RFC 9165 CDDL Control Operators December 2021
Bormann Standards Track [Page]
Internet Engineering Task Force (IETF)
Standards Track
C. Bormann
Universität Bremen TZI

RFC 9165

Additional Control Operators for the Concise Data Definition Language (CDDL)


The Concise Data Definition Language (CDDL), standardized in RFC 8610, provides "control operators" as its main language extension point.

The present document defines a number of control operators that were not yet ready at the time RFC 8610 was completed: .plus, .cat, and .det for the construction of constants; .abnf/.abnfb for including ABNF (RFC 5234 and RFC 7405) in CDDL specifications; and .feature for indicating the use of a non-basic feature in an instance.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc9165.

Table of Contents

1. Introduction

The Concise Data Definition Language (CDDL), standardized in [RFC8610], provides "control operators" as its main language extension point (Section 3.8 of [RFC8610]).

The present document defines a number of control operators that were not yet ready at the time [RFC8610] was completed:

Table 1: New Control Operators in this Document
Name Purpose
.plus Numeric addition
.cat String concatenation
.det String concatenation, pre-dedenting
.abnf ABNF in CDDL (text strings)
.abnfb ABNF in CDDL (byte strings)
.feature Indicates name of feature used (extension point)

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This specification uses terminology from [RFC8610]. In particular, with respect to control operators, "target" refers to the left-hand side operand and "controller" to the right-hand side operand. "Tool" refers to tools along the lines of that described in Appendix F of [RFC8610]. Note also that the data model underlying CDDL provides for text strings as well as byte strings as two separate types, which are then collectively referred to as "strings".

The term "ABNF" in this specification stands for the combination of [RFC5234] and [RFC7405]; i.e., the ABNF control operators defined by this document allow use of the case-sensitive extensions defined in [RFC7405].

2. Computed Literals

CDDL as defined in [RFC8610] does not have any mechanisms to compute literals. To cover a large part of the use cases, this specification adds three control operators: .plus for numeric addition, .cat for string concatenation, and .det for string concatenation with dedenting of both sides (target and controller).

For these operators, as with all control operators, targets and controllers are types. The resulting type is therefore formally a function of the elements of the cross-product of the two types. Not all tools may be able to work with non-unique targets or controllers.

2.1. Numeric Addition

In many cases, numbers are needed relative to a base number in a specification. The .plus control identifies a number that is constructed by adding the numeric values of the target and the controller.

The target and controller both MUST be numeric. If the target is a floating point number and the controller an integer number, or vice versa, the sum is converted into the type of the target; converting from a floating point number to an integer selects its floor (the largest integer less than or equal to the floating point number, i.e., rounding towards negative infinity).

interval<BASE> = (
  BASE => int             ; lower bound
  (BASE .plus 1) => int   ; upper bound
  ? (BASE .plus 2) => int ; tolerance

X = 0
Y = 3
rect = {
Figure 1: An Example of Addition to a Base Value

The example in Figure 1 contains the generic definition of a CDDL group interval that gives a lower and upper bound and, optionally, a tolerance. The parameter BASE allows the non-conflicting use of a multiple of these interval groups in one map by assigning different labels to the entries of the interval. The rule rect combines two of these interval groups into a map, one group for the X dimension (using 0, 1, and 2 as labels) and one for the Y dimension (using 3, 4, and 5 as labels).

2.2. String Concatenation

It is often useful to be able to compose string literals out of component literals defined in different places in the specification.

The .cat control identifies a string that is built from a concatenation of the target and the controller. The target and controller both MUST be strings. The result of the operation has the same type as the target. The concatenation is performed on the bytes in both strings. If the target is a text string, the result of that concatenation MUST be valid UTF-8.

c = "foo" .cat '
; on a system where the newline is \n, is the same string as:
b = "foo\n  bar\n  baz\n"
Figure 2: An Example of Concatenation of Text and Byte Strings

The example in Figure 2 builds a text string named c from concatenating the target text string "foo" and the controller byte string entered in a text form byte string literal. (This particular idiom is useful when the text string contains newlines, which, as shown in the example for b, may be harder to read when entered in the format that the pure CDDL text string notation inherits from JSON.)

2.3. String Concatenation with Dedenting

Multi-line string literals for various applications, including embedded ABNF (Section 3), need to be set flush left, at least partially. Often, having some indentation in the source code for the literal can promote readability, as in Figure 3.

oid = bytes .abnfb ("oid" .det cbor-tags-oid)
roid = bytes .abnfb ("roid" .det cbor-tags-oid)

cbor-tags-oid = '
  oid = 1*arc
  roid = *arc
  arc = [nlsb] %x00-7f
  nlsb = %x81-ff *%x80-ff
Figure 3: An Example of Dedenting Concatenation

The control operator .det works like .cat, except that both arguments (target and controller) are independently dedented before the concatenation takes place.

For the first rule in Figure 3, the result is equivalent to Figure 4.

oid = bytes .abnfb 'oid
oid = 1*arc
roid = *arc
arc = [nlsb] %x00-7f
nlsb = %x81-ff *%x80-ff
Figure 4: Dedenting Example: Result of First .det

For the purposes of this specification, we define "dedenting" as:

  1. determining the smallest amount of leftmost blank space (number of leading space characters) present in all the non-blank lines, and
  2. removing exactly that number of leading space characters from each line. For blank (blank space only or empty) lines, there may be fewer (or no) leading space characters than this amount, in which case all leading space is removed.

(The name .det is a shortcut for "dedenting cat". The maybe more obvious name .dedcat has not been chosen as it is longer and may invoke unpleasant images.)

Occasionally, dedenting of only a single item is needed. This can be achieved by using this operator with an empty string, e.g., "" .det rhs or lhs .det "", which can in turn be combined with a .cat: in the construct lhs .cat ("" .det rhs), only rhs is dedented.

3. Embedded ABNF

Many IETF protocols define allowable values for their text strings in ABNF [RFC5234] [RFC7405]. It is often desirable to define a text string type in CDDL by employing existing ABNF embedded into the CDDL specification. Without specific ABNF support in CDDL, that ABNF would usually need to be translated into a regular expression (if that is even possible).

ABNF is added to CDDL in the same way that regular expressions were added: by defining a .abnf control operator. The target is usually text or some restriction on it, and the controller is the text of an ABNF specification.

There are several small issues; the solutions are given here:

   CRLF = %x0A / %x0D.0A

These points are combined into an example in Figure 5, which uses ABNF from [RFC3339] to specify one of each of the Concise Binary Object Representation (CBOR) tags defined in [RFC8943] and [RFC8949].

; for RFC 8943
Tag1004 = #6.1004(text .abnf full-date)
; for RFC 8949
Tag0 = #6.0(text .abnf date-time)

full-date = "full-date" .cat rfc3339
date-time = "date-time" .cat rfc3339

; Note the trick of idiomatically starting with a newline, separating
;   off the element in the concatenations above from the rule-list
rfc3339 = '
   date-fullyear   = 4DIGIT
   date-month      = 2DIGIT  ; 01-12
   date-mday       = 2DIGIT  ; 01-28, 01-29, 01-30, 01-31 based on
                             ; month/year
   time-hour       = 2DIGIT  ; 00-23
   time-minute     = 2DIGIT  ; 00-59
   time-second     = 2DIGIT  ; 00-58, 00-59, 00-60 based on leap sec
                             ; rules
   time-secfrac    = "." 1*DIGIT
   time-numoffset  = ("+" / "-") time-hour ":" time-minute
   time-offset     = "Z" / time-numoffset

   partial-time    = time-hour ":" time-minute ":" time-second
   full-date       = date-fullyear "-" date-month "-" date-mday
   full-time       = partial-time time-offset

   date-time       = full-date "T" full-time
' .det rfc5234-core

rfc5234-core = '
   DIGIT          =  %x30-39 ; 0-9
   ; abbreviated here
Figure 5: An Example of Employing ABNF from RFC 3339 for Defining CBOR Tags

4. Features

Commonly, the kind of validation enabled by languages such as CDDL provides a Boolean result: valid or invalid.

In rapidly evolving environments, this is too simplistic. The data models described by a CDDL specification may continually be enhanced by additional features, and it would be useful even for a specification that does not yet describe a specific future feature to identify the extension point the feature can use and accept such extensions while marking them as extensions.

The .feature control annotates the target as making use of the feature named by the controller. The latter will usually be a string. A tool that validates an instance against that specification may mark the instance as using a feature that is annotated by the specification.

More specifically, the tool's diagnostic output might contain the controller (right-hand side) as a feature name and the target (left-hand side) as a feature detail. However, in some cases, the target has too much detail, and the specification might want to hint to the tool that more limited detail is appropriate. In this case, the controller should be an array, with the first element being the feature name (that would otherwise be the entire controller) and the second element being the detail (usually another string), as illustrated in Figure 6.

foo = {
  kind: bar / baz .feature (["foo-extensions", "bazify"])
bar = ...
baz = ... ; complex stuff that doesn't all need to be in the detail
Figure 6: Providing Explicit Detail with .feature

Figure 7 shows what could be the definition of a person, with potential extensions beyond name and organization being marked further-person-extension. Extensions that are known at the time this definition is written can be collected into $$person-extensions. However, future extensions would be deemed invalid unless the wildcard at the end of the map is added. These extensions could then be specifically examined by a user or a tool that makes use of the validation result; the label (map key) actually used makes a fine feature detail for the tool's diagnostic output.

Leaving out the entire extension point would mean that instances that make use of an extension would be marked as wholesale invalid, making the entire validation approach much less useful. Leaving the extension point in but not marking its use as special would render mistakes (such as using the label "organisation" instead of "organization") invisible.

person = {
  ? name: text
  ? organization: text
  * (text .feature "further-person-extension") => any

$$person-extensions //= (? bloodgroup: text)
Figure 7: Map Extensibility with .feature

Figure 8 shows another example where .feature provides for type extensibility.

allowed-types = number / text / bool / null
              / [* number] / [* text] / [* bool]
              / (any .feature "allowed-type-extension")
Figure 8: Type Extensibility with .feature

A CDDL tool may simply report the set of features being used; the control then only provides information to the process requesting the validation. One could also imagine a tool that takes arguments, allowing the tool to accept certain features and reject others (enable/disable). The latter approach could, for instance, be used for a JSON/CBOR switch, as illustrated in Figure 9, using Sensor Measurement Lists (SenML) [RFC8428] as the example data model used with both JSON and CBOR.

SenML-Record = {
; ...
  ? v => number
; ...
v = JC<"v", 2>
JC<J,C> = J .feature "json" / C .feature "cbor"
Figure 9: Describing Variants with .feature

It remains to be seen if the enable/disable approach can lead to new idioms of using CDDL. The language currently has no way to enforce mutually exclusive use of features, as would be needed in this example.

5. IANA Considerations

IANA has registered the contents of Table 2 into the "CDDL Control Operators" registry of [IANA.cddl]:

Table 2: New Control Operators
Name Reference
.plus RFC 9165
.cat RFC 9165
.det RFC 9165
.abnf RFC 9165
.abnfb RFC 9165
.feature RFC 9165

6. Security Considerations

The security considerations of [RFC8610] apply.

While both [RFC5234] and [RFC7405] state that security is truly believed to be irrelevant to the respective document, the use of formal description techniques cannot only simplify but sometimes also complicate a specification. This can lead to security problems in implementations and in the specification itself. As with CDDL itself, ABNF should be judiciously applied, and overly complex (or "cute") constructions should be avoided.

7. References

7.1. Normative References

IANA, "Concise Data Definition Language (CDDL)", <https://www.iana.org/assignments/cddl>.
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, , <https://www.rfc-editor.org/info/rfc5234>.
Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC 7405, DOI 10.17487/RFC7405, , <https://www.rfc-editor.org/info/rfc7405>.
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
Birkholz, H., Vigano, C., and C. Bormann, "Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610, , <https://www.rfc-editor.org/info/rfc8610>.

7.2. Informative References

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, , <https://www.rfc-editor.org/info/rfc3339>.
Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C. Bormann, "Sensor Measurement Lists (SenML)", RFC 8428, DOI 10.17487/RFC8428, , <https://www.rfc-editor.org/info/rfc8428>.
Jones, M., Nadalin, A., and J. Richter, "Concise Binary Object Representation (CBOR) Tags for Date", RFC 8943, DOI 10.17487/RFC8943, , <https://www.rfc-editor.org/info/rfc8943>.
Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/RFC8949, , <https://www.rfc-editor.org/info/rfc8949>.


Jim Schaad suggested several improvements. The .feature feature was developed out of a discussion with Henk Birkholz. Paul Kyzivat helped isolate the need for .det.

.det is an abbreviation for "dedenting cat", but Det is also the name of a German TV cartoon character created in the 1960s.

Author's Address

Carsten Bormann
Universität Bremen TZI
Postfach 330440
D-28359 Bremen