
MixviR_v3.3.5

Mike Sovic

2022-04-23

Contents

Introduction 1

Quick Start 1
Inputs . 1
Typical WorkĆow . 2

Full Documentation 3
Inputs . 3
Primary Functions . 5

Cautions/Important Considerations 12

Example Analyses 12
Example Data . 12
Example Analysis 1- No Target Mutations In call_mutations() 13
Example Analysis 2 - Target Mutations Included In call_mutations() 19

Getting Help 21

References 21

Introduction

MixviR is a package designed to aid in exploring and visualizing genomic and amino-acid level variation
obtained from microbial high-throughput sequencing samples, including samples that contain mixtures of
genotypes. The package was originally written to detect and estimate relative frequencies of SARS-CoV-2
lineages (variants) in samples obtained from environmental sources, but can be applied to any microbial
taxon.

Quick Start

Inputs

Required

1. Sample VCFs - one for each sample to be analyzed. Must contain ŞDPŤ and ŞADŤ in FORMAT Ąeld.
Can be ŞgzŤ compressed.

2. Reference genome Ąle (fasta; remove spaces and underscores Š_Š from chromosome names).
3. File (bed format) deĄning translated regions of the genome. 6 columns: chromosome, feature start

position, feature end position, feature name, score (not used - can enter Ş.Ť), and strand. Column names

1

should not be included. Ensure that chromosome names in this Ąle match those in the fasta reference
exactly.

**Pre-constructed reference information is available for SARS-CoV-2 (Covid-19) and can be speciĄed
as an argument to call_mutations(). In that case, only the sample VCFs are required.

Optional

Lineage-Associated Mutations File

The lineage-associated mutations (lineage.muts) Ąle (csv) provides mutations/amino acid substitutions
associated with lineages of interest. Requires columns named ŞGeneŤ, ŞMutationŤ, and ŞLineageŤ. Two
additional columns can be included named ŞChrŤ and ŞPosŤ. If these are included, make sure the chromosome
names match those in the reference and bed Ąles (no spaces, remove underscores). The Ąle (including the
optional colummns) should look like. . .

Figure 1: Example lineage-associated mutation Ąle.

Location/Date File

The location/date (dates) Ąle (csv) associates dates and locations with speciĄc samples for cases where
samples are obtained at various time points at one or more locations. Contains columns ŞSAMP_NAMEŤ,
ŞLOCATIONŤ, and ŞDATEŤ. Dates are given in mmddyyyy format, and the Ąle should look like. . .

Typical Workflow

Run call_mutations() to identify mutations in the sample(s). Required arguments:

• sample.dir (contains all vcf or vcf.gz Ąles to be analyzed; donŠt include any other Ąles in this directory)
• fasta.genome & bed OR reference

Run explore_mutations() to interactively visualize results. Required arguments:

• muts.df OR read.muts.from

Include one or both of the following if available:

• lineage.muts
• dates

Run estimate_lineages() to generate a table with summarized results for each sample. Required arguments:

• muts.df OR read.muts.from
• lineage.muts

2

Figure 2: Example location/date Ąle.

Full Documentation

Inputs

Required

There are three required inputs for running MixviR in its most basic form. . .

Sample Data

Sample data are provided as variant call format (vcf) Ąles - one for each sample to be analyzed. These vcf
Ąles are expected to contain the ŞDPŤ and ŞADŤ Ćags in the FORMAT Ąeld. bcftools (mpileup/call; Danecek
et al 2021) and the GATK (DePristo et al 2011) offer two widely-used workĆows that can generate these vcf
Ąles. Below is some example bash code IŠve used for generating these Ąles (most arguments can be customized
as needed - adding the FORMAT/AD AND FORMAT/DP Ąelds is important). . .

bcftools example

[*path to bcftools*]/bcftools mpileup -f *fasta reference* -d 4000 -q 60 -Q 30 -L 4500 /

--ff UNMAP,SECONDARY,QCFAIL /

-a FORMAT/AD,FORMAT/ADF,FORMAT/ADR,FORMAT/DP,INFO/AD,INFO/ADF,INFO/ADR /

input.bam | [*path to bcftools*]/bcftools call -m -A -Ov -o out_temp.vcf

[*path to bcftools*]/bcftools norm out_temp.vcf -c w -f *fasta reference* /

-m -both -Ov -o out.vcf

Reference Files

The other two necessary inputs deĄne the reference information for the taxon of interest. They include. . .

1. A fasta-formatted reference genome Ąle (remove spaces and underscores Š_Š from chromosome names).
2. An associated bed-formatted Ąle that deĄnes the translated regions of the genome (ORFs/genes). This

bed Ąle should be tab delimited with 6 columns: chromosome, feature start position, feature end
position, feature name, score (not used - can enter Ş.Ť), and strand (+/-). Column names should not be
included. Ensure that the chromosome names in this Ąle match those in the reference fasta Ąle. An
example of this Ąle is. . .

3

Figure 3: Example features (bed) input Ąle.

Pre-constructed reference information is available for SARS-CoV-2 (Covid-19), so only sample vcf Ąles are
necessary in that case.

Optional

There are two optional input Ąles. . .

Lineage-associated mutations

The lineage-associated mutations Ąle (lineage.muts) provides mutations associated with lineages/groups of
interest. It requires columns named ŞGeneŤ, ŞMutationŤ, and ŞLineageŤ. Two additional columns can be
included named ŞChrŤ and ŞPosŤ. If these additional columns are included, make sure the chromosome names
match those in the reference and bed input Ąles (including no spaces or underscores). The Ąle (including the
optional colummns) should look like. . .

Figure 4: Example lineage-associated mutation Ąle.

ItŠs important that the syntax of the mutations in this Ąle matches that used by MixviR - see details on naming
conventions under the sections ŞSNP-Based Mutation IdentiĄcationŤ," ŞIndel-Based Mutation IdentiĄcationŤ,

4

and ŞNonsense Mutation IdentiĄcationŤ below. The ŞChrŤ and ŞPosŤ columns store the chromosome and
associated genomic position giving rise to the mutation. These columns are needed if, as part of the results,
you want the program to return the sequencing depth at the position when the mutation is not observed for
a sample. This information could be relevant in determining whether a target mutation not observed in a
sample is absent because it doesnŠt occur in the sample, or because the sequencing coverage at that position
is insufficient. If these columns are included, make sure the chromosome names match those in the reference
genome (see note on naming chromosomes in section Cautions/Important Considerations below).

Location/Date File

In cases where samples are taken from the same location at different time points, the temporal information
can be included by providing a csv location/date Ąle (dates) that associates the sample dates and locations
with each unique sample name. The Ąle should contain columns named ŞSAMP_NAMEŤ, ŞLOCATIONŤ,
and ŞDATEŤ, and should look like. . .

Figure 5: Example location/date Ąle.

Primary Functions

call_mutations()

Overview

• Description: The call_mutations() function reads in the variant calls from the vcf Ąle, translates
the associated amino acids (for mutations within genes), and indentiĄes any variants relative to the
reference.

• Common Options: Required options to call_mutations() include sample.dir, which is the path to
a directory storing one or more vcf Ąles (one for each sample to analyze). There should be no other Ąles
in this directory. Also required is information on the reference genome, which can be passed using the
combination of fasta.genome and bed options. Alternatively, if working with SARS-CoV-2, the reference
option can be set to ŞWuhanŤ to use a pre-formatted reference. To report information (primarily
sequencing depth) on all mutations of interest and not just those that are observed in the samples, the
write.all.targets option can be set to TRUE, and the lineage-associated mutations Ąle including the
optional ŞChrŤ and ŞPosŤ columns (see above) must be speciĄed with lineage.muts.

5

• Output: Mutation data are reported in a data frame that by default contains the columns
SAMP_NAME, CHR, POS, ALT_ID, AF, & DP, though a number of additional columns can be
included (see ŞOutputŤ section below, and out.cols argument to call_mutations()). This object (data
frame) can also be written to a Ąle, which is especially relevant if youŠre analyzing a large number of
samples or if the genome is large (causing longer run time for call_mutations(); see write.mut.table).
The output from call_mutations() is used as input for the functions explore_mutations() or
estimate_lineages().

Methods

The call_mutations() function uses one or more vcf Ąles as input, along with a MixviR reference object
(data frame) and creates a data frame/table that stores all mutations identiĄed in the sample(s), along
with a customizable set of associated information about each mutation. This data frame can be written
to a Ąle, and/or saved as an object in the global environment. In either case it is used as input to the
explore_mutations() or estimate_lineages() functions.

call_mutations() Ąrst obtains the MixviR reference object (Fig 6), which is created as part of the run if the
fasta.genome and bed options are provided. Alternatively, if analyzing SARS-CoV-2, the reference option can
be set to ŞWuhanŤ and a pre-constructed reference will be used. In the case of overlapping genes, positions
will be duplicated in this reference object, with a separate entry for each gene the nucleotide position is
associated with.

Figure 6: Example of the initial MixviR reference object. Two non-genic positions and 6 genic positions,
representing 2 amino acids, are shown.

MixviR then reads in the set of Ąles to be analyzed. These should be the only Ąles stored in the directory
given by the sample.dir option. In most cases, samples will be provided in variant call format (vcf). These
vcf Ąles need to include the DP and AD Ćags in the FORMAT Ąeld. Relevant information from each vcf Ąle
is extracted with functionality from vcfR (Knaus and Grünwald, 2017). If the write.all.targets option will be
used to report sequencing depths for genomic positions associated with a priori-deĄned mutations that donŠt
occur in the sample, all positions should be included in the input vcf Ąle(s). Otherwise, only variant positions
need to be included.

MixviR loops over the set of input Ąles, sequentially calling mutations from each and appending them to a
master data frame that stores all mutations. The process of calling mutations for each sample includes several
steps. The overall sequencing depths at each position in the input Ąle are Ąrst added to the reference object
(Fig. 7, column ŚDPŠ; note that all objects shown in Figs 7-10 are temporary objects created during a MixviR
analysis and are not directly available to the user). Depths are ŚNAŠ for any positions not in the vcf input Ąle.

6

Figure 7: MixviR reference object with sequencing depths for the sample being analyzed added in the DP
column. NA in this column indicates the position was not included in the input vcf Ąle.

Variable sites in the sample (sites with an entry in the ALT column of the input Ąle) are then extracted, the
frequency of the ALT allele (AF) is calculated for each, and the set of variants is Ąltered to retain those that
exceed the value of min.alt.freq. This Ąltering step is intended to remove low-frequency sequencing noise
and/or PCR artifacts from the data (see note on min.alt.freq in section Cautions/Important Considerations
below). Deletions are represented as strings >1 bp in the REF column (Fig 8; position 11282 is a 9-bp
deletion) and insertions are represented as strings >1 bp in the ALT column (Fig 8; 1 bp insertion at position
19983).

Figure 8: Example set of variants from a sample being analyzed after Ąltering for the default minimum allele
frequency of 1%. Deletions have length >1bp in the REF column, while insertions have length >1bp in the
ALT column. Variants are merged with the reference to create a sample genome that is translated to identify
amino acid changes.

Next, MixviR checks the set of sample variants to determine if there are any genomic positions where more
than one unique variant occurs in the (potentially mixed) sample. If not, mutations are characterized in two
steps, Ąrst by identifying those based on single nucleotide polymorphism (SNP) variation, and subsequently
by identifying mutations arising from insertions or deletions. Each of these steps is described below. In
the event one or more positions have multiple mutations, the duplicated sites are Ąrst removed and stored.
Mutations are initially called from the Ąrst set of variants (all variants without duplicated positions and the
Ąrst variant at each duplicated site), and the process is iterated on the stored set of duplicated variants until
no duplicated sites remain.

7

SNP-Based Mutation IdentiĄcation

For mutations based on SNP variation, the full set of variants identiĄed in the sample is Ąltered to retain just
SNP-based variants (single nucleotide changes, no indels). These are then joined with the reference object,
replacing the reference base with any alternate alleles observed in the sample to create a Şsample genomeŤ
(in other words, the reference genome with SNP variants substituted in to their respective position). This
updated sample genome is then translated using functionality from Biostrings (Pagès et al 2019) to get the
sample amino acids. Mutations resulting in amino acid substitutions are retained and named in the form
ŞS_D614GŤ, which would indicate a substitution of ŚGŠ for the original ŚDŠ at amino acid position 614 of the
ŚSŠ gene. Subsequently, all SNP variants that donŠt result in an amino acid change, including synonymous
changes or variants outside of genes, are identiĄed and named in the form Chr1_500A->T, which would
represent a mutation from ŚAŠ to ŚTŠ at nucleotide position 500 of Chromosome 1. The example below (Fig 9)
shows one SNP in a non-genic region, one synonymous and one non-synonymous SNP-based mutation in the
ŚORF1aŠ gene, and one synonymous and one non-synonymous SNP-based mutation in the ŚSŠ gene.

Figure 9: Example set of SNP-based mutations. Synonymous and non-synonymous mutations in two different
genes, and a mutation in a non-genic region, are included.

Indel-Based Mutation IdentiĄcation

Indel-based mutation identiĄcation is performed separately for insertions and deletions, and for each, separately
for in-frame and frameshift indels (deĄned as indels for which the number of nucleotides gained or lost is an
even multiple of 3 or not, respectively, regardless of whether the event occurred in a gene). MixviR uses the
following rules for naming indels. . .

In-frame deletions

In-frame deletions (even multiples of 3bp) are indicated with ŚdelŠ.

Examples: S_del144/144 (genic); ORF1a_del3675/3677 (genic); NC-045512.2_del23121/3bp (non-genic)

• Genic: Deletions starting at a Ąrst codon position of a gene are named starting with the Ąrst AA
deleted and ending with the last. Those that start at a 2nd or 3rd codon position are named with
the downstream (3Š)-most AA affected in the case of deletion of a single AA, or, if multiple AAŠs are
deleted, naming starts with the AA associated with the Ąrst full codon deleted, and extends to the last
codon/AA affected. Below is an example of the latter scenario from the S gene of SARS-CoV-2, in
which 6 bases (AGTTCA) are deleted from positions 22029-22034 (beginning at codon position 2 of
amino acid 156 of the S gene).

The original sequence, broken into its codons and starting at position 22025, is. . .

Ref Sequence: AGT GAG TTC AGA GTT

Ref Amino Acids: S E F R V

Ref Amino Acid Position: 155 156 157 158 159

The corresponding deleted sequence is. . .

Deletion Sequence: AGT GGA GTT

Deletion Amino Acids: S G V

There is some ambiguity regarding how to name this event. It could be named ŞS_del156/157Ť, with a
resulting substitution of ŞR158GŤ. Alternatively, it could be named ŞS_del157/158Ť with a resulting

8

substitution of ŞE156GŤ. As described above, MixviR numbers the deletion beginning with the amino
acid corresponding to the Ąrst full codon deleted - in this case ŞS_del157/158Ť, and it does not call the
substitution, as both the deletion and substitution represent just one mutational (evolutionary) event.

• Non-genic: In-frame deletions occurring outside of genes are named with the chromosome, position
(nucleotide) along the chromosome of the Ąrst deleted base, and the length of the deletion in bp.

Out-of-frame deletions

Out-of-frame deletions (not even multiples of 3bp deleted) are indicated with ŚFdelŠ.

Examples: ORF1a_Fdel2454/7bp (genic); NC-045512.2_del23121/2bp (non-genic)

• Genic: Named with the amino acid position within the gene where the Ąrst base is deleted. This is
followed by the length of the deletion in bp.

• Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the Ąrst
deleted base, and the length of the deletion in bp.

In-frame insertions

In-frame insertions (even multiples of 3bp) are indicated with ŚinsŠ.

Examples: S_ins214/216 (genic); NC-045512.2_ins23121/3bp (non-genic)

• Genic: Named with the amino acid position within the gene where the Ąrst base is inserted, followed
by the (new) position of the last amino acid inserted.

• Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the Ąrst
inserted base, and the length of the insertion in bp.

Out-of-frame insertions

Examples: S_Fins649/1bp (genic); NC-045512.2_Fins23121/1bp (non-genic)

Out-of-frame insertions (not even multiples of 3bp deleted) are indicated with ŚFinsŠ.

• Genic: Named with the amino acid position within the gene where the Ąrst base is inserted. This is
followed by the length of the insertion in bp.

• Non-genic: Named with the chromosome, position (nucleotide) along the chromosome of the Ąrst
inserted base, and the length of the insertion in bp.

Indel examples are given in Figure 10, which shows a one-bp deletion within ORF1a at position 4947 of
chromosome NC045512.2, a deletion of amino acid positions 3674-3676 in the ORF1a gene, a 1bp insertion
within amino acid position 2173 of ORF1b, and a deletion of amino acid position 212 of the S gene.

Figure 10: Example insertions and deletions called from a sample during a MixviR anaysis. Deletions are
indicated with ŠdelŠ in the name, and insertions with ŠinsŠ - see samp_identity column for examples.

9

Nonsense Mutation IdentiĄcation

Nonsense mutations resulting in a premature stop codon are designated with an asterisk (i.e. ORF1a_R718*).

Output

The full set of mutations identiĄed (SNP and indel-based) are joined to create a data frame that serves as
the output returned by call_mutations(). Any of the following columns can be included in this data frame
(deĄned by the out.cols option):

• CHR: Chromosome.
• POS: Genomic position along the chromosome.
• GENE: Gene, if site is associated with a gene, otherwise listed as Şnon-genicŤ.
• STRAND: If part of a gene, strand the gene is on (+, -, .).
• REF_CODON: If in a gene, reference codon the position is part of.
• REF_AA: If in a gene, identity of the reference amino acid the position is associated with.
• GENE_AA_POSITION: If in a gene, amino acid position within the gene the nucleotide position is

associated with.
• REF: Reference nucleotide, or if representing a deletion, the reference nucleotide plus deleted bases.
• ALT: Alternate nucleotide, or if representing an insertion, the reference nucleotide plus inserted bases.
• AF: Frequency of the alternate allele (mutation) in the sample. Calculated by dividing ALT_COUNT

by DP.
• ALT_COUNT: number of sequencing reads associated with the alternate (mutant) allele in the sample.
• SAMP_CODON: If part of a gene, the codon arising from the alternate (mutant) allele in the sample,

otherwise ŚNAŠ.
• SAMP_AA: If part of a gene, the amino acid arising from the alternate (mutant) allele in the sample,

otherwise ŚNAŠ.
• ALT_ID: IdentiĄer of the mutation in the sample.
• DP: Total sequencing depth at the genomic position associated with the mutation.
• SAMP_NAME: Sample name, which is the name of the input Ąle, unless the name.sep option is used

in call_mutations() to retain just a portion of the name.
• TYPE: The type of mutation identiĄed. One of SNP-Syn (synonymous SNP within a gene), SNP-Nsyn

(non-synonymous SNP within a gene), ŞSNP-NongenicŤ (SNP outside of a genic region), Indel-Genic
(insertion or deletion within a gene), Indel-Nongenic (insertion or deletion outside of a genic region), or
ŞUnobserved TargetŤ, which will only appear for the set of target mutations that donŠt appear in the
sample if the write.all.targets option is set to TRUE.

This Ąnal data frame can be assigned as an object in the global environment, and/or written to a Ąle if
write.mut.table is set to TRUE. By default, the columns included in the output are SAMP_NAME, CHR,
POS, GENE, ALT_ID, AF, and DP. This data frame serves as required input to the explore_mutations()

and estimate_lineages() functions, and must include at least the set of default columns to run either of
these subsequent functions.

explore_mutations()

Summary

The explore_mutations() function uses the output from call_mutations() and opens an interactive
RShiny dashboard that allows you to explore the data. The dashboard will have from 1 to 4 tabs at the top,
depending on what combination of optional input Ąles (if any) are provided. . .

Available Tabs

• Lineages Present: Available if the lineage/mutation Ąle is provided with the lineage.muts option.
The top plot represents the proportion of Şlineage-characteristic mutationsŤ present in a sample. These

10

Şlineage-characteristic mutationsŤ are the set of mutations from the lineage.muts Ąle that occur only in
the selected lineage. In other words, MixviR looks through the set of mutations provided and removes
any that are shared by more than one lineage. The remaining mutations are used to generate the
plots in this tab. The ŞPresence ThresholdŤ slider on the left allows the user to set a threshold for the
proportion of such mutations required to consider a lineage as present in the sample. For each lineage
identiĄed as present (exceeding the threshold), the frequences of the lineage-characteristic mutations
that occur in the sample are used to estimate a relative frequency of the lineage in the sample - these
estimated relative frequencies are shown in the bottom plot, and can be generated with either the
median or mean values (speciĄc metric can be selected in left panel). Note that while biologically
the sums of these estimated proportions canŠt exceed 1, there is no constraint with the way the raw
estimates are calculated, and occasionaly the bars will exceed 1. When this happens, it may mean
that at least one mutation that was identiĄed and used as a Şlineage-characteristicŤ mutation based
on the provided list is, in reality, shared among two or more lineages. In cases where the sum exceeds
1, the default behavior is to proportionally scale the estimates down to sum to 1 (controlled by the
ŞscaleŤ option in the left panel). Additional details associated with each plot are provided as tooltips by
hovering over plot features/regions.

• New Mutations: Present if a Şlocation/datesŤ Ąle is provided with the dates option. Table that lists
all mutations Ąrst observed (across the entire dataset) on or after the selected date. So, if the mutation
ŞS_D614GŤ was not observed in any sample before 6/20/2021, was observed in a single sample on that
date, and then continued to be observed in multiple samples after that date, that mutation would show
up in the New Mutations table for the date 6/20/21, and for any date prior to that, but would not show
up if 6/21/21 or any later date is selected. If the lineage.muts option is deĄned, a column is added to
the table that includes all lineages the mutation is associated with.

• Mutation Frequencies: Present if a location/dates Ąle is provided with the dates option. Plots show
estimated frequencies of a speciĄc mutation(s) over time for one or more samples. Mutations should be
entered in the form ŞS_D614GŤ for a substitution, or, for indels, ŞS_del144/144Ť for single amino-acid
mutations, or ŞS_del143/145Ť for a multi-amino acid deletion. Multiple mutations can be entered by
separating them with a comma. Multiple samples can be selected and will be distinguished by color on
the plots. If more than one mutation is entered, each mutation is displayed as a separate facet on the
plot. If in doubt about the naming convention of mutations, check the samp_mutations object or the
mutation names in other tabs.

• View Mutations: Lists all mutations observed for the selected sample. If the lineage.muts option
is deĄned, a column is added to the table that includes all lineages the mutation is associated with.
If write.all.targets was set to TRUE in call_mutations(), all mutations in the lineage.muts Ąle are
included, even if no associated reads were observed (sequencing depths at underlying genomic positions
are reported, while the reported observed frequency will be zero). This table is searchable, and can be
sorted by columns (SHIFT + click to sort on more than one column).

estimate_lineages()

Summary

The estimate_lineages() function is meant to output the data from the ŞVariants PresentŤ plots of
explore_mutations() in table form. You can choose to write data for all lineages analyzed or just the
lineages identiĄed as present in the sample (default) based on the presence.thresh threshold. The tables
are printed to the screen and can also be written to a Ąle. This function requires both the output from
call_mutations() and a lineage.muts Ąle.

11

Cautions/Important Considerations

• Remove spaces and underscores (_) from the chromosome names given to MixviR. This applies to the
reference and bed Ąles associated with call_mutations(), and also the lineage.muts Ąle if the optional
ŞChrŤ column is included. Also make sure the chromosome names match across these Ąles.

• The min.alt.freq argument is set to 0.01 by default. It may be tempting to drop this to try to detect
lineages at extremely low frequencies in a sample. This should be done with caution, as sequencing
noise included in the vcf Ąle can start to interfere with the translation of true amino acids in the sample.
For example, consider a situation where a codon at positions 100-102 in the reference is CCC (amino
acid P), and a sample has a true mutation to ACC (amino acid T) at a frequency of 75%. Now imagine
that at position 101 (the 2nd codon position) there is sequencing/PCR noise of C->G with frequency
0.0005 (0.05%). If the min.alt.freq threshold is less than 0.0005, both mutations will be considered in
the translation, and the sample codon will be called AGC (amino acid S) instead of the actual ACC
(amino acid T). Fortunately, sequencing and PCR noise, at least in our experience, typically occurs
well below the 0.01 frequency, and this seems to be a reasonable default choice. While some minor
adjusting to this value is probably safe if necessary, extreme values in either direction will likely lead to
unreasonable/unreliable results.

• Some amino acid substitutions have/require multiple underlying genomic mutations to their respective
codon. In these cases, MixviR is expected to call the mutation correctly, but the relevant frequencies
and associated sequencing depths will be obtained from the variant with the highest sequencing depth
(if not identical, these are typically very similar).

• It may be tempting to try to include mutation data for lots of closely-related lineages in the lin-
eage/mutation (lineage.muts) Ąle to try to distinguish among lineages at a very Ąne scale. One example
of this in SARS-CoV-2 is the Delta variant, which as of the time this vignette was written had >100
sublineages deĄned that were designated AY.1, AY.2, AY.3, etc. . . Note that any mutations that show
up more than once in this Ąle are removed for the analysis, and so including many closely-related
lineages/groups will likely result in having few or no mutations to use for the analysis. The estimates of
lineages present in the ŞLineages PresentŤ tab of the RShiny dashboard is highly dependent on having
mutations that are highly-informative/diagnostic for each lineage. Hovering over the bars in the bottom
(frequency estimate) plot on the ŞLineages PresentŤ lists the mutations analyzed (both those present
and absent in the sample) as a tooltip.

• For the purpose of data visualization in the explore_mutations() Shiny dashboard, itŠs important
that the mutation designations assigned by call_mutations() match those in the optional input Ąles.
If youŠre unsure, check the names in the ALT_ID column of if the call_mutations() output against
those in your Ąles. Althernatively, you can browse or search mutation names in the ŞView MutationsŤ
tab.

• The color palette used to generate plots in the RShiny dashboard (palette: ŞPairedŤ) has 12 colors.
Therefore, this is the maximum number of lineages that can be plotted.

Example Analyses

Example Data

MixviR comes with a set of example data Ąles (N=3) that can be used to test out the program. These include
vcf Ąles representing SARS-CoV-2 environmental samples obtained from a single location on three different
dates, a Şlineage.mutsŤ Ąle (example_lineage_muts.csv) containing a subset of four SARS-CoV-2 variants to
evaluate, a Şlocation/datesŤ Ąle (example_location_date.csv), and a Şsamp_mutations.tsvŤ Ąle that stores
the output of a call_mutations() run for these three samples with default settings.

You can use the system.file() function to see the location of the raw Ąles. For example, the path to the direc-
tory containing the example vcf Ąles is given by system.file("extdata", "vcfs", package = "MixviR")

12

and the path to the lineage.muts Ąle by system.file("extdata", "vcfs", "example_lineage_muts.csv",

package = "MixviR")

Example Analysis 1- No Target Mutations In call_mutations()

Step 1: call_mutations()

Your Ąrst step with MixviR will typically be to run the call_mutations() function, which identiĄes all the
mutations in the input datasets (vcf Ąles). WeŠll point this function to the directory storing the three example
vcf Ąles, and since these data are for SARS-CoV-2, we can use the pre-formatted ŞWuhanŤ reference. These
two pieces of information (location of input Ąles and reference info) are all thatŠs required to make it run.
In this case though, weŠll also clean up the sample names by trimming off all the text after the "_" in each
input Ąle name with the name.sep option. WeŠll assign the output to an object named samp_mutations.

samp_mutations <- call_mutations(sample.dir = system.file("extdata", "vcfs",

package = "MixviR"),

reference = "Wuhan",

name.sep = "_")

Running this creates a new object named samp_mutations, which stores all the mutations observed in each
sample. In this case, there are a total of 316 mutations identiĄed. The samp_mutations data frame looks
like. . .

Figure 11: The samp_mutations data frame is the primary output of the call_mutations() function.

Most of the columns here are fairly self-explanatory. Each mutation identiĄed is listed in the ŞALT_IDŤ column.
ŞAFŤ gives the estimated frequency of that mutation in the sample, which is simply the ŞALT_COUNTŤ/ŞDPŤ.
The ŞPOSŤ column provides the genomic position of the mutation along the chromosome. This data frame
serves as input for the explore_mutations() function, which weŠll run next.

13

Step 2: explore_mutations()

Basic Run
Running the explore_mutations() function opens an RShiny dashboard in a separate window. The
samp_mutations object created with call_mutations() is required as input. The number of tabs available
in the window depends on which optional Ąles (if any) are passed to the function.

explore_mutations(muts.df = samp_mutations)

Figure 12: ŠView MutationsŠ RShiny tab.

Here we ran explore_mutations() in its most basic form and got just a single tab named ŞView MutationsŤ,
which is just a slightly reformatted version of the samp_mutations data frame. There are options to select
the sample you want to view (drop-down box in top left), and also to Ąlter results by searching for speciĄc
text (i.e. a gene or mutation name). Each column is also sortable with the arrows at the top of the column
(shift+click allows sorting by multiple columns).

With Dates
Now weŠll add one option to explore_mutations(), passing it a location/dates Ąle with the dates option. . .

explore_mutations(muts.df = samp_mutations,

dates = system.file("extdata",

"example_location_date.csv",

package = "MixviR"))

This time we have three tabs available in the RShiny window: New Mutations, Mutation Frequencies, and
View Mutations.

New Mutations Tab
The New Mutations tab (Fig 13) allows you to select a date and view the set of mutations that were observed
for the Ąrst time (across the entire dataset) on or after that date.

Mutation Frequencies Tab

The Mutation Frequencies tab (Fig 14) allows you to enter one or more mutation names (comma separated if
more than one), and the frequencies of these mutations are plotted for each date available in the dataset for
the selected location. Multiple mutations are plotted as separate facets, while multiple locations can also be
selected and are distinguished by color on each facet.

View Mutations Tab
The View Mutations tab here is the same as what we got in the basic run of explore_mutations() above
(see Fig 12).

14

Figure 13: ŠNew MutationsŠ RShiny tab. The displayed mutations were Ąrst observed on or after the selected
date.

Figure 14: ŠMutation FrequenciesŠ RShiny tab displaying frequencies of speciĄc mutations over time.

15

With Dates + Lineages
Providing a lineage/mutations Ąle with the lineage.muts option in addition to a locations/dates Ąle results in
a fourth tab (and also some additional information included in the New Mutations and View Mutations tabs
from above).

explore_mutations(muts.df = samp_mutations,

dates = system.file("extdata",

"example_location_date.csv",

package = "MixviR"),

lineage.muts = system.file("extdata",

"example_lineage_muts.csv",

package = "MixviR"))

The fourth tab is named ŞVariants PresentŤ, and provides two plots. . .

Figure 15: ŠVariants PresentŠ RShiny tab identifying lineages present in samples and estimating their
frequencies.

In this example, B.1.1.7, B.1.617.2, and P.1 have been selected for analysis. When a lineage is selected,
MixviR Ąlters the lineage/mutations Ąle for mutations that are unique to that lineage. The number of these
analyzed for each lineage is given as one of the entries in the tooltips on the top plot (see below for tooltip
details) - in this case, there are 15 mutations unique to B.1.1.7 and 16 unique to P.1. MixviR then checks to
see how many of these were detected (at any frequency > the min.alt.freq set in call_mutations()) for each
sample and plots this proportion in the top plot. The red horizontal dashed line is a reference line showing
the threshold proportion of mutations necessary to consider the lineage ŞpresentŤ in the sample. By default
this is set to 0.5, but it can be adjusted with the slider on the left. For any lineages identiĄed as present in
a sample, the frequencies of the characteristic mutations present in the sample are summarized (mean by
default) to estimate the proportion of that lineage in the sample, which is plotted in the bottom plot.

16

Notice in Figure 15 that B.1.1.7 on the 2021-05-02 date had just over 50% of the lineage-characteristic
mutations in the sample. Based on the default threshold of 0.5, both B.1.1.7 and P.1 are called as present
in that sample (and therefore plotted in the bottom plot). However, if the threshold is raised to 0.55 with
the ŚPresence ThresholdŠ slider on the left, then only P.1 is called as present for the 2021-05-02 sample and
represented in the lower plot. . .

Figure 16: ŠVariants PresentŠ RShiny tab after adjusting the threshold for calling a lineage as present, and
now only identifying P.1 as present in the 2021-05-02 sample.

17

Tooltips are also available if you hover over features on the plot (Figs. 17, 18).

Figure 17: Example of a tooltip on Lineages Present plot.

Elements in the tooltip on the top plot (Fig 17). . .

• Lineage: The lineage analyzed
• Total Lineage-Characteristic Muts: The number of mutations the Proportion Present is based on. These

are mutations in the lineage.muts Ąle that are associated with only the target lineage (mutations not
shared with any other lineages in the Ąle).

• Proportion Present: The proportion of the lineage-characteristic mutations present in the sample (at a
frequency greater than min.alt.freq from call_mutations().

• Avg Seq Depth: The average sequencing depth for genomic positions underlying the mutations. The
default is to calculate this from all mutations identiĄed in the sample. Alternatively, it can be calculated
based on just the lineage-characteristic mutations observed by setting the ŞCalculate Mean Depths OnŤ
drop-down box to ŞLineage-Characteristic Mutations OnlyŤ.

• Avg Seq Based On: The number of mutations used to calculate the average sequencing depth.

18

Tooltips on the bottom plot provide identities of the target mutations (Fig 18).

Figure 18: Example tooltop on lineage frequency plot.

Example Analysis 2 - Target Mutations Included In call_mutations()

This analysis is similar to the one above, but the write.all.targets option is used to report sequencing depths
for all mutations associated with lineages of interest, even if the mutation isnŠt observed in the sample. This
requires that the optional columns ŞChrŤ and ŞPosŤ are included in the lineage.muts Ąle.

samp_mutations <- call_mutations(sample.dir = system.file("extdata",

"vcfs",

package = "MixviR"),

reference = "Wuhan",

name.sep = "_",

write.all.targets = TRUE,

lineage.muts = system.file("extdata",

"example_lineage_muts.csv",

package = "MixviR"))

In comparison to the call_mutations() run in example 1 above, which reported 316 mutations, this time
393 are reported. The extra mutations are those that were listed in the lineage.muts Ąle but not identiĄed in
the sample. See rows 103-116 for Sample 1 in Fig 19, which all have an observed frequency of zero, though
the sequencing depth associated with the genomic positions underlying the mutations is > 0. . .

19

Figure 19: Example of the samp_mutations data frame when the write.all.muts option is used to include
sequencing depths for mutations not observed in the sample.

If target mutations were included in the call_mutations() run, this can be indicated when running
explore_mutations() by setting all.target.muts to TRUE, and an additional piece of information (Proportion
Exceeding Seq Depth Threshold) is added to the tooltips on the ŞVariants PresentŤ plot (Fig 20). When
mutations are not identiĄed in a sample, this measure can help provide some insight into whether they are
missing because they truly donŠt occur in the sample, or because the sequencing didnŠt adequately cover their
associated genomic positions.

The individual mutations, along with their sequencing depth, can also be explored in the ŞView MutationsŤ
tab.

20

Figure 20: Example tooltip in explore_mutations() run with all.target.muts set to TRUE.

Getting Help

While youŠre welcome to email the authors directly if you have questions about, or problems with MixviR
that arenŠt addressed in this vignette, we encourage you to instead visit the MixviR Google Group, and post
your issue if it hasnŠt yet been addressed there.

References

Danecek P, BonĄeld JK, et al. Twelve years of SAMtools and BCFtools. Gigascience (2021) 10(2):giab008

DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA,
Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D, Daly M.
(2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet, 43:491-498.

Knaus BJ, Grünwald NJ (2017). ŞVCFR: a package to manipulate and visualize variant call format data in
R.Ť Molecular Ecology Resources, 17 (1), 44-53.

H. Pagès, P. Aboyoun, R. Gentleman and S. DebRoy (2019). Biostrings: Efficient manipulation of biological
strings. R package version 2.52.0.

21

https://groups.google.com/g/mixvir

	Introduction
	Quick Start
	Inputs
	Typical Workflow

	Full Documentation
	Inputs
	Primary Functions

	Cautions/Important Considerations
	Example Analyses
	Example Data
	Example Analysis 1- No Target Mutations In call_mutations()
	Example Analysis 2 - Target Mutations Included In call_mutations()

	Getting Help
	References

