MixviR v3.3.5

Mike Sovic
2022-04-23
Contents
Introduction 1
Quick Start 1
Inputs o e 1
Typical Workflow e 2
Full Documentation 3
Inputs e e 3
Primary Functions e e 5
Cautions/Important Considerations 12
Example Analyses 12
Example Data e e e e 12
Example Analysis 1- No Target Mutations In call_mutations() 13
Example Analysis 2 - Target Mutations Included In call_mutations() 19
Getting Help 21
References 21
Introduction

MizviR is a package designed to aid in exploring and visualizing genomic and amino-acid level variation
obtained from microbial high-throughput sequencing samples, including samples that contain mixtures of
genotypes. The package was originally written to detect and estimate relative frequencies of SARS-CoV-2
lineages (variants) in samples obtained from environmental sources, but can be applied to any microbial
taxon.

Quick Start

Inputs
Required

1. Sample VCFs - one for each sample to be analyzed. Must contain “DP” and “AD” in FORMAT field.
Can be “gz” compressed.

2. Reference genome file (fasta; remove spaces and underscores ’_’ from chromosome names).

3. File (bed format) defining translated regions of the genome. 6 columns: chromosome, feature start

W

position, feature end position, feature name, score (not used - can enter “”), and strand. Column names

should not be included. Ensure that chromosome names in this file match those in the fasta reference
exactly.

**Pre-constructed reference information is available for SARS-CoV-2 (Covid-19) and can be specified
as an argument to call_mutations(). In that case, only the sample VCFs are required.

Optional
Lineage-Associated Mutations File

The lineage-associated mutations (lineage.muts) file (csv) provides mutations/amino acid substitutions
associated with lineages of interest. Requires columns named “Gene”, “Mutation”, and “Lineage”. Two
additional columns can be included named “Chr” and “Pos”. If these are included, make sure the chromosome
names match those in the reference and bed files (no spaces, remove underscores). The file (including the
optional colummns) should look like. . .

Gene,Mutation, Lineage, Chr,Pos
N,R203K,Alpha,NC-045512.2,28881
ORFla,T1001I,Alpha,NA,NA
S,D614G,Alpha,NC-045512.2,23403
S,A570D,Alpha,NC-045512.2,23271
S,D614G,Delta,NC-045512.2,23403
S,P681R,Delta,NC-045512.2,23604
ORF1b,P314L,Delta,NC-045512.2,14408
M, 182T,Delta,NA,NA
S,T19R,Delta,NC-045512.2,21618
S,L452R,Delta,NC-045512.2,22917

Figure 1: Example lineage-associated mutation file.

Location/Date File

The location/date (dates) file (csv) associates dates and locations with specific samples for cases where
samples are obtained at various time points at one or more locations. Contains columns “SAMP_NAME”,
“LOCATION?”, and “DATE”. Dates are given in mmddyyyy format, and the file should look like. . .

Typical Workflow
Run call_mutations() to identify mutations in the sample(s). Required arguments:

o sample.dir (contains all vcf or vef.gz files to be analyzed; don’t include any other files in this directory)
o fasta.genome & bed OR reference

Run explore_mutations() to interactively visualize results. Required arguments:
o muts.df OR read.muts.from
Include one or both of the following if available:

e lineage.muts
o dates

Run estimate_lineages() to generate a table with summarized results for each sample. Required arguments:

o muts.df OR read.muts.from
e lineage.muts

SAMP_NAME, LOCATION,DATE
AA-01.vcf,AA,10312021
AA-02.vcf,AA,11072021
AA-03.vcf,AA,11282021
AA-04.vcf,AA,12052021
AB-01.vcf,AB,10312021
AB-02.vcf,AB,11072021
AB-03.vcf,AB,11142021
AB-04.vcf,AB,11282021
AB-05.vcf,AB,12052021

O 0 ~N O U B W N

=
=)

Figure 2: Example location/date file.

Full Documentation

Inputs

Required

There are three required inputs for running MizviR in its most basic form. ..
Sample Data

Sample data are provided as variant call format (vcf) files - one for each sample to be analyzed. These vcf
files are expected to contain the “DP” and “AD” flags in the FORMAT field. bcftools (mpileup/call; Danecek
et al 2021) and the GATK (DePristo et al 2011) offer two widely-used workflows that can generate these vcf
files. Below is some example bash code I've used for generating these files (most arguments can be customized
as needed - adding the FORMAT/AD AND FORMAT/DP fields is important). ..

beftools example

[xpath to bcftools*]/bcftools mpileup -f *fasta reference* -d 4000 -q 60 -Q 30 -L 4500 /
-—ff UNMAP,SECONDARY,QCFAIL /

-a FORMAT/AD,FORMAT/ADF , FORMAT/ADR,FORMAT/DP, INFO/AD, INFO/ADF , INFO/ADR /

xinput.bam* | [*path to bcftools*]/bcftools call -m -A -0v -o out_temp.vcE

[*path to bcftools*]/bcftools norm out_temp.vcf -c w -f *fasta referencex /
-m -both -0Ov -o out.vcf

Reference Files
The other two necessary inputs define the reference information for the taxon of interest. They include. ..

1. A fasta-formatted reference genome file (remove spaces and underscores ’_’ from chromosome names).
2. An associated bed-formatted file that defines the translated regions of the genome (ORFs/genes). This
bed file should be tab delimited with 6 columns: chromosome, feature start position, feature end
position, feature name, score (not used - can enter “”), and strand (+/-). Column names should not be
included. Ensure that the chromosome names in this file match those in the reference fasta file. An

example of this file is. ..

NC-045512.2 266 13483 ORFla . +

NC-045512.2 13468 21555 ORFlb . +
NC-045512.2 21563 25384 S . +

NC-045512.2 25393 26220 ORF3a . +
NC-045512.2 26245 26472 E . +

NC-045512.2 26523 27191 M .
NC-045512.2 27202 27387 ORF6
NC-045512.2 27394 27759 ORF7a .
NC-045512.2 27756 27887 ORF7b .
NC-045512.2 27894 28259 ORF8
NC-045512.2 28274 29533 N .
NC-045512.2 29558 29674 ORFl@ . +

+ + + +

Figure 3: Example features (bed) input file.

Pre-constructed reference information is available for SARS-CoV-2 (Covid-19), so only sample vcf files are
necessary in that case.

Optional
There are two optional input files. . .
Lineage-associated mutations

The lineage-associated mutations file (lineage.muts) provides mutations associated with lineages/groups of
interest. It requires columns named “Gene”, “Mutation”, and “Lineage”. Two additional columns can be
included named “Chr” and “Pos”. If these additional columns are included, make sure the chromosome names
match those in the reference and bed input files (including no spaces or underscores). The file (including the
optional colummns) should look like. ..

Gene,Mutation,Lineage,Chr,Pos
N,R203K,Alpha,NC-045512.2,28881
ORFla,T1001I,Alpha,NA,NA
S,D614G,Alpha,NC-045512.2,23403
S,A570D,Alpha,NC-045512.2,23271
S,D614G,Delta,NC-045512.2,23403
S,P681R,Delta,NC-045512.2,23604
ORF1b,P314L,Delta,NC-045512.2,14408
M, I82T,Delta,NA,NA
S,T19R,Delta,NC-045512.2,21618
S,L452R,Delta,NC-045512.2,22917

Figure 4: Example lineage-associated mutation file.

It’s important that the syntax of the mutations in this file matches that used by MizviR - see details on naming
conventions under the sections “SNP-Based Mutation Identification”," “Indel-Based Mutation Identification”,

and “Nonsense Mutation Identification” below. The “Chr” and “Pos” columns store the chromosome and
associated genomic position giving rise to the mutation. These columns are needed if, as part of the results,
you want the program to return the sequencing depth at the position when the mutation is not observed for
a sample. This information could be relevant in determining whether a target mutation not observed in a
sample is absent because it doesn’t occur in the sample, or because the sequencing coverage at that position
is insufficient. If these columns are included, make sure the chromosome names match those in the reference
genome (see note on naming chromosomes in section Cautions/Important Considerations below).

Location/Date File

In cases where samples are taken from the same location at different time points, the temporal information
can be included by providing a csv location/date file (dates) that associates the sample dates and locations
with each unique sample name. The file should contain columns named “SAMP__NAME”, “LOCATION”,
and “DATE”, and should look like. . .

)|SAMP_NAME , LOCATION,DATE
2|/AA-01.vcf,AA,10312021
3lAA-02.vcf,AA,11072021
s/ AA-03.vcf,AA,11282021
s|/AA-04.vcf,AA,12052021
s/AB-01.vcf,AB,10312021
7|/AB-02.vcf,AB,11072021
sl AB-03.vcf,AB,11142021
o/ AB-04.vcf,AB,11282021
10/AB-05.vcf,AB,12052021

Figure 5: Example location/date file.

Primary Functions
call_mutations()
Overview

e Description: The call_mutations() function reads in the variant calls from the vcf file, translates
the associated amino acids (for mutations within genes), and indentifies any variants relative to the
reference.

¢ Common Options: Required options to call_mutations() include sample.dir, which is the path to
a directory storing one or more vef files (one for each sample to analyze). There should be no other files
in this directory. Also required is information on the reference genome, which can be passed using the
combination of fasta.genome and bed options. Alternatively, if working with SARS-CoV-2, the reference
option can be set to “Wuhan” to use a pre-formatted reference. To report information (primarily
sequencing depth) on all mutations of interest and not just those that are observed in the samples, the
write.all.targets option can be set to TRUE, and the lineage-associated mutations file including the
optional “Chr” and “Pos” columns (see above) must be specified with lineage.muts.

e Output: Mutation data are reported in a data frame that by default contains the columns
SAMP__NAME, CHR, POS, ALT_1ID, AF, & DP, though a number of additional columns can be
included (see “Output” section below, and out.cols argument to call_mutations()). This object (data
frame) can also be written to a file, which is especially relevant if you're analyzing a large number of
samples or if the genome is large (causing longer run time for call_mutations(); see write.mut.table).
The output from call_mutations() is used as input for the functions explore_mutations() or
estimate_lineages().

Methods

The call_mutations() function uses one or more vcf files as input, along with a MizviR reference object
(data frame) and creates a data frame/table that stores all mutations identified in the sample(s), along
with a customizable set of associated information about each mutation. This data frame can be written
to a file, and/or saved as an object in the global environment. In either case it is used as input to the
explore_mutations() or estimate_lineages() functions.

call_mutations() first obtains the MizviR reference object (Fig 6), which is created as part of the run if the
fasta.genome and bed options are provided. Alternatively, if analyzing SARS-CoV-2, the reference option can
be set to “Wuhan” and a pre-constructed reference will be used. In the case of overlapping genes, positions
will be duplicated in this reference object, with a separate entry for each gene the nucleotide position is
associated with.

CHR POS REF_BASE GENE STRAND REF_CODON REF_AA GENE_AA_POS REF_IDENT GENE_BASE_NUM CODON_POSITION
NCD45512.2 1 A non-genic . 1A
NC045512.2 2T non-genic . 2T

NC045512.2 23402 614 5 D614 1840

G 5 + GAT D 1
NC045512.2 23403 A 5 + GAT D 614 5 D614 1841 2
NC045512.2 23404 T 5 + GAT D 614 5 D614 1842 3
NC045512.2 23405 G© 5 + GTT v 615 5. V615 1843 1
NC045512.2 23406 T 5 + GTT v 615 5_V615 1844 2
NC045512.2 23407 T 5 + GTT v 615 5_V615 1845 3

Figure 6: Example of the initial MixviR reference object. Two non-genic positions and 6 genic positions,
representing 2 amino acids, are shown.

MixviR then reads in the set of files to be analyzed. These should be the only files stored in the directory
given by the sample.dir option. In most cases, samples will be provided in variant call format (vcf). These
vcf files need to include the DP and AD flags in the FORMAT field. Relevant information from each vcf file
is extracted with functionality from vcfR (Knaus and Griinwald, 2017). If the write.all.targets option will be
used to report sequencing depths for genomic positions associated with a priori-defined mutations that don’t
occur in the sample, all positions should be included in the input vef file(s). Otherwise, only variant positions
need to be included.

MizviR loops over the set of input files, sequentially calling mutations from each and appending them to a
master data frame that stores all mutations. The process of calling mutations for each sample includes several
steps. The overall sequencing depths at each position in the input file are first added to the reference object
(Fig. 7, column ‘DP’; note that all objects shown in Figs 7-10 are temporary objects created during a MizviR
analysis and are not directly available to the user). Depths are ‘NA’ for any positions not in the vcf input file.

CHR POS REF_BASE GENE STRAND REF_CODON REF_AA GENE_AA_POS REF_IDENT GENE_BASE_NUM CODON_POSITION DP
NCO45512.2 1 A non-genic . 1A

NCO45512.2 2T non-genic - ran

3680

NC045512.2 23402 614 5 D614 1840

G 5 + CAT D 1
NCO45512.2 23403 A 5 + GAT 1] 6l4 5. D614 1841 2 3666
NCO45512.2 23404 T 5 + GAT o] 614 5 D614 1842 3 3424
NCO45512.2 23405 © 5 + oTT W 615 5 VB15 1843 1 3751
NCO45512.2 23406 T 5 + GTT v 615 5. V615 1544 2 3463
NCO45512.2 23407 T 5 + G1T v 615 5 V615 1845 3 3543

Figure 7: MixviR reference object with sequencing depths for the sample being analyzed added in the DP
column. NA in this column indicates the position was not included in the input vcf file.

Variable sites in the sample (sites with an entry in the ALT column of the input file) are then extracted, the
frequency of the ALT allele (AF) is calculated for each, and the set of variants is filtered to retain those that
exceed the value of min.alt.freq. This filtering step is intended to remove low-frequency sequencing noise
and/or PCR artifacts from the data (see note on min.alt.freq in section Cautions/Important Considerations
below). Deletions are represented as strings >1 bp in the REF column (Fig 8; position 11282 is a 9-bp
deletion) and insertions are represented as strings >1 bp in the ALT column (Fig 8; 1 bp insertion at position
19983).

CHR POS REF ALT ALT_COUNT DP AF chr_pos

NC-045512.2 10029 C T 2728 2730 0.99926740 NC-045512.2_10029
NC-045512.2 11282 AGTTTGTCTG A 1714 3966 0.43217347 NC-045512.2_11282
NC-045512.2 11537 A G 2152 3542 0.60756635 NC-045512.2_11537
NC-045512.2 19983 C cT 349 3919 0.08905333 NC-045512.2_19983
NC-045512.2 21618 C G 548 3620 0.15138122 NC-045512.2_21618

Figure 8: Example set of variants from a sample being analyzed after filtering for the default minimum allele
frequency of 1%. Deletions have length >1bp in the REF column, while insertions have length >1bp in the
ALT column. Variants are merged with the reference to create a sample genome that is translated to identify
amino acid changes.

Next, MizviR checks the set of sample variants to determine if there are any genomic positions where more
than one unique variant occurs in the (potentially mixed) sample. If not, mutations are characterized in two
steps, first by identifying those based on single nucleotide polymorphism (SNP) variation, and subsequently
by identifying mutations arising from insertions or deletions. Each of these steps is described below. In
the event one or more positions have multiple mutations, the duplicated sites are first removed and stored.
Mutations are initially called from the first set of variants (all variants without duplicated positions and the
first variant at each duplicated site), and the process is iterated on the stored set of duplicated variants until
no duplicated sites remain.

SNP-Based Mutation Identification

For mutations based on SNP variation, the full set of variants identified in the sample is filtered to retain just
SNP-based variants (single nucleotide changes, no indels). These are then joined with the reference object,
replacing the reference base with any alternate alleles observed in the sample to create a “sample genome”
(in other words, the reference genome with SNP variants substituted in to their respective position). This
updated sample genome is then translated using functionality from Biostrings (Pages et al 2019) to get the
sample amino acids. Mutations resulting in amino acid substitutions are retained and named in the form
“S_D614G”, which would indicate a substitution of ‘G’ for the original ‘D’ at amino acid position 614 of the
‘S’ gene. Subsequently, all SNP variants that don’t result in an amino acid change, including synonymous
changes or variants outside of genes, are identified and named in the form Chrl_500A->T, which would
represent a mutation from ‘A’ to ‘I’ at nucleotide position 500 of Chromosome 1. The example below (Fig 9)
shows one SNP in a non-genic region, one synonymous and one non-synonymous SNP-based mutation in the
‘ORF1a’ gene, and one synonymous and one non-synonymous SNP-based mutation in the ‘S’ gene.

CHR. POS REF_BASE GENE STRAND REF_CODON REF_AA GENE_AA_POS REF_IDENT REF ALT AF ALT_COUNT samp_codon Samp_ AR samp_identity oP

METI45513.2 FEARE ann-genle a1 L3 T 97521 2305 NCL455T2.2 2410 5T 2202
NEO455122 FAT0 O Rkl [2eH A 715 DRFlz A73s O T [EETUTEES 1365 CO1 A NCRASET2.2 24700 o] 1717
MCO45512.2 Bz A ORFla * AAC 4 856 ORFla K856 A o 0.2212714 BBS ACG & ORFla KESER 1227
NOO45512F @2 T 5 : anT H 450 5_N23D T 2817109 191 Aad [l ROD45ET2 3 2T a0 HTH
NEO455122 234D3 A B AT o 614 % D614 A 10000400 666 CGT o § D140 EL

Figure 9: Example set of SNP-based mutations. Synonymous and non-synonymous mutations in two different
genes, and a mutation in a non-genic region, are included.

Indel-Based Mutation Identification

Indel-based mutation identification is performed separately for insertions and deletions, and for each, separately
for in-frame and frameshift indels (defined as indels for which the number of nucleotides gained or lost is an
even multiple of 3 or not, respectively, regardless of whether the event occurred in a gene). MizviR uses the
following rules for naming indels. . .

In-frame deletions
In-frame deletions (even multiples of 3bp) are indicated with ‘del’.
Ezamples: S__dell44/144 (genic); ORFla_ del3675/3677 (genic); NC-045512.2_del23121/3bp (non-genic)

e (Genic: Deletions starting at a first codon position of a gene are named starting with the first AA
deleted and ending with the last. Those that start at a 2nd or 3rd codon position are named with
the downstream (3’)-most AA affected in the case of deletion of a single AA, or, if multiple AA’s are
deleted, naming starts with the AA associated with the first full codon deleted, and extends to the last
codon/AA affected. Below is an example of the latter scenario from the S gene of SARS-CoV-2, in
which 6 bases (AGTTCA) are deleted from positions 22029-22034 (beginning at codon position 2 of
amino acid 156 of the S gene).

The original sequence, broken into its codons and starting at position 22025, is. . .
Ref Sequence: AGT GAG TTC AGA GTT

Ref Amino Acids: S E F R \Y%

Ref Amino Acid Position: 155 156 157 158 159

The corresponding deleted sequence 1is. . .

Deletion Sequence: AGT GGA GTT

Deletion Amino Acids: S G \Y%

There is some ambiguity regarding how to name this event. It could be named “S_ del156/157”, with a
resulting substitution of “R158G”. Alternatively, it could be named “S__del157/158” with a resulting

substitution of “E156G”. As described above, MizviR numbers the deletion beginning with the amino
acid corresponding to the first full codon deleted - in this case “S_del157/158”, and it does not call the
substitution, as both the deletion and substitution represent just one mutational (evolutionary) event.

e Non-genic: In-frame deletions occurring outside of genes are named with the chromosome, position
(nucleotide) along the chromosome of the first deleted base, and the length of the deletion in bp.

Out-of-frame deletions
Out-of-frame deletions (not even multiples of 3bp deleted) are indicated with ‘Fdel’.
Ezamples: ORFla_Fdel2454/7bp (genic); NC-045512.2 del23121/2bp (non-genic)

e Genic: Named with the amino acid position within the gene where the first base is deleted. This is
followed by the length of the deletion in bp.

o Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the first
deleted base, and the length of the deletion in bp.

In-frame insertions
In-frame insertions (even multiples of 3bp) are indicated with ‘ins’.
Ezamples: S_ins214/216 (genic); NC-045512.2_ins23121/3bp (non-genic)

e Genic: Named with the amino acid position within the gene where the first base is inserted, followed
by the (new) position of the last amino acid inserted.

e Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the first
inserted base, and the length of the insertion in bp.

Out-of-frame insertions
Ezamples: S_Fins649/1bp (genic); NC-045512.2_ Fins23121/1bp (non-genic)
Out-of-frame insertions (not even multiples of 3bp deleted) are indicated with ‘Fins’

e Genic: Named with the amino acid position within the gene where the first base is inserted. This is
followed by the length of the insertion in bp.

o Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the first
inserted base, and the length of the insertion in bp.

Indel examples are given in Figure 10, which shows a one-bp deletion within ORF1a at position 4947 of
chromosome NC045512.2, a deletion of amino acid positions 3674-3676 in the ORF1a gene, a 1bp insertion
within amino acid position 2173 of ORF1b, and a deletion of amino acid position 212 of the S gene.

CHR POS REF_BASE GEME STRAND REF_CODON REF_AA GEME_AA_POS REF_IDENT REF ALT AF ALT_COUNT sarmp_codon SAMpP_AA samp_ldentity DR
NEO45512.2 0947 © ORFla ' rer 5 1561 ORFIa 81561 1 [006193598 240 aRFia FdellsB11bp 3875
MCO45512.2 11282 A + ACT 5

MCO45512.2 19983 C ORFL + GTC W 2173 ORFIb_VZI7Z [ng 0.08805333 349 ORF1E_Fins2173/ 1bp 3919
MCO45512.2 22193 A 5 + AAT L 212 5 M211 AATT .'\ 0.28100772 1096 S _delz12/212 3309

ORFla 3674 ORT1a 33673 AGTTIGTCTG A 0.43217347 1714 ORMLa_del3674/3676 3966

Figure 10: Example insertions and deletions called from a sample during a MixviR anaysis. Deletions are
indicated with 'del’ in the name, and insertions with ’ins’ - see samp__identity column for examples.

Nonsense Mutation Identification

Nonsense mutations resulting in a premature stop codon are designated with an asterisk (i.e. ORFla_R718%).

Output

The full set of mutations identified (SNP and indel-based) are joined to create a data frame that serves as
the output returned by call_mutations(). Any of the following columns can be included in this data frame
(defined by the out.cols option):

e CHR: Chromosome.

e POS: Genomic position along the chromosome.

o GENE: Gene, if site is associated with a gene, otherwise listed as “non-genic”.

o STRAND: If part of a gene, strand the gene is on (+, -, .).

« REF_ CODON: If in a gene, reference codon the position is part of.

« REF_AA: If in a gene, identity of the reference amino acid the position is associated with.

« GENE_AA_POSITION: If in a gene, amino acid position within the gene the nucleotide position is
associated with.

e REF: Reference nucleotide, or if representing a deletion, the reference nucleotide plus deleted bases.

o ALT: Alternate nucleotide, or if representing an insertion, the reference nucleotide plus inserted bases.

o AF: Frequency of the alternate allele (mutation) in the sample. Calculated by dividing ALT _COUNT
by DP.

o ALT COUNT: number of sequencing reads associated with the alternate (mutant) allele in the sample.

o SAMP_CODON: If part of a gene, the codon arising from the alternate (mutant) allele in the sample,
otherwise ‘NA”".

e SAMP__AA: If part of a gene, the amino acid arising from the alternate (mutant) allele in the sample,
otherwise ‘NA’.

e ALT ID: Identifier of the mutation in the sample.

e DP: Total sequencing depth at the genomic position associated with the mutation.

e SAMP_NAME: Sample name, which is the name of the input file, unless the name.sep option is used
in call_mutations() to retain just a portion of the name.

o TYPE: The type of mutation identified. One of SNP-Syn (synonymous SNP within a gene), SNP-Nsyn
(non-synonymous SNP within a gene), “SNP-Nongenic” (SNP outside of a genic region), Indel-Genic
(insertion or deletion within a gene), Indel-Nongenic (insertion or deletion outside of a genic region), or
“Unobserved Target”, which will only appear for the set of target mutations that don’t appear in the
sample if the write.all.targets option is set to TRUE.

This final data frame can be assigned as an object in the global environment, and/or written to a file if
write.mut.table is set to TRUE. By default, the columns included in the output are SAMP__NAME, CHR,
POS, GENE, ALT_ID, AF, and DP. This data frame serves as required input to the explore_mutations()
and estimate_lineages() functions, and must include at least the set of default columns to run either of
these subsequent functions.

explore_mutations()

Summary

The explore_mutations() function uses the output from call_mutations() and opens an interactive
RShiny dashboard that allows you to explore the data. The dashboard will have from 1 to 4 tabs at the top,
depending on what combination of optional input files (if any) are provided. ..

Available Tabs

o Lineages Present: Available if the lineage/mutation file is provided with the lineage.muts option.
The top plot represents the proportion of “lineage-characteristic mutations” present in a sample. These

10

“lineage-characteristic mutations” are the set of mutations from the lineage.muts file that occur only in
the selected lineage. In other words, MizviR looks through the set of mutations provided and removes
any that are shared by more than one lineage. The remaining mutations are used to generate the
plots in this tab. The “Presence Threshold” slider on the left allows the user to set a threshold for the
proportion of such mutations required to consider a lineage as present in the sample. For each lineage
identified as present (exceeding the threshold), the frequences of the lineage-characteristic mutations
that occur in the sample are used to estimate a relative frequency of the lineage in the sample - these
estimated relative frequencies are shown in the bottom plot, and can be generated with either the
median or mean values (specific metric can be selected in left panel). Note that while biologically
the sums of these estimated proportions can’t exceed 1, there is no constraint with the way the raw
estimates are calculated, and occasionaly the bars will exceed 1. When this happens, it may mean
that at least one mutation that was identified and used as a “lineage-characteristic” mutation based
on the provided list is, in reality, shared among two or more lineages. In cases where the sum exceeds
1, the default behavior is to proportionally scale the estimates down to sum to 1 (controlled by the
“scale” option in the left panel). Additional details associated with each plot are provided as tooltips by
hovering over plot features/regions.

o New Mutations: Present if a “location/dates” file is provided with the dates option. Table that lists
all mutations first observed (across the entire dataset) on or after the selected date. So, if the mutation
“S_D614G” was not observed in any sample before 6/20/2021, was observed in a single sample on that
date, and then continued to be observed in multiple samples after that date, that mutation would show
up in the New Mutations table for the date 6/20/21, and for any date prior to that, but would not show
up if 6/21/21 or any later date is selected. If the lineage.muts option is defined, a column is added to
the table that includes all lineages the mutation is associated with.

o Mutation Frequencies: Present if a location/dates file is provided with the dates option. Plots show
estimated frequencies of a specific mutation(s) over time for one or more samples. Mutations should be
entered in the form “S_D614G” for a substitution, or, for indels, “S_ del144/144” for single amino-acid
mutations, or “S_ del143/145” for a multi-amino acid deletion. Multiple mutations can be entered by
separating them with a comma. Multiple samples can be selected and will be distinguished by color on
the plots. If more than one mutation is entered, each mutation is displayed as a separate facet on the
plot. If in doubt about the naming convention of mutations, check the samp mutations object or the
mutation names in other tabs.

e View Mutations: Lists all mutations observed for the selected sample. If the lineage.muts option
is defined, a column is added to the table that includes all lineages the mutation is associated with.
If write.all.targets was set to TRUE in call_mutations (), all mutations in the lineage.muts file are
included, even if no associated reads were observed (sequencing depths at underlying genomic positions
are reported, while the reported observed frequency will be zero). This table is searchable, and can be
sorted by columns (SHIFT + click to sort on more than one column).

estimate_lineages()

Summary

The estimate_lineages() function is meant to output the data from the “Variants Present” plots of
explore_mutations() in table form. You can choose to write data for all lineages analyzed or just the
lineages identified as present in the sample (default) based on the presence.thresh threshold. The tables
are printed to the screen and can also be written to a file. This function requires both the output from
call_mutations() and a lineage.muts file.

11

Cautions/Important Considerations

o Remove spaces and underscores (_) from the chromosome names given to MizviR. This applies to the
reference and bed files associated with call_mutations(), and also the lineage.muts file if the optional
“Chr” column is included. Also make sure the chromosome names match across these files.

e The min.alt.freq argument is set to 0.01 by default. It may be tempting to drop this to try to detect
lineages at extremely low frequencies in a sample. This should be done with caution, as sequencing
noise included in the vcf file can start to interfere with the translation of true amino acids in the sample.
For example, consider a situation where a codon at positions 100-102 in the reference is CCC (amino
acid P), and a sample has a true mutation to ACC (amino acid T) at a frequency of 75%. Now imagine
that at position 101 (the 2nd codon position) there is sequencing/PCR noise of C->G with frequency
0.0005 (0.05%). If the min.alt.freq threshold is less than 0.0005, both mutations will be considered in
the translation, and the sample codon will be called AGC (amino acid S) instead of the actual ACC
(amino acid T). Fortunately, sequencing and PCR noise, at least in our experience, typically occurs
well below the 0.01 frequency, and this seems to be a reasonable default choice. While some minor
adjusting to this value is probably safe if necessary, extreme values in either direction will likely lead to
unreasonable/unreliable results.

e Some amino acid substitutions have/require multiple underlying genomic mutations to their respective
codon. In these cases, MizviR is expected to call the mutation correctly, but the relevant frequencies
and associated sequencing depths will be obtained from the variant with the highest sequencing depth
(if not identical, these are typically very similar).

e It may be tempting to try to include mutation data for lots of closely-related lineages in the lin-
eage/mutation (lineage.muts) file to try to distinguish among lineages at a very fine scale. One example
of this in SARS-CoV-2 is the Delta variant, which as of the time this vignette was written had >100
sublineages defined that were designated AY.1, AY.2, AY.3, etc... Note that any mutations that show
up more than once in this file are removed for the analysis, and so including many closely-related
lineages/groups will likely result in having few or no mutations to use for the analysis. The estimates of
lineages present in the “Lineages Present” tab of the RShiny dashboard is highly dependent on having
mutations that are highly-informative/diagnostic for each lineage. Hovering over the bars in the bottom
(frequency estimate) plot on the “Lineages Present” lists the mutations analyzed (both those present
and absent in the sample) as a tooltip.

e For the purpose of data visualization in the explore_mutations() Shiny dashboard, it’s important
that the mutation designations assigned by call_mutations() match those in the optional input files.
If you’re unsure, check the names in the ALT_ID column of if the call_mutations() output against
those in your files. Althernatively, you can browse or search mutation names in the “View Mutations”
tab.

o The color palette used to generate plots in the RShiny dashboard (palette: “Paired”) has 12 colors.
Therefore, this is the maximum number of lineages that can be plotted.

Example Analyses

Example Data

MizviR comes with a set of example data files (N=3) that can be used to test out the program. These include
vcf files representing SARS-CoV-2 environmental samples obtained from a single location on three different
dates, a “lineage.muts” file (example_lineage_muts.csv) containing a subset of four SARS-CoV-2 variants to
evaluate, a “location/dates” file (example_location_ date.csv), and a “samp_mutations.tsv” file that stores
the output of a call_mutations() run for these three samples with default settings.

You can use the system.file () function to see the location of the raw files. For example, the path to the direc-
tory containing the example vcf files is given by system.file("extdata", "vcfs", package = "MixviR")

12

and the path to the lineage.muts file by system.file("extdata", "vcfs", "example_lineage_muts.csv",
package = "MixviR")

Example Analysis 1- No Target Mutations In call_mutations()
Step 1: call_mutations()

Your first step with MizviR will typically be to run the call_mutations() function, which identifies all the
mutations in the input datasets (vcf files). We’ll point this function to the directory storing the three example
vef files, and since these data are for SARS-CoV-2, we can use the pre-formatted “Wuhan” reference. These
two pieces of information (location of input files and reference info) are all that’s required to make it run.
In this case though, we’ll also clean up the sample names by trimming off all the text after the '_" in each
input file name with the name.sep option. We’ll assign the output to an object named samp_ mutations.

samp_mutations <- call_mutations(system.file("extdata", "vcfs",
"MixviR"),
"Wuhan",
n u)

Running this creates a new object named samp__mutations, which stores all the mutations observed in each
sample. In this case, there are a total of 316 mutations identified. The samp_mutations data frame looks
like. . .

“ SAMP_NAME CHR POS GENE ALT_ID AF DP

1 Samplel NC-045512.2 241 non-genic NC-045512.2_241C->T 1.00000000 692
2 Samplel NC-045512.2 774 ORFla ORF1a_T1701 0.08057515 3686
3 Samplel NC-045512.2 913 ORFla NC-045512.2_913C->T 0.99967969 3122
4 Samplel NC-045512.2 1010 ORFla ORFla_Y249H 0.04138771 3286
5 Samplel NC-045512.2 1861 ORFla NC-045512.2_1861T->C 0.29987945 3318
6 Samplel NC-045512.2 2060 ORFla ORFla_A599T 0.02526670 3562
7 Samplel NC-045512.2 2110 ORFla NC-045512.2_2110C->T 0.61747270 3205
8 Samplel NC-045512.2 2417 ORFla ORFla_R718* 0.07692308 13
9 Samplel NC-045512.2 2758 ORFla NC-045512.2_2758A->T 0.02500000 40
10 Samplel NC-045512.2 3037 ORFla NC-045512.2_3037C->T 0.99804688 1024
11 Samplel NC-045512.2 3267 ORFla ORF1a_T1001I 0.54729730 3256
12 Samplel NC-045512.2 3369 ORFla ORFla_T1035I 0.25206738 3265
13 Samplel NC-045512.2 3777 ORFla ORFla_T1171I 0.37323944 142
14 Samplel NC-045512.2 4197 ORFla ORFla_E1311G 0.20281400 2914
15 Samplel NC-045512.2 4936 ORFla ORF1a_K1557N 0.43884892 834
16 Samplel NC-045512.2 5388 ORFla ORFla_A1708D 0.63773485 3779
17 Samplel NC-045512.2 5388 ORFla ORF1a_A1708G 0.36226515 3779
18 Samplel NC-045512.2 5766 ORFla ORFla_C1834A 0.01035582 3766

Figure 11: The samp_ mutations data frame is the primary output of the call _mutations() function.

Most of the columns here are fairly self-explanatory. Each mutation identified is listed in the “ALT _ID” column.
“AF?” gives the estimated frequency of that mutation in the sample, which is simply the “ALT__COUNT”/“DP”.
The “POS” column provides the genomic position of the mutation along the chromosome. This data frame
serves as input for the explore_mutations() function, which we’ll run next.

13

Step 2: explore_mutations()

Basic Run

Running the explore_mutations() function opens an RShiny dashboard in a separate window. The
samp__mutations object created with call_mutations() is required as input. The number of tabs available
in the window depends on which optional files (if any) are passed to the function.

explore_mutations(samp_mutations)
‘s Mutations
Sample
Sampie] s
07 entries Search: |
SAMP_NAME GHR FOS GENE MUTATION FREQ SEQ DEFTH
Samplal MG-026512.2 241 non-genic EHCT 1 Gaz
Sample NEC-N£RR12S 774 ORFia T170 .0 AR
& Samplai MG-0a55122 13 ORFla V1A= 1 atz
4 Sampial ME-026512.2 1010 ORF1a ¥2a9H] 266
L Sample NE-028512.2 1681 OAFa 1B T3 03 3316
& Samplel NO-045512 2 2050 ORFla A399T 0025 3562
kS Bamplet NO-OaEE12 S 2110 ORF1a 2U10C-=1 0E1T J205
& Sample NC-02ERT2.2 217 ORFa RT18 0.077 13
e Samplet NO-025512.2 2758 ORFa 2TEAN-T 0.025 40
Sample ME-0£5512.2 5037 ORFia SETET 0.995 1024

Showing * to 10 1 102 entries Prewious 1 Z 3 4 El n Maxt

Figure 12: "View Mutations’ RShiny tab.

Here we ran explore_mutations() in its most basic form and got just a single tab named “View Mutations”,
which is just a slightly reformatted version of the samp__mutations data frame. There are options to select
the sample you want to view (drop-down box in top left), and also to filter results by searching for specific
text (i.e. a gene or mutation name). Each column is also sortable with the arrows at the top of the column
(shift+click allows sorting by multiple columns).

With Dates
Now we’ll add one option to explore_mutations(), passing it a location/dates file with the dates option. ..

explore_mutations(samp_mutations,
system.file("extdata",
"example_location_date.csv",
"MixviR"))

This time we have three tabs available in the RShiny window: New Mutations, Mutation Frequencies, and
View Mutations.

New Mutations Tab
The New Mutations tab (Fig 13) allows you to select a date and view the set of mutations that were observed
for the first time (across the entire dataset) on or after that date.

Mutation Frequencies Tab

The Mutation Frequencies tab (Fig 14) allows you to enter one or more mutation names (comma separated if
more than one), and the frequencies of these mutations are plotted for each date available in the dataset for
the selected location. Multiple mutations are plotted as separate facets, while multiple locations can also be
selected and are distinguished by color on each facet.

View Mutations Tab
The View Mutations tab here is the same as what we got in the basic run of explore_mutations() above
(see Fig 12).

14

Mz I Mutation Frecguencies Wiew Mutations

Mutations First Detected On Or After..

2021-04-48 -

Minimurn Depth
I} 3

Show [10 #]entries Search: |

SAMP_NAME DATE LOGATION CHR POS GENE MUTATION AF SEQ DEPTH

1 Sarrglet 2021-D4-18 Pend 1 NO-D45512.2 241 noregenic 2410-5T 1 682
2 Sarrelet 2021--13 Fand_1 NG-MG512.2 71 ORFla (L] 0080575 1432122583 £
3 Sarnplet 2021-04-18 Pend_1 NO-DM5512.2 H3 ORFia 2930-5T 0.299679692504505 32z
A Sanple® 2021-04-18 Parid 1 NO-D45512.2 1010 ORF1a 2aaH 0.0413677D5£189200 3288
5 Sarrgle® 2021-01-18 Fond_1 NO-DMSS12.2 1861 ORFla 1881350 2.299679415419085 3318
5 Sarmple” 2021-04-12 Pend 1 NO-D45512.2 2060 ORF1a asgaT 0.0252657 40888209 3562
7 Samle? 221--13 Fond_1 NO-DM5512.2 2110 ORFla 271001 Q5177268007058 205
3 Samgle® 2021-04-13 Fand_1 NO-DM5512.2 217 ORFla Aria” 0.07592307E92307ES 13
E] Sarrglet 2021-04-18 Pad 1 NO-D45512.2 2756 ORF1a 2758805T 0025 4
10 Samplet 2021-0-18 Frand_1 NO-DM5512.2 5087 ORFls F0FO-T 0.980M657S 1024

Shewing 110 10 of 311 andrins Presious 1 2 a 4 s 3z Mext

Figure 13: "New Mutations’ RShiny tab. The displayed mutations were first observed on or after the selected
date.

Mew Mutations Mutation Frequencies View Mutations

Mutation(s) (i.e S_D614G; separate with
commas)

S _del144/144,5_DE14G

Location

Pond_1

5_DE14G 5_del144/144

1.00-

0.75-

Location
== Pond_1

Mutation Frequency
g
o

=
ha
(]

0.00-
M:zw Jun Jul All..'g Méy Jun Jul F\[Jg

Figure 14: "Mutation Frequencies’ RShiny tab displaying frequencies of specific mutations over time.

15

With Dates 4+ Lineages

Providing a lineage/mutations file with the lineage.muts option in addition to a locations/dates file results in
a fourth tab (and also some additional information included in the New Mutations and View Mutations tabs
from above).

explore_mutations(muts.df = samp_mutations,
dates = system.file("extdata",
"example_location_date.csv",
package = "MixviR"),
lineage.muts = system.file("extdata",
"example_lineage_muts.csv",
package = "MixviR"))

The fourth tab is named “Variants Present”, and provides two plots. ..

Lineages Prusont New Mutations Mulation Frecuencies Wisw Mutations
Froportion of Li har isti i Pond_1
Loeatlon
L0 B
Pond 1 - ™
— F.1.617.2
Lineage nos E1
BT »
® B1172 o Y ;. i B
P1
Car
0.8
Calculate Mean Depths
On... b
All Mutations - B0 .
L N 2
Presence Threshald i ';;"5 --;*'r;
a ;|m i 5k P P

—
Estimated Frequency of Each Lineage Present: Pond_1
Minimum Seq Depth B1.1.7
o = B 16172
0.75
31
Frag Measurs

Bean v

Frequencies

Healed - P

Figure 15: ’'Variants Present’ RShiny tab identifying lineages present in samples and estimating their
frequencies.

In this example, B.1.1.7, B.1.617.2, and P.1 have been selected for analysis. When a lineage is selected,
MizviR filters the lineage/mutations file for mutations that are unique to that lineage. The number of these
analyzed for each lineage is given as one of the entries in the tooltips on the top plot (see below for tooltip
details) - in this case, there are 15 mutations unique to B.1.1.7 and 16 unique to P.1. MizviR then checks to
see how many of these were detected (at any frequency > the min.alt.freq set in call_mutations()) for each
sample and plots this proportion in the top plot. The red horizontal dashed line is a reference line showing
the threshold proportion of mutations necessary to consider the lineage “present” in the sample. By default
this is set to 0.5, but it can be adjusted with the slider on the left. For any lineages identified as present in
a sample, the frequencies of the characteristic mutations present in the sample are summarized (mean by
default) to estimate the proportion of that lineage in the sample, which is plotted in the bottom plot.

16

Notice in Figure 15 that B.1.1.7 on the 2021-05-02 date had just over 50% of the lineage-characteristic
mutations in the sample. Based on the default threshold of 0.5, both B.1.1.7 and P.1 are called as present
in that sample (and therefore plotted in the bottom plot). However, if the threshold is raised to 0.55 with
the ‘Presence Threshold’ slider on the left, then only P.1 is called as present for the 2021-05-02 sample and

represented in the lower plot. ..

Lineages Pressnt Mews Mutationa

Logation

Pond_1 ko

Lineage
By
BA.g17.2
& P1
car
Calculate Mean Depths
on...

All Muzations
Presence Threshold

Minirnum Seq Depth

o

Frag Measure

Mean =

Fregquencies

SBcaled

.00

@75

a0

Mutetion Frequenciea

Proportion of Li

WVisw Mutations

ge-Char isti Present: Pond_1

B.1.1.7

— LR

Estimated Frequency of Each Lineage Present: Pond_1

B.1.1.7
W EB1617.2
B1

P

T

s

£

Figure 16: 'Variants Present’ RShiny tab after adjusting the threshold for calling a lineage as present, and
now only identifying P.1 as present in the 2021-05-02 sample.

17

Tooltips are also available if you hover over features on the plot (Figs. 17, 18).

Lingages Present Mow Mulations

Lacation

Pond_1 -

Lineage
BAAT
@ B.1BIT2
&P
car
Calculate Mean Depths
on..

All Mutations >

Presence Threshold

] o5] 1

EE——
Minimum Seq Depth
a Z

Frod Measure

Mean g

Fraquencies

Sealed -

Mutation Frequencies Wiew Mutations

0.25

25

Proportion of Lineage-Characteristic Mutations Present: Pond_1
Lineage: B.1.1.7
 Total Lineaga-Chars
Proportion Prasent;

Estimated Frequency of Each Lineage Present: Pond_1

Figure 17: Example of a tooltip on Lineages Present plot.

Elements in the tooltip on the top plot (Fig 17)...

e Lineage: The lineage analyzed
o Total Lineage-Characteristic Muts: The number of mutations the Proportion Present is based on. These
are mutations in the lineage.muts file that are associated with only the target lineage (mutations not
shared with any other lineages in the file).
o Proportion Present: The proportion of the lineage-characteristic mutations present in the sample (at a
frequency greater than min.alt.freq from call_mutations().
e Avg Seq Depth: The average sequencing depth for genomic positions underlying the mutations. The
default is to calculate this from all mutations identified in the sample. Alternatively, it can be calculated
based on just the lineage-characteristic mutations observed by setting the “Calculate Mean Depths On”
drop-down box to “Lineage-Characteristic Mutations Only”.
e Avg Seq Based On: The number of mutations used to calculate the average sequencing depth.

18

B.1.1.7
—B.1.617.2

Rl

B.1.1.7
W B.18172
RL

Tooltips on the bottom plot provide identities of the target mutations (Fig 18).

iR - Shiny

Open 10 Browsar “%r Pudilzh

M= Mutations Mutation Frequencies Wiew Mutations

Proportion of Lineag: lstic Pond_1
Lacalion
1ao
Pend 1 - . LT
— 16172
Linaaga .75 L3
BT -
G2
B BGITR e s e o ol e
&P
037
a.25:
Calculats Mean Depths
On... .
Al Wutatiors - fan
& B
Frasance Thrashold ,;,d‘ P P
0 m . b A
e—
Estimated Frequency of Each Lineage Present: Pond_1 -t i
Liraape: B
Minimum Seq Depth B11F
Elitraied Fra 3,609
o H 816172
.75 itls Frasens i_PHER; n
Freq Moasre |ORF1a_Ki7ES00RF 18 S48, .
Maan - o
Frequanclas Muts Abaenl; ORFIn_E 17647,
FEy 5.01387.5 E484K.5 FER5.S R1505;
Soaled - L3 E_TRIN
.40
A3
o A s
& L Ed

Figure 18: Example tooltop on lineage frequency plot.

Example Analysis 2 - Target Mutations Included In call_mutations()

This analysis is similar to the one above, but the write.all.targets option is used to report sequencing depths
for all mutations associated with lineages of interest, even if the mutation isn’t observed in the sample. This
requires that the optional columns “Chr” and “Pos” are included in the lineage.muts file.

samp_mutations <- call_mutations(sample.dir = system.file("extdata",
"vcfs",
package = "MixviR"),
reference = "Wuhan",
name.sep = "_",
write.all.targets = TRUE,
lineage.muts = system.file("extdata",
"example_lineage_muts.csv",

package = "MixviR"))

In comparison to the call_mutations() run in example 1 above, which reported 316 mutations, this time
393 are reported. The extra mutations are those that were listed in the lineage.muts file but not identified in
the sample. See rows 103-116 for Sample 1 in Fig 19, which all have an observed frequency of zero, though
the sequencing depth associated with the genomic positions underlying the mutations is > 0. ..

19

“ SAMP_NAME CHR POS GENE ALT_ID AF DP

96 Samplel NC-045512.2 28B81 N N_R203K 1.00000000 1333

97 Samplel NC-D45512.2 28882 N N_R203K 100000000 1189

98 Samplel NC-045512.2 28883 N N_G204R 1.00000000 1376

99 Samplel NC-045512.2 28977 N N_5235F 1.00000000 1720
100 Samplel NC-045512.2 29051 N N_Fins260/1bp 0.21444639 4001
101 Samplel NC-045512.2 29690 non-genic NC-045512.2 29690G->T 0.17143659 3564
102 Samplel NC-045512.2 29724 non-genic NC-045512.2 29724C->T 0.16533865 3012
103 Samplel NC-045512.2 23604 S S_PGEIR 0.00000000 1422
104 Samplel NC-D45512.2 21618 § 5_TI19R 0.00000000 142
105 Samplel NC-045512.2 22995 |5 S_T478K 0.00000000 159
106 Samplel NC-045512.2 22917 ' 5 S_L452R 0.00000000 143
107 Samplel NC-D45512.2 24410 5§ 5_D950N 0.00000000 3558
108 Samplel NC-D45512.2 22028 § S_del157/158 0.00000000 2984
109 Samplel NC-045512.2 10029 ORFla ORFla_T32551 0.00000000 3658
110 Samplel NC-045512.2 23525 § 5_HB55Y 0.00000000 1075
111 Samplel NC-D45512.2 25088 5 5 _V1176F 0.00000000 3556
112 Samplel NC-D45512.2 21614 § S_L18F 0.00000000 141
113 Samplel NC-045512.2 21638 5§ 5_P26S 0.00000000 171
114 Samplel NC-D45512.2 21621 5§ 5_T20N 0.00000000 150
115 Samplel NC-D45512.2 24642 5 5_T10271 0.00000000 3680
116 Samplel NC-045512.2 22812 § 5_K417T 0.00000000 691

Figure 19: Example of the samp_ mutations data frame when the write.all. muts option is used to include
sequencing depths for mutations not observed in the sample.

If target mutations were included in the call_mutations() run, this can be indicated when running
explore_mutations() by setting all.target.muts to TRUE, and an additional piece of information (Proportion
Exceeding Seq Depth Threshold) is added to the tooltips on the “Variants Present” plot (Fig 20). When
mutations are not identified in a sample, this measure can help provide some insight into whether they are
missing because they truly don’t occur in the sample, or because the sequencing didn’t adequately cover their
associated genomic positions.

The individual mutations, along with their sequencing depth, can also be explored in the “View Mutations”
tab.

20

Veriants Prassnt Naw Mutatiors Mutation Frequencias Miew Mutgtions

of L ge-Ch istic Present: Pand_1 @ - i
Lacation
Lag -
Pand 1 - i BEXY
—R.1.617.2
Variant/Lineage 0.5 T b 16 Bl
L/ R=E R R
eRshinir; (1938
& B.1.617.2
& .50 ¢
(R Ao S o
.87
0.25
Calculate Mean Depths On...
-
All Bidations -
0.0 .
Presanca Thrashald ¥ -y L2
= = &
o o0 1 ar ar s

o et £
e
Estimated Frequency of Each Lineage Present: Pond_1
Minimurn Seq Dapth
o = BT
B eiein

Freq Maasure Lol i

Bean

Frequancies

Sraled

Figure 20: Example tooltip in explore mutations() run with all.target.muts set to TRUE.

Getting Help

While you're welcome to email the authors directly if you have questions about, or problems with MizviR
that aren’t addressed in this vignette, we encourage you to instead visit the MixviR Google Group, and post
your issue if it hasn’t yet been addressed there.

References

Danecek P, Bonfield JK, et al. Twelve years of SAMtools and BCFtools. Gigascience (2021) 10(2):giab008

DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA,
Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M.

(2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet, 43:491-498.

Knaus BJ, Griinwald NJ (2017). “VCFR: a package to manipulate and visualize variant call format data in
R.? Molecular Ecology Resources, 17(1), 44-53.

H. Pages, P. Aboyoun, R. Gentleman and S. DebRoy (2019). Biostrings: Efficient manipulation of biological
strings. R package version 2.52.0.

21

https://groups.google.com/g/mixvir

	Introduction
	Quick Start
	Inputs
	Typical Workflow

	Full Documentation
	Inputs
	Primary Functions

	Cautions/Important Considerations
	Example Analyses
	Example Data
	Example Analysis 1- No Target Mutations In call_mutations()
	Example Analysis 2 - Target Mutations Included In call_mutations()

	Getting Help
	References

