
cast_shadow_shift Add a shadow and a shadow_shift column to a dataset
cast_shadow_shift_label Add a shadow column and a shadow shifted column to a dataset
gather_shadow Long form representation of a shadow matrix
GeomMissPoint naniar-ggroto
geom_miss_point geom_miss_point
gg_miss_case Plot the number of missings per case (row)
gg_miss_case_cumsum Plot of cumulative sum of missing for cases
gg_miss_fct Plot the number of missings for each variable, broken down by a factor
gg_miss_span Plot the number of missings in a given repeating span
gg_miss_var Plot the number of missings for each variable
gg_miss_var_cumsum Plot of cumulative sum of missing value for each variable
gg_miss_which Plot which variables contain a missing value
group_by_fun Group By Helper
label_missings Is there a missing value in the row of a dataframe?
label_miss_1d Label a missing from one column
label_miss_2d label_miss_2d
label_shadow Label shadow values as missing or not missing
label_shadow_matrix Give NAs a more meaningful label
miss_case_cumsum Summarise the missingness in each case
miss_case_pct Percentage of cases that contain a missing values.
miss_case_prop Proportion of cases that contain a missing values.
miss_case_summary Summarise the missingness in each case
miss_case_table Tabulate missings in cases.
miss_prop_summary Proportions of missings in data, variables, and cases.
miss_summary Collate summary measures from naniar into one tibble
miss_var_cumsum Cumulative sum of the number of missings in each variable
miss_var_pct Percentage of variables containing missings
miss_var_prop Proportion of variables containing missings
miss_var_run Find the number of missing and complete values in a single run
miss_var_span Summarise the number of missings for a given repeating span on a variable
miss_var_summary Summarise the missingness in each variable
miss_var_table Tabulate the missings in the variables
naniar naniar
naniar-ggproto naniar-ggroto
n_complete Return the number of complete values
n_miss Return the number of missing values
oceanbuoys West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997.
pct_complete Return the percent of complete values
pct_miss Return the percent of missing values
pedestrian Pedestrian count information around Melbourne for 2016
prop_complete Return the proportion of complete values
prop_miss Return the proportion of missing values
replace_to_na Replace values with missings
riskfactors The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009.
shadow_shift Shift missing values to facilitate missing data exploration/visualisation
StatMissPoint naniar-ggroto
stat_miss_point stat_miss_point
test_if_dataframe Test if input is a data.frame
test_if_missing Test if the input is Missing
test_if_null Test if the input is NULL
where_na Which rows and cols contain missings?
which_na Which elements contain missings?