hetGP-package |
Package hetGP |
allocate_mult |
Allocation of replicates on existing designs |
compareGP |
Likelihood-based comparison of models |
cov_gen |
Correlation function of selected type, supporting both isotropic and product forms |
crit_IMSE |
Sequential IMSPE criterion |
deriv_crit_IMSE |
Derivative of crit_IMSE |
find_reps |
Data preprocessing |
IMSE.search |
IMSE minimization |
IMSE_nsteps_ahead |
h-IMSE with replication |
IMSPE |
Integrated Mean Square Prediction Error |
mleHetGP |
Gaussian process modeling with heteroskedastic noise |
mleHetTP |
Student-t process modeling with heteroskedastic noise |
mleHomGP |
Gaussian process modeling with homoskedastic noise |
mleHomTP |
Student-T process modeling with homoskedastic noise |
predict.hetGP |
Gaussian process predictions using a heterogeneous noise GP object (of class 'hetGP') |
predict.hetTP |
Student-t process predictions using a heterogeneous noise TP object (of class 'hetTP') |
predict.homGP |
Gaussian process predictions using a homoskedastic noise GP object (of class 'homGP') |
predict.homTP |
Student-t process predictions using a homoskedastic noise GP object (of class 'homGP') |
sirEval |
SIR test problem |
sirSimulate |
SIR test problem |
update.hetGP |
Update '"hetGP"'-class model fit with new observations |
update.homGP |
Fast 'homGP'-update |
update_horizon |
Adapt horizon |
Wij |
Compute double integral of the covariance kernel over a [0,1]^d domain |