
RFC 8895
Application-Layer Traffic Optimization (ALTO)
Incremental Updates Using Server-Sent Events (SSE)

Abstract
The Application-Layer Traffic Optimization (ALTO) protocol (RFC 7285) provides network-related
information, called network information resources, to client applications so that clients can
make informed decisions in utilizing network resources. This document presents a mechanism to
allow an ALTO server to push updates to ALTO clients to achieve two benefits: (1) updates can be
incremental, in that if only a small section of an information resource changes, the ALTO server
can send just the changes and (2) updates can be immediate, in that the ALTO server can send
updates as soon as they are available.

Stream: Internet Engineering Task Force (IETF)
RFC: 8895
Category: Standards Track
Published: November 2020 
ISSN: 2070-1721
Authors:   W. Roome

Nokia Bell Labs
Y. Yang
Yale University

Status of This Memo 
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8895

Copyright Notice 
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Roome & Yang Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8895
https://www.rfc-editor.org/info/rfc8895
https://trustee.ietf.org/license-info


with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents 
1.  Introduction

2.  Terms

2.1.  Requirements Language

3.  Background

3.1.  Incremental Encoding: JSON Merge Patch

3.1.1.  JSON Merge Patch Encoding

3.1.2.  JSON Merge Patch ALTO Messages

3.2.  Incremental Encoding: JSON Patch

3.2.1.  JSON Patch Encoding

3.2.2.  JSON Patch ALTO Messages

3.3.  Multiplexing and Server Push: HTTP/2

3.4.  Server Push: Server-Sent Event

4.  Overview of Approach and High-Level Protocol Message Flow

4.1.  Update Stream Service Message Flow

4.2.  Stream Control Service Message Flow

4.3.  Service Announcement and Management Message Flow

5.  Update Messages: Data Update and Control Update Messages

5.1.  Generic ALTO Update Message Structure

5.2.  ALTO Data Update Message

5.3.  ALTO Control Update Message

6.  Update Stream Service

6.1.  Media Type

6.2.  HTTP Method

6.3.  Capabilities

6.4.  Uses

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 2



6.5.  Request: Accept Input Parameters

6.6.  Response

6.7.  Additional Requirements on Update Stream Service

6.7.1.  Event Sequence Requirements

6.7.2.  Cross-Stream Consistency Requirements

6.7.3.  Multipart Update Requirements

6.8.  Keep-Alive Messages

7.  Stream Control Service

7.1.  URI

7.2.  Media Type

7.3.  HTTP Method

7.4.  IRD Capabilities & Uses

7.5.  Request: Accept Input Parameters

7.6.  Response

8.  Examples

8.1.  Example: IRD Announcing Update Stream Services

8.2.  Example: Simple Network and Cost Map Updates

8.3.  Example: Advanced Network and Cost Map Updates

8.4.  Example: Endpoint Property Updates

8.5.  Example: Multipart Message Updates

9.  Operation and Processing Considerations

9.1.  Considerations for Choosing Data Update Messages

9.2.  Considerations for Client Processing Data Update Messages

9.3.  Considerations for Updates to Filtered Cost Maps

9.4.  Considerations for Updates to Ordinal Mode Costs

9.5.  Considerations for SSE Text Formatting and Processing

10. Security Considerations

10.1.  Update Stream Server: Denial-of-Service Attacks

10.2.  ALTO Client: Update Overloading or Instability

10.3.  Stream Control: Spoofed Control Requests and Information Breakdown

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 3



1. Introduction 
The Application-Layer Traffic Optimization (ALTO) protocol  provides network-related
information, called network information resources, to client applications so that clients may
make informed decisions in utilizing network resources. For example, an ALTO server provides
network and cost maps, where a network map partitions the set of endpoints into a manageable
number of sets each defined by a Provider-Defined Identifier (PID) and a cost map provides
directed costs between PIDs. Given network and cost maps, an ALTO client can obtain costs
between endpoints by first using the network map to get the PID for each endpoint and then
using the cost map to get the costs between those PIDs. Such costs can be used by the client to
choose communicating endpoints with low network costs.

The ALTO protocol defines only an ALTO client pull model without defining a mechanism to
allow an ALTO client to obtain updates to network information resources, other than by
periodically re-fetching them. In settings where an information resource may be large but only
parts of it may change frequently (e.g., some entries of a cost map), complete re-fetching can be
inefficient.

This document presents a mechanism to allow an ALTO server to push incremental updates to
ALTO clients. Integrating server push and incremental updates provides two benefits: (1) updates
can be small, in that if only a small section of an information resource changes, the ALTO server
can send just the changes and (2) updates can be immediate, in that the ALTO server can send
updates as soon as they are available.

11. Requirements on Future ALTO Services to Use This Design

12. IANA Considerations

12.1.  application/alto-updatestreamparams+json Media Type

12.2.  application/alto-updatestreamcontrol+json Media Type

13. Appendix: Design Decision: Not Allowing Stream Restart

14. References

14.1.  Normative References

14.2.  Informative References

Acknowledgments

Contributors

Authors' Addresses

[RFC7285]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 4



While primarily intended to provide updates to GET-mode network and cost maps, the
mechanism defined in this document can also provide updates to POST-mode ALTO services,
such as the ALTO endpoint property and endpoint cost services. The mechanism can also support
new ALTO services to be defined by future extensions, but a future service needs to satisfy
requirements specified in Section 11.

The rest of this document is organized as follows. Section 3 gives background on the basic
techniques used in this design: (1) JSON merge patch and JSON patch to allow incremental
updates and (2) Server-Sent Events (SSE)  to allow server push. With the background, 
Section 4 gives a non-normative overview of the design. Section 5 defines individual messages in
an update stream. Section 6 defines the update stream service. Section 7 defines the stream
control service. Section 8 gives several examples to illustrate the two types of services. Section 9
describes operation and processing considerations by both ALTO servers and clients. Section 13
discusses a design feature that is not supported. Section 10 discusses security issues. Sections 11
and 12 review the requirements for future ALTO services to use SSE and IANA considerations,
respectively.

[SSE]

2. Terms 
Besides the terminologies as defined in , this document also uses additional
terminologies defined as follows:

Update Stream:
A reliable, in-order connection compatible with HTTP/1.x between an ALTO client and an
ALTO server so that the server can push a sequence of update messages using  to the
client. 

Update Stream Server:
This document refers to an ALTO server providing an update stream as an ALTO update
stream server, or update stream server for short. Note that the ALTO server mentioned in this
document refers to a general server that provides various kinds of services; it can be an
update stream server or stream control server (see below). It can also be a server providing
ALTO Information Resource Directory (IRD). 

Update Message:
A message that is either a data update message or a control update message. 

Data Update Message:
An update message that is for a single ALTO information resource and sent from the update
stream server to the ALTO client when the resource changes. A data update message can be
either a full-replacement message or an incremental-change message. Full replacement is a
shorthand for a full-replacement message, and incremental change is a shorthand for an
incremental-change message. 

Full Replacement:
A data update message for a resource that encodes the content of the resource in its original
ALTO encoding. 

[RFC7285]

[SSE]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 5



Incremental Change:
A data update message that specifies only the difference between the new content and the
previous version. An incremental change can be encoded using either JSON merge patch or
JSON patch in this document. 

Stream Control Service:
A service that provides an HTTP URI so that the ALTO client of an update stream can use it to
send stream control requests to the ALTO server on the addition or removal of resources
receiving update messages from the update stream. The ALTO server creates a new stream
control resource for each update stream instance, assigns a unique URI to it, and sends the
URI to the client as the first event in the stream. (Note that the stream control service in ALTO
has no association with the similarly named Stream Control Transmission Protocol 

.) 

Stream Control:
A shorthand for stream control service. 

Stream Control Server:
An ALTO server providing the stream control service. 

Substream-ID:
An ALTO client can assign a unique substream-id when requesting the addition of a resource
receiving update messages from an update stream. The server puts the substream-id in each
update event for that resource. The substream-id allows a client to use one update stream to
receive updates to multiple requests for the same resource (i.e., with the same resource-id in
an ALTO IRD), for example, for a POST-mode resource with different input parameters. 

Data-ID:
A subfield of the "event" field of  to identify the ALTO data (object) to be updated. For an
ALTO resource returning a multipart response, the data-id to identify the data (object) is the
substream-id, in addition to the Content-ID of the object in the multipart response. The data-id
of a single-part response is just the substream-id. 

Control Update Message:
An update message for the update stream server to notify the ALTO client of related control
information of the update stream. A control update message may be triggered by an internal
event at the server, such as server overloading and hence the update stream server will no
longer send updates for an information resource, or as a result of a client sending a request
through the stream control service. The first message of an update stream is a control update
message that provides a control URI to the ALTO client. The ALTO client can use the URI to
send stream control requests to the stream control server. 

[RFC4960]

[SSE]

2.1. Requirements Language 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 6



3. Background 
The design requires two basic techniques: encoding of incremental changes and server push. For
incremental changes, existing techniques include JSON merge patch and JSON patch; this design
uses both. For server push, existing techniques include HTTP/2 and ; this design adopts
some design features of HTTP/2 but uses  as the basic server-push design. The rest of this
section gives a non-normative summary of JSON merge patch, JSON patch, HTTP/2, and .

3.1. Incremental Encoding: JSON Merge Patch 
To avoid always sending complete data, a server needs mechanisms to encode incremental
changes, and JSON merge patch is one mechanism.  defines the encoding of
incremental changes (called JSON merge patch objects) to be used by the HTTP PATCH method 

. From , this document adopts only the JSON merge patch object encoding
and does not use the HTTP PATCH method, as the updates are sent as events instead of HTTP
methods; also, the updates are server to client, and PATCH semantics are more for client to
server. Below is a non-normative summary of JSON merge patch objects; see  for the
normative definition.

[SSE]
[SSE]

[SSE]

[RFC7396]

[RFC5789] [RFC7396]

[RFC7396]

3.1.1. JSON Merge Patch Encoding 

Informally, a JSON merge patch message consists of a JSON merge patch object (referred to as a
patch in ), which defines how to transform one JSON value into another using a
recursive merge patch algorithm. Specifically, the patch is computed by treating two JSON values
(first one being the original and the second being the updated) as trees of nested JSON objects
(dictionaries of name/value pairs), where the leaves are values (e.g., JSON arrays, strings, and
numbers), other than JSON objects, and the path for each leaf is the sequence of keys leading to
that leaf. When the second tree has a different value for a leaf at a path or adds a new leaf, the
patch has a leaf, at that path, with the new value. When a leaf in the first tree does not exist in
the second tree, the JSON merge patch tree has a leaf with a JSON "null" value. Hence, in the
patch, null as the value of a name/value pair will delete the element with "name" in the original
JSON value. The patch does not have an entry for any leaf that has the same value in both
versions. See the MergePatch pseudocode at the beginning of  for the
formal specification of how to apply a given patch. As a result, if all leaf values are simple
scalars, JSON merge patch is a quite efficient representation of incremental changes. It is less
efficient when leaf values are arrays, because JSON merge patch replaces arrays in their entirety,
even if only one entry changes.

[RFC7396]

Section 2 of [RFC7396]

3.1.2. JSON Merge Patch ALTO Messages 

To provide both examples of JSON merge patch and a demonstration of the feasibility of applying
JSON merge patch to ALTO, the sections below show the application of JSON merge patch to two
key ALTO messages.

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7396#section-2


3.1.2.1. JSON Merge Patch Network Map Messages 
 defines the format of an ALTO network map message. Assume a

simple example ALTO message sending an initial network map:

Consider the following JSON merge patch update message, which (1) adds an ipv4 prefix
"203.0.113.0/25" and an ipv6 prefix "2001:db8:8000::/33" to "PID1", (2) deletes "PID2", and (3)
assigns a new "tag" to the network map:

Section 11.2.1.6 of [RFC7285]

  {
    "meta" : {
      "vtag": {
        "resource-id" : "my-network-map",
        "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
      }
    },
    "network-map" : {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25" ]
      },
      "PID2" : {
        "ipv4" : [ "198.51.100.128/25" ]
      },
      "PID3" : {
        "ipv4" : [ "0.0.0.0/0" ],
        "ipv6" : [ "::/0" ]
      }
    }
  }

  {
    "meta" : {
      "vtag" : {
        "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      }
    },
    "network-map": {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25",
                   "203.0.113.0/25" ],
        "ipv6" : [ "2001:db8:8000::/33" ]
      },
      "PID2" : null
    }
  }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc7285#section-11.2.1.6


Applying the JSON merge patch update to the initial network map is equivalent to the following
ALTO network map:

  {
    "meta" : {
      "vtag": {
        "resource-id" : "my-network-map",
        "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      }
    },
    "network-map" : {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25",
                   "203.0.113.0/25" ],
        "ipv6" : [ "2001:db8:8000::/33" ]
      },
      "PID3" : {
        "ipv4" : [ "0.0.0.0/0" ],
        "ipv6" : [ "::/0" ]
      }
    }
  }

3.1.2.2. JSON Merge Patch Cost Map Messages 
 defines the format of an ALTO cost map message. Assume a simple

example ALTO message for an initial cost map:
Section 11.2.3.6 of [RFC7285]

  {
    "meta" : {
      "dependent-vtags" : [
        {"resource-id": "my-network-map",
         "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
        }
      ],
      "cost-type" : {
        "cost-mode"  : "numerical",
        "cost-metric": "routingcost"
      },
      "vtag": {
        "resource-id" : "my-cost-map",
        "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
      }
    },
    "cost-map" : {
      "PID1": { "PID1": 1,  "PID2": 5,  "PID3": 10 },
      "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
      "PID3": { "PID1": 20, "PID2": 15  }
    }
  }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc7285#section-11.2.3.6


3.2. Incremental Encoding: JSON Patch 

The following JSON merge patch message updates the example cost map so that (1) the "tag" field
of the cost map is updated, (2) the cost of PID1->PID2 is 9 instead of 5, (3) the cost of PID3->PID1 is
no longer available, and (4) the cost of PID3->PID3 is defined as 1.

Hence, applying the JSON merge patch to the initial cost map is equivalent to the following ALTO
cost map:

  {
    "meta" : {
      "vtag": {
        "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      }
    }
    "cost-map" : {
      "PID1" : { "PID2" : 9 },
      "PID3" : { "PID1" : null, "PID3" : 1 }
    }
  }

  {
    "meta" : {
      "dependent-vtags" : [
        {"resource-id": "my-network-map",
         "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
        }
      ],
      "cost-type" : {
        "cost-mode"  : "numerical",
        "cost-metric": "routingcost"
      },
      "vtag": {
        "resource-id": "my-cost-map",
        "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      }
    },
    "cost-map" : {
      "PID1": { "PID1": 1,  "PID2": 9,  "PID3": 10 },
      "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
      "PID3": {             "PID2": 15, "PID3": 1  }
    }
  }

3.2.1. JSON Patch Encoding 

One issue of JSON merge patch is that it does not handle array changes well. In particular, JSON
merge patch considers an array as a single object and hence can only replace an array in its
entirety. When the change is to make a small change to an array, such as the deletion of an
element from a large array, whole-array replacement is inefficient. Consider the example in 
Section 3.1.2.1. To add a new entry to the ipv4 array for PID1, the server needs to send a whole

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 10



3.2.2. JSON Patch ALTO Messages 

To provide both examples of JSON patch and a demonstration of the difference between JSON
patch and JSON merge patch, the sections below show the application of JSON patch to the same
updates shown in Section 3.1.2.

3.2.2.1. JSON Patch Network Map Messages 
First, consider the same update as in Section 3.1.2.1 for the network map. Below is the encoding
using JSON patch:

new array. Another issue is that JSON merge patch cannot change a value to be null, as the JSON
merge patch processing algorithm (MergePatch in Section 3.1.1) interprets a null as a removal
instruction. On the other hand, some ALTO resources can have null values, and it is possible that
the update will want to change the new value to be null.

JSON patch  can address the preceding issues. It defines a set of operators to modify a
JSON object. See  for the normative definition.

[RFC6902]
[RFC6902]

  [
    {
      "op": "replace",
      "path": "/meta/vtag/tag",
      "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
    },
    {
      "op": "add",
      "path": "/network-map/PID1/ipv4/2",
      "value": "203.0.113.0/25"
    }
    {
      "op": "add",
      "path": "/network-map/PID1/ipv6",
      "value": ["2001:db8:8000::/33"]
    },
    {
      "op": "remove",
      "path": "/network-map/PID2"
    }
  ]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 11



3.2.2.2. JSON Patch Cost Map Messages 
Compared with JSON merge patch, JSON patch does not encode cost map updates efficiently.
Consider the cost map update shown in Section 3.1.2.2, the encoding using JSON patch is:

3.3. Multiplexing and Server Push: HTTP/2 
HTTP/2  provides two related features: multiplexing and server push. In particular,
HTTP/2 allows a client and a server to multiplex multiple HTTP requests and responses over a
single TCP connection. The requests and responses can be interleaved on a block (frame) by
block (frame) basis, by indicating the requests and responses in HTTP/2 messages, avoiding the
head-of-line blocking problem encountered with HTTP/1.1. To achieve the same goal, this design
introduces substream-id to allow a client to receive updates to multiple resources. HTTP/2 also
provides a server-push facility to allow a server to send asynchronous updates.

Despite the two features of HTTP/2, this design chooses a design compatible with HTTP/1.x for the
simplicity of HTTP/1.x. A design based on HTTP/2 may more likely need to be implemented using
a more complex HTTP/2 client library. In such a case, one approach for using server push for
updates is for the update stream server to send each data update message as a separate server-
push item and let the client apply those updates as they arrive. An HTTP/2 client library may not
necessarily inform a client application when the server pushes a resource. Instead, the library
might cache the pushed resource and only deliver it to the client when the client explicitly
requests that URI. Further, it is more likely that a design based on HTTP/2 may encounter issues
with a proxy between the client and the server, in that server push is optional and can be
disabled by any proxy between the client and the server. This is not a problem for the intended
use of server push; eventually, the client will request those resources, so disabling server push
just adds a delay. But this means that Server Push is not suitable for resources that the client does
not know to request.

  [
    {
      "op": "replace",
      "path": "/meta/vtag/tag",
      "value": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
    },
    {
      "op": "replace",
      "path": "/cost-map/PID1/PID2",
      "value": 9
    },
    {
      "op": "remove",
      "path": "/cost-map/PID3/PID1"
    },
    {
      "op": "replace",
      "path": "/cost-map/PID3/PID3",
      "value": 1
    }
  ]

[RFC7540]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 12



Thus, this design leaves a design based on HTTP/2 as a future work and focuses on ALTO updates
on HTTP/1.x and .[SSE]

3.4. Server Push: Server-Sent Event 
Server-Sent Events (SSE) are techniques that can work with HTTP/1.1. The following is a non-
normative summary of SSE; see  for its normative definition.

SSE enable a server to send new data to a client by "server push". The client establishes an HTTP 
  connection to the server and keeps the connection open. The server

continually sends messages. Each message has one or more lines, where a line is terminated by a
carriage return immediately followed by a new line, a carriage return not immediately followed
by a new line, or a new line not immediately preceded by a carriage return. A message is
terminated by a blank line (two line terminators in a row).

Each line in a message is of the form "field-name: string value". Lines with a blank field name
(that is, lines that start with a colon) are ignored, as are lines that do not have a colon. The
protocol defines three field names: event, id, and data. If a message has more than one "data"
line, the value of the data field is the concatenation of the values on those lines. There can be
only one "event" and "id" line per message. The "data" field is required; the others are optional.

Figure 1 is a sample SSE stream, starting with the client request. The server sends three events
and then closes the stream.

[SSE]

[RFC7230] [RFC7231]

Figure 1: A Sample SSE Stream 

  (Client request)
  GET /stream HTTP/1.1
  Host: example.com
  Accept: text/event-stream

  (Server response)
  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: start
  id: 1
  data: hello there

  event: middle
  id: 2
  data: let's chat some more ...
  data: and more and more and ...

  event: end
  id: 3
  data: goodbye

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 13



4. Overview of Approach and High-Level Protocol Message
Flow 
With the preceding background, this section now gives a non-normative overview of the update
mechanisms and message flow to be defined in later sections of this document. Figure 2 gives the
main components and overall message flow.

Figure 2: ALTO SSE Architecture and Message Flow 

 -------------------------------------------------------------------
|                                                                   |
|          +-------+         +-------+ 1. init request   +------+   |
|          |       |         |       | <--------------   |      |   |
|          |       |         |       | -------------->   |      |   |
| 3.add/   |       |         |       | 1'. control URI   |      |   |
| remove   |       |         |       |                   |      |   |
| resource |Stream |         |Update |                   |      |   |
  -------->|Control| private |Stream | 2a. data update   |Client| --
           |Server |<------->|Server | messages          |      |
  -------- |       |         |       | --------------->  |      | <-
| response |       |         |       | --------------->  |      |   |
|          |       |         |       | 2b. control update|      |   |
|          +-------+         +-------+ messages          +------+   |
|                                                                   |
 -------------------------------------------------------------------

4.1. Update Stream Service Message Flow 
The building block of the update mechanism defined in this document is the update stream
service (defined in Section 6), where each update stream service is a POST-mode service that
provides update streams.

Note that the lines of the format "** ... **" are used to describe message flows in this section and
the following sections.

** Initial request: client -> update server **:
When an ALTO client requests an update stream service, the ALTO client establishes a
persistent connection to the update stream server and submits an initial update-stream
request (defined in Section 6.5), creating an update stream. This initial request creating the
update stream is labeled "1. init request" in Figure 2.

An update stream can provide updates to both GET-mode resources, such as ALTO network
and cost maps, and POST-mode resources, such as ALTO endpoint property service. Also, to
avoid creating too many update streams, this design allows an ALTO client to use one update
stream to receive updates to multiple requests. In particular, the client may request to receive
updates for the same resource but with different parameters for a POST-mode resource, in
addition to being able to consolidate updates for multiple resources into a single stream. The

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 14



updates for each request is called a substream and hence the update server needs an
identifier to indicate the substream when sending an update. To achieve this goal, the client
assigns a unique substream-id when requesting updates to a resource in an update stream,
and the server puts the substream-id in each update.

** Data updates: update server -> client **:
The objective of an update stream is to continuously push (to an ALTO client) the data value
changes for a set of resources, where the set of resources is specified by the ALTO client's
requests. This document refers to messages sending such data-value changes as data update
messages (defined in Section 5.2). Although an update stream may update one or more
requests, each data update message updates only one request and is sent as a Server-Sent
Event (SSE), as defined by . A data update message is encoded either as a full
replacement or as an incremental change. A full replacement uses the JSON message format
defined by the ALTO protocol. There can be multiple encodings for incremental changes. The
current design supports incremental changes using JSON merge patch  or JSON
patch  to describe the changes of the resource. Future documents may define
additional mechanisms for incremental changes. The update stream server decides when to
send data update messages and whether to send full replacements or incremental changes.
These decisions can vary from resource to resource and from update to update. Since the
transport is a design compatible with HTTP/1.x, data update messages are delivered reliably
and in order, and the lossless, sequential delivery of its messages allows the server to know
the exact state of the client to compute the correct incremental updates. Figure 2 shows
examples of data update messages (labeled "2a. data update messages") in the overall message
flow. 

** Control updates: update server -> client **:
An update stream can run for a long time and hence there can be status changes at the update
stream server side during the lifetime of an update stream; for example, the update stream
server may encounter an error or need to shut down for maintenance. To support a robust,
flexible protocol design, this document allows the update stream server to send control
update messages (defined in Section 5.3) in addition to data update messages to the ALTO
client. Figure 2 shows that both data updates and control updates can be sent by the server to
the client (labeled "2b. control update messages"). 

[SSE]

[RFC7396]
[RFC6902]

4.2. Stream Control Service Message Flow 

** Stream control: client -> stream control server **:
In addition to control changes triggered from the update stream server side, in a flexible
design, an ALTO client may initiate control changes as well, in particular, by adding or
removing ALTO resources receiving updates. An ALTO client initiates such changes using the
stream control service (defined in Section 7). Although one may use a design that the client
uses as the same HTTP connection to send the control requests, it requires stronger server
support, such as HTTP pipeline. For more flexibility, this document introduces stream control
service. In particular, the update stream server of an update stream uses the first message to
provide the URI of the stream control service (labeled "1': control URI" in Figure 2).

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 15



The ALTO client can then use the URI to ask the stream control server specified in the URI to
request the update stream server to (1) send data update messages for additional resources,
(2) stop sending data update messages for previously requested resources, or (3) gracefully
stop and close the update stream altogether.

4.3. Service Announcement and Management Message Flow 

** Service announcements: IRD server -> client **:
An update server may provide any number of update stream services, where each update
stream may provide updates for a given subset of the ALTO server's resources. An ALTO
server's Information Resource Directory (IRD) defines the update stream services and
declares the set of resources for which each update stream service provides updates. The
ALTO server selects the resource set for each update stream service. It is recommended that if
a resource depends on one or more other resource(s) (indicated with the "uses" attribute
defined in ), these other resource(s) should also be part of that update stream. Thus,
the update stream for a cost map should also provide updates for the network map on which
that cost map depends. 

** Service management (server) **:
An ALTO client may request any number of update streams simultaneously. Because each
update stream consumes resources on the update stream server, an update stream server
may require client authorization and/or authentication, limit the number of open update
streams, close inactive streams, or redirect an ALTO client to another update stream server. 

[RFC7285]

5. Update Messages: Data Update and Control Update Messages 
This section defines the format of update messages sent from the server to the client. It first
defines the generic structure of update messages (Section 5.1). It then defines the details of the
data update messages (Section 5.2) and the control update messages (Section 5.3). These messages
will be used in the next two sections to define the update stream service (Section 6) and the
stream control service (Section 7).

5.1. Generic ALTO Update Message Structure 
Both data update and control update messages from the server to the client have the same basic
structure. Each message includes a data field to provide data information, which is typically a
JSON object, and an event field preceding the data field, to specify the media type indicating the
encoding of the data field.

A data update message needs additional information to identify the ALTO data (object) to which
the update message applies. To be generic, this document uses a data-id to identify the ALTO data
(object) to be updated; see below.

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 16



Hence, the event field of ALTO update message can include two subfields (media-type and data-
id), where the two subfields are separated by a comma (',', U+002C):

According to , the comma character is not allowed in a media-type name
so there is no ambiguity when decoding of the two subfields.

Note that an update message does not use the SSE "id" field.

      media-type [ ',' data-id ]

Section 4.2 of [RFC6838]

5.2. ALTO Data Update Message 
A data update message is sent when a monitored resource changes. As discussed in the preceding
section, the event field of a data update message includes two subfields: 'media-type' and 'data-
id'.

The 'media-type' subfield depends on whether the data update is a complete specification of the
identified data or an incremental patch (e.g., a JSON merge patch or JSON patch), if possible,
describing the changes from the last version of the data. This document refers to these as full
replacement and incremental change, respectively. The encoding of a full replacement is defined
by its defining document (e.g., network and cost map messages by ) and uses the media
type defined in that document. The encoding of JSON merge patch is defined by , with
the media type "application/merge-patch+json"; the encoding of JSON patch is defined by 

, with media type "application/json-patch+json".

The 'data-id' subfield identifies the ALTO data to which the data update message applies.

First, consider the case that the resource contains only a single JSON object. For example, since
an ALTO client can request data updates for both a cost map resource (object) and its dependent
network map resource (object) in the same update stream, to distinguish the updates, the client
assigns a substream-id for each resource receiving data updates. Substream-ids  be unique
within an update stream but need not be globally unique. A substream-id is encoded as a JSON
string with the same format as that of the type ResourceID ( ). The type
SubstreamID is used in this document to indicate a string of this format. The substream-id of a
single JSON object is the 'data-id'.

As an example, assume that the ALTO client assigns substream-id "1" in its request to receive
updates to the network map and substream-id "2" to the cost map. Then, the substream-ids are
the data-ids indicating which objects will be updated. Figure 3 shows some examples of ALTO
data update messages:

[RFC7285]
[RFC7396]

[RFC6902]

MUST

Section 10.2 of [RFC7285]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc6838#section-4.2
https://www.rfc-editor.org/rfc/rfc7285#section-10.2


Next, consider the case that a resource may include multiple JSON objects. This document
considers the case that a resource may contain multiple components (parts), and they are
encoded using the media type "multipart/related" . Each part of this multipart response

 be an HTTP message including a Content-ID header and a JSON object body. Each
component requiring the update stream service (defined in Section 6)  be identified by a
unique Content-ID to be defined in its defining document.

For a resource using the media type "multipart/related", the 'data-id' subfield  be the
concatenation of the substream-id, the '.' separator (U+002E), and the unique Content-ID, in
order.

Figure 3: Examples of ALTO Data Update Messages 

  event: application/alto-networkmap+json,1
  data: { ... full network map message ... }

  event: application/alto-costmap+json,2
  data: { ... full cost map message ... }

  event: application/merge-patch+json,2
  data: { ... JSON merge patch update for the cost map ... }

[RFC2387]
MUST

MUST

MUST

5.3. ALTO Control Update Message 
Control update messages have the media type "application/alto-updatestreamcontrol+json", and
the data is of type UpdateStreamControlEvent:

control-uri:
the URI providing stream control for this update stream (see Section 7). The server sends a
control update message notifying the client of the control-uri. This control update message
notifying the control-uri will be sent once and  be the first event in an update stream. If
the URI value is NULL, the update stream server does not support stream control for this
update stream; otherwise, the update stream server provides stream control through the
given URI. 

started:
a list of substream-ids of resources. It notifies the ALTO client that the update stream server
will start sending data update messages for each resource listed. 

  object {
     [String          control-uri;]
     [SubstreamID     started<1..*>;]
     [SubstreamID     stopped<1..*>;]
     [String          description;]
  } UpdateStreamControlEvent;

MUST

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 18



stopped:
a list of substream-ids of resources. It notifies the ALTO client that the update stream server
will no longer send data update messages for the listed resources. There can be multiple
reasons for an update stream server to stop sending data update messages for a resource,
including a request from the ALTO client using stream control (Section 6.7.1) or an internal
server event. 

description:
a non-normative, human-readable text providing an explanation for the control event. When
an update stream server stops sending data update messages for a resource, it is 

 that the update stream server use the description field to provide details.
There can be multiple reasons that trigger a "stopped" event; see above. The intention of this
field is to provide a human-readable text for the developer and/or the administrator to
diagnose potential problems. 

RECOMMENDED

6. Update Stream Service 
An update stream service returns a stream of update messages, as defined in Section 5. An ALTO
server's IRD (Information Resource Directory)  define one or more update stream services,
which ALTO clients use to request new update stream instances. An IRD entry defining an update
stream service  define the media type, HTTP method, and capabilities and uses as follows.

6.1. Media Type 
The media type of an ALTO update stream service is "text/event-stream", as defined by .

6.2. HTTP Method 
An ALTO update stream service is requested using the HTTP POST method.

MAY

MUST

[SSE]

6.3. Capabilities 
The capabilities are defined as an object of type UpdateStreamCapabilities:

If this update stream can provide data update messages with incremental changes for a resource,
the "incremental-change-media-types" field has an entry for that resource-id, and the value is the
supported media types of the incremental change separated by commas. Normally, this will be
"application/merge-patch+json", "application/json-patch+json", or "application/merge-patch

  object {
    IncrementalUpdateMediaTypes incremental-change-media-types;
    Boolean                     support-stream-control;
  } UpdateStreamCapabilities;

  object-map {
     ResourceID -> String;
  } IncrementalUpdateMediaTypes;

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 19



+json,application/json-patch+json", because, as described in Section 5, they are the only
incremental change types defined by this document. However, future extensions may define
other types of incremental changes.

When choosing the media types to encode incremental changes for a resource, the update stream
server  consider the limitations of the encoding. For example, when a JSON merge patch
specifies that the value of a field is null, its semantics are that the field is removed from the target
and hence the field is no longer defined (i.e., undefined); see the MergePatch algorithm in Section
3.1.1 on how null value is processed. This, however, may not be the intended result for the
resource, when null and undefined have different semantics for the resource. In such a case, the
update stream server  choose JSON patch over JSON merge patch if JSON patch is indicated
as a capability of the update stream server. If the server does not support JSON patch to handle
such a case, the server then need to send a full replacement.

The "support-stream-control" field specifies whether the given update stream supports stream
control. If the "support-stream-control" field is "true", the update stream server will use the
stream control specified in this document; otherwise, the update stream server may use other
mechanisms to provide the same functionality as stream control.

MUST

MUST

6.4. Uses 
The "uses" attribute  be an array with the resource-ids of every resource for which this
update stream can provide updates. Each resource specified in the "uses"  support full
replacement; the update stream server can always send full replacement, and the ALTO client 

 accept full replacement.

This set may be any subset of the ALTO server's resources and may include resources defined in
linked IRDs. However, it is  that the ALTO server selects a set that is closed under
the resource dependency relationship. That is, if an update stream's "uses" set includes resource
R1 and resource R1 depends on ("uses") resource R0, then the update stream's "uses" set 
include R0 as well as R1. For example, an update stream for a cost map  also provide
updates for the network map upon which that cost map depends.

MUST
MUST

MUST

RECOMMENDED

SHOULD
SHOULD

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 20



6.5. Request: Accept Input Parameters 
An ALTO client specifies the parameters for the new update stream by sending an HTTP POST
body with the media type "application/alto-updatestreamparams+json". That body contains a
JSON object of type UpdateStreamReq, where:

add:
Specifies the resources (and the parameters for the resources) for which the ALTO client
wants updates. In the scope of the same update stream, the ALTO client  assign a
substream-id that is unique in the scope of the update stream (Section 5.2) for each entry and
use those substream-ids as the keys in the "add" field. 

resource-id:
The resource-id of an ALTO resource and  be in the update stream's "uses" list (Section
6.4). If the resource-id is a GET-mode resource with a version tag (or "vtag"), as defined in
Sections 6.3 and 10.3 of , and the ALTO client has previously retrieved a version of
that resource from the update stream server, the ALTO client  set the "tag" field to the tag
part of the client's version of that resource. If that version is not current, the update stream
server  send a full replacement before sending any incremental changes, as described in
Section 6.7.1. If that version is still current, the update stream server  omit the initial full
replacement. 

incremental-changes:
The ALTO client specifies whether it is willing to receive incremental changes from the update
stream server for this substream. If the "incremental-changes" field is "true", the update
stream server  send incremental changes for this substream. In this case, the client 
support all incremental methods from the set announced in the server's capabilities for this
resource; see Section 6.3 for the server's announcement of potential incremental methods. If a
client does not support all incremental methods from the set announced in the server's
capabilities, the client can set "incremental-changes" to "false", and the update stream server
then  send incremental changes for that substream. The default value for

  object {
     [AddUpdatesReq   add;]
     [SubstreamID     remove<0..*>;]
  } UpdateStreamReq;

  object-map {
     SubstreamID -> AddUpdateReq;
  } AddUpdatesReq;

  object {
     ResourceID   resource-id;
     [JSONString  tag;]
     [Boolean     incremental-changes;]
     [Object      input;]
  } AddUpdateReq;

MUST

MUST

[RFC7285]
MAY

MUST
MAY

MAY MUST

MUST NOT

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc7285#section-6.3
https://www.rfc-editor.org/rfc/rfc7285#section-10.3


"incremental-changes" is "true", so to suppress incremental changes, the ALTO client 
explicitly set "incremental-changes" to "false". An alternative design of incremental-changes
control is a more fine-grained control, by allowing a client to select a subset of incremental
methods from the set announced in the server's capabilities. But this alternative design is not
adopted in this document, because it adds complexity to the server, which is more likely to be
the bottleneck. Note that the ALTO client cannot suppress full replacement. When the ALTO
client sets "incremental-changes" to "false", the update stream server  send a full
replacement instead of an incremental change to the ALTO client. The update stream server 

 wait until more changes are available and send a single full replacement with those
changes. Thus, an ALTO client that declines to accept incremental changes may not get
updates as quickly as an ALTO client that does. 

input:
If the resource is a POST-mode service that requires input, the ALTO client  set the
"input" field to a JSON object with the parameters that the resource expects. 

remove:
It is used in update stream control requests (Section 7) and is not allowed in the update
stream request. The update stream server  ignore this field if it is included in the
request. 

If a request has any errors, the update stream server  create an update stream. Also,
the update stream server will send an error response to the ALTO client, as specified in Section
6.6.

MUST

MUST

MAY

MUST

SHOULD

MUST NOT

6.6. Response 
If the update stream request has any errors, the update stream server  return an HTTP "400
Bad Request" to the ALTO client; the body of the response follows the generic ALTO error
response format specified in . Hence, an example ALTO error response
has the format:

MUST

Section 8.5.2 of [RFC7285]

       HTTP/1.1 400 Bad Request
       Content-Length: 131
       Content-Type: application/alto-error+json
       Connection: Closed

       {
           "meta":{
               "code":  "E_INVALID_FIELD_VALUE",
               "field": "add/my-network-map/resource-id",
               "value": "my-networkmap/#"
           }
       }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 22

https://www.rfc-editor.org/rfc/rfc7285#section-8.5.2


Note that "field" and "value" are optional fields. If the "value" field exists, the "field" field 
exist.

If an update stream request does not have an "add" field specifying one or more resources,
the error code of the error message  be E_MISSING_FIELD and the "field" field 
be "add". The update stream server  close the stream without sending any events. 
If the "resource-id" field is invalid or is not associated with the update stream, the error code
of the error message  be E_INVALID_FIELD_VALUE. The "field" field  be the full
path of the "resource-id" field, and the "value" field  be the invalid resource-id. If
there are more than one invalid resource-ids, the update stream server  pick one
and return it. The update stream server  close the stream (i.e., TCP connection) without
sending any events. 
If the resource is a POST-mode service that requires input, the client  set the "input"
field to a JSON object with the parameters that that resource expects. If the "input" field is
missing or invalid, the update stream server  return the same error response that that
resource would return for missing or invalid input (see ). In this case, the update
stream server  close the update stream without sending any events. If the input for
several POST-mode resources is missing or invalid, the update stream server  pick one
and return it. 

The response to a valid request is a stream of update messages. Section 5 defines the update
messages, and  defines how they are encoded into a stream.

An update stream server  send updates only when the underlying values change.
However, it may be difficult for an update stream server to guarantee that in all circumstances.
Therefore, a client  assume that an update message represents an actual change.

MUST

• 
MUST SHOULD
MUST

• 
MUST SHOULD

SHOULD
SHOULD

MUST

• MUST

MUST
[RFC7285]

MUST
MUST

[SSE]

SHOULD

MUST NOT

6.7. Additional Requirements on Update Stream Service 
6.7.1. Event Sequence Requirements 

The first event  be a control update message with the URI of the update stream control
service (see Section 7) for this update stream. Note that the value of the control-uri can be
"null", indicating that there is no control stream service. 
As soon as possible, after the ALTO client initiates the connection, the update stream server
checks the "tag" field for each added update request. If the "tag" field is not specified in an
added update request, the update stream server  first send a full replacement for the
request. If the "tag" field is specified, the client can accept incremental changes, and the
server can compute an incremental update based on the "tag" (the server needs to ensure
that for a POST resource with input, the "tag" should indicate the correct result for different
inputs); the update stream server  omit the initial full replacement. 
If this update stream provides updates for resource-ids R0 and R1 and if R1 depends on R0,
then the update stream server  send the update for R0 before sending the related
updates for R1. For example, suppose an update stream provides updates to a network map
and its dependent cost maps. When the network map changes, the update stream server 

 send the network map update before sending the cost map updates. 

• MUST

• 

MUST

MAY
• 

MUST

MUST

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 23



When the ALTO client uses the stream control service to stop updates for one or more
resources (Section 7), the ALTO client  send a stream control request. The update
stream server  send a control update message whose "stopped" field has the substream-
ids of all stopped resources. 

• 
MUST

MUST

6.7.2. Cross-Stream Consistency Requirements 

If multiple ALTO clients create multiple update streams from the same update stream resource
and with the same update request parameters (i.e., same resource and same input), the update
stream server  send the same updates to all of them. However, the update stream server 

 pack data items into different patch events, as long as the net result of applying those
updates is the same.

For example, suppose two different ALTO clients create two different update streams for the
same cost map, and suppose the update stream server processes three separate cost point
updates with a brief pause between each update. The server  send all three new cost points
to both clients. But the update stream server  send a single patch event (with all three cost
points) to one ALTO client while sending three separate patch events (with one cost point per
event) to the other ALTO client.

An update stream server  offer several different update stream resources that provide
updates to the same underlying resource (that is, a resource-id may appear in the "uses" field of
more than one update stream resource). In this case, those update stream resources  return
the same update.

MUST
MAY

MUST
MAY

MAY

MUST

6.7.3. Multipart Update Requirements 

This design allows any valid media type for full replacement. Hence, it supports ALTO resources
using multipart to contain multiple JSON objects. This realizes the push benefit but not the
incremental encoding benefit of SSE.

JSON patch and merge patch provide the incremental encoding benefit but can be applied to only
a single JSON object. If an update stream service supports a resource providing a multipart
media type, which we refer to as a multipart resource, then the update stream service needs to
handle the issue that the message of a full multipart resource can include multiple JSON objects.
To address the issue, when an update stream service specifies that it supports JSON patch or
merge patch incremental updates for a multipart resource, the service  ensure that (1) each
part of a multipart message is a single JSON object, (2) each part is specified by a static Content-ID
in the initial full message, (3) each data update event applies to only one part, and (4) each data
update specifies substream-id.content-id as the "event" field of the event, to identify the part to be
updated.

MUST

6.8. Keep-Alive Messages 
In an SSE stream, any line that starts with a colon (U+003A) character is a comment, and an ALTO
client  ignore that line . As recommended in , an update stream server 
send a comment line (or an event) every 15 seconds to prevent ALTO clients and proxy servers
from dropping the HTTP connection. Note that although TCP also provides a Keep-Alive function,

MUST [SSE] [SSE] SHOULD

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 24



the interval between TCP Keep-Alive messages can depend on the OS configuration and varies.
The preceding recommended SSE Keep-Alive allows the SSE client to detect the status of the
update stream server with more certainty.

7. Stream Control Service 
A stream control service allows an ALTO client to remove resources from the set of resources
that are monitored by an update stream or add additional resources to that set. The service also
allows an ALTO client to gracefully shut down an update stream.

When an update stream server creates a new update stream and if the update stream server
supports stream control for the update stream, the update stream server creates a stream control
service for that update stream. An ALTO client uses the stream control service to remove
resources from the update stream instance or to request updates for additional resources. An
ALTO client cannot obtain the stream control service through the IRD. Instead, the first event that
the update stream server sends to the ALTO client has the URI for the associated stream control
service (see Section 5.3).

Each stream control request is an individual HTTP request. The ALTO client  send multiple
stream control requests to the stream control server using the same HTTP connection.

7.1. URI 
The URI for a stream control service, by itself,  uniquely specify the update stream instance
that it controls. The stream control server  use other properties of an HTTP request,
such as cookies or the client's IP address, to determine the update stream. Furthermore, an
update stream server  reuse a control service URI once the associated update stream
has been closed.

The ALTO client  evaluate a relative control URI reference  (for example, a URI
reference without a host or with a relative path) in the context of the URI used to create the
update stream. The stream control service's host  be different from the update stream's host.

It is expected that there is an internal mechanism to map a stream control URI to the unique
update stream instance to be controlled. For example, the update stream service may assign a
unique, internal stream id to each update stream instance. However, the exact mechanism is left
to the update stream service provider.

To prevent an attacker from forging a stream control URI and sending bogus requests to disrupt
other update streams, the service should consider two security issues. First, if http, not https, is
used, the stream control URI can be exposed to an on-path attacker. To address this issue, in a
setting where the path from the server to the client can traverse such an attacker, the server 

 use https. Second, even without direct exposure, an off-path attacker may guess valid
stream control URIs. To address this issue, the server  choose stream control URIs with
enough randomness to make guessing difficult; the server  introduce mechanisms that

MAY

MUST
MUST NOT

MUST NOT

MUST [RFC3986]

MAY

SHOULD
SHOULD

SHOULD

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 25



detect repeated guesses indicating an attack (e.g., keeping track of the number of failed stream
control attempts). Please see the W3C's "Good Practices for Capability URLs" 

.

7.2. Media Type 
An ALTO stream control response does not have a specific media type.

7.3. HTTP Method 
An ALTO update stream control resource is requested using the HTTP POST method.

7.4. IRD Capabilities & Uses 
None (Stream control services do not appear in the IRD).

<https://www.w3.org/
TR/capability-urls/>

7.5. Request: Accept Input Parameters 
A stream control service accepts the same input media type and input parameters as the update
stream service (Section 6.5). The only difference is that a stream control service also accepts the
"remove" field.

If specified, the "remove" field is an array of substream-ids the ALTO client previously added to
this update stream. An empty "remove" array is equivalent to a list of all currently active
resources; the update stream server responds by removing all resources and closing the stream.

An ALTO client  use the "add" field to add additional resources. The ALTO client  assign
a unique substream-id to each additional resource. Substream-ids  be unique over the
lifetime of this update stream; an ALTO client  reuse a previously removed substream-
id. The processing of an "add" resource is the same as discussed in Sections 6.5 and 6.6.

If a request has any errors, the update stream server  add or remove any resources
from the associated update stream. Also, the stream control server will return an error response
to the client, as specified in Section 7.6.

MAY MUST
MUST

MUST NOT

MUST NOT

7.6. Response 
The stream control server  process the "add" field before the "remove" field. If the request
removes all active resources without adding any additional resources, the update stream server 

 close the update stream. Thus, an update stream cannot have zero resources.

If the request has any errors, the stream control server  return an HTTP "400 Bad Request"
to the ALTO client. The body part of the response follows the generic ALTO error response format
specified in . An error response has the same format as specified in 
Section 6.6. Detailed error code and error information are specified as below.

If the "add" request does not satisfy the requirements in Section 6.5, the stream control
server  return the ALTO error message defined in Section 6.6. 

MUST

MUST

MUST

Section 8.5.2 of [RFC7285]

• 
MUST

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 26

https://www.w3.org/TR/capability-urls/
https://www.w3.org/TR/capability-urls/
https://www.rfc-editor.org/rfc/rfc7285#section-8.5.2


If any substream-id in the "remove" field was not added in a prior request, the error code of
the error message  be E_INVALID_FIELD_VALUE, the "field" field  be "remove",
and the "value" field  be an array of the invalid substream-ids. Thus, it is illegal to
"add" and "remove" the same substream-id in the same request. However, it is legal to
remove a substream-id twice. To support the preceding checking, the update stream server 

 keep track of previously used but now closed substream-ids. 
If any substream-id in the "add" field has been used before in this stream, the error code of
the error message  be E_INVALID_FIELD_VALUE, the "field" field  be "add", and
the "value" field  be an array of invalid substream-ids. 
If the request has a non-empty "add" field and a "remove" field with an empty list of
substream-ids (to replace all active resources with a new set, the client  explicitly
enumerate the substream-ids to be removed), the error code of the error message  be
E_INVALID_FIELD_VALUE, the "field" field  be "remove", and the "value" field 

 be an empty array. 

If the request is valid but the associated update stream has been closed, then the stream control
server  return an HTTP "404 Not Found".

If the request is valid and the stream control server successfully processes the request without
error, the stream control server should return either an HTTP "202 Accepted" response or an
HTTP "204 No Content" response. The difference is that for the latter case, the stream control
server is sure that the update stream server has also processed the request. Regardless of a 202
or 204 HTTP response, the final updates of related resources will be notified by the update
stream server using its control update message(s), due to the modular design.

• 
MUST SHOULD

SHOULD

MUST
• 

MUST SHOULD
SHOULD

• 
MUST

MUST
SHOULD

SHOULD

MUST

8. Examples 

8.1. Example: IRD Announcing Update Stream Services 
Below is an example IRD announcing three update stream services. The first, which is named
"update-my-costs", provides updates for the network map, the "routingcost" and "hopcount" cost
maps, and a Filtered Cost Map resource. The second, which is named "update-my-prop", provides
updates to the endpoint properties service. The third, which is named "update-my-pv", provides
updates to a nonstandard ALTO service returning a multipart response.

Note that in the "update-my-costs" update stream shown in the example IRD, the update stream
server uses JSON patch for network map, and it uses JSON merge patch to update the other
resources. Also, the update stream will only provide full replacements for "my-simple-filtered-
cost-map".

Also, note that this IRD defines two Filtered Cost Map resources. They use the same cost types,
but "my-filtered-cost-map" accepts cost constraint tests, while "my-simple-filtered-cost-map" does
not. To avoid the issues discussed in Section 9.3, the update stream provides updates for the
second but not the first.

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 27



This IRD also announces a nonstandard ALTO service, which is named "my-pv". This service
accepts an extended endpoint cost request as an input and returns a multipart response,
including an endpoint cost resource and a property map resource. This document does not rely

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 28



on any other design details of this new service. In this document, the "my-pv" service is only used
to illustrate how the update stream service provides updates to an ALTO resource returning a
multipart response.

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 29



  "my-network-map": {
    "uri": "https://alto.example.com/networkmap",
    "media-type": "application/alto-networkmap+json",
  },
  "my-routingcost-map": {
    "uri": "https://alto.example.com/costmap/routingcost",
    "media-type": "application/alto-costmap+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost"]
    }
  },
  "my-hopcount-map": {
    "uri": "https://alto.example.com/costmap/hopcount",
    "media-type": "application/alto-costmap+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-hopcount"]
    }
  },
  "my-filtered-cost-map": {
    "uri": "https://alto.example.com/costmap/filtered/constraints",
    "media-type": "application/alto-costmap+json",
    "accepts": "application/alto-costmapfilter+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost", "num-hopcount"],
      "cost-constraints": true
    }
  },
  "my-simple-filtered-cost-map": {
    "uri": "https://alto.example.com/costmap/filtered/simple",
    "media-type": "application/alto-costmap+json",
    "accepts": "application/alto-costmapfilter+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost", "num-hopcount"],
      "cost-constraints": false
    }
  },
  "my-props": {
    "uri": "https://alto.example.com/properties",
    "media-type": "application/alto-endpointprops+json",
    "accepts": "application/alto-endpointpropparams+json",
    "capabilities": {
      "prop-types": ["priv:ietf-bandwidth"]
    }
  },
  "my-pv": {
    "uri": "https://alto.example.com/endpointcost/pv",
    "media-type": "multipart/related;
                   type=application/alto-endpointcost+json",
    "accepts": "application/alto-endpointcostparams+json",
    "capabilities": {
      "cost-type-names": [ "path-vector" ],
      "ane-properties": [ "maxresbw", "persistent-entities" ]
    }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 30



8.2. Example: Simple Network and Cost Map Updates 
Given the update streams announced in the preceding example IRD, the section below shows an
example of an ALTO client's request and the update stream server's immediate response, using
the update stream resource "update-my-costs". In the example, the ALTO client requests updates
for the network map and "routingcost" cost map but not for the "hopcount" cost map. The ALTO
client uses the ALTO server's resource-ids as the substream-ids. Because the client does not
provide a "tag" for the network map, the update stream server must send a full replacement for

  },
  "update-my-costs": {
    "uri": "https://alto.example.com/updates/costs",
    "media-type": "text/event-stream",
    "accepts": "application/alto-updatestreamparams+json",
    "uses": [
       "my-network-map",
       "my-routingcost-map",
       "my-hopcount-map",
       "my-simple-filtered-cost-map"
    ],
    "capabilities": {
      "incremental-change-media-types": {
        "my-network-map": "application/json-patch+json",
        "my-routingcost-map": "application/merge-patch+json",
        "my-hopcount-map": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  },
  "update-my-props": {
    "uri": "https://alto.example.com/updates/properties",
    "media-type": "text/event-stream",
    "uses": [ "my-props" ],
    "accepts": "application/alto-updatestreamparams+json",
    "capabilities": {
      "incremental-change-media-types": {
        "my-props": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  },
  "update-my-pv": {
    "uri": "https://alto.example.com/updates/pv",
    "media-type": "text/event-stream",
    "uses": [ "my-pv" ],
    "accepts": "application/alto-updatestreamparams+json",
    "capabilities": {
      "incremental-change-media-types": {
        "my-pv": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 31



the network map as well as for the cost map. The ALTO client does not set "incremental-changes"
to "false", so it defaults to "true". Thus, the update stream server will send patch updates for the
cost map and the network map.

  POST /updates/costs HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 155

  { "add": {
      "my-network-map": {
        "resource-id": "my-network-map"
        },
      "my-routingcost-map": {
        "resource-id": "my-routingcost-map"
      }
    }
  }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 32



  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/3141592653589"}

  event: application/alto-networkmap+json,my-network-map
  data: {
  data:   "meta" : {
  data:     "vtag": {
  data:       "resource-id" : "my-network-map",
  data:         "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
  data:       }
  data:     },
  data:     "network-map" : {
  data:       "PID1" : {
  data:         "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25" ]
  data:       },
  data:       "PID2" : {
  data:         "ipv4" : [ "198.51.100.128/25" ]
  data:       },
  data:       "PID3" : {
  data:         "ipv4" : [ "0.0.0.0/0" ],
  data:         "ipv6" : [ "::/0" ]
  data:       }
  data:     }
  data:   }
  data: }

  event: application/alto-costmap+json,my-routingcost-map
  data: {
  data:   "meta" : {
  data:     "dependent-vtags" : [{
  data:       "resource-id": "my-network-map",
  data:       "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
  data:     }],
  data:     "cost-type" : {
  data:       "cost-mode"  : "numerical",
  data:       "cost-metric": "routingcost"
  data:     },
  data:     "vtag": {
  data:       "resource-id" : "my-routingcost-map",
  data:       "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
  data:     }
  data:   },
  data:   "cost-map" : {
  data:     "PID1": { "PID1": 1,  "PID2": 5,  "PID3": 10 },
  data:     "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
  data:     "PID3": { "PID1": 20, "PID2": 15  }
  data:   }
  data: }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 33



After sending those events immediately, the update stream server will send additional events as
the maps change. For example, the following represents a small change to the cost map. PID1-
>PID2 is changed to 9 from 5, PID3->PID1 is no longer available, and PID3->PID3 is now defined
as 1:

As another example, the following represents a change to the network map: an ipv4 prefix
"203.0.113.0/25" is added to PID1. It triggers changes to the cost map. The update stream server
chooses to send an incremental change for the network map and send a full replacement instead
of an incremental change for the cost map:

  event: application/merge-patch+json,my-routingcost-map
  data: {
  data:   "meta" : {
  data:     "vtag": {
  data:       "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
  data:     }
  data:   },
  data:   "cost-map": {
  data:     "PID1" : { "PID2" : 9 },
  data:     "PID3" : { "PID1" : null, "PID3" : 1 }
  data:   }
  data: }

      event: application/json-patch+json,my-network-map
      data: {
      data:   {
      data:     "op": "replace",
      data:     "path": "/meta/vtag/tag",
      data:     "value" :"a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      data:   },
      data:   {
      data:     "op": "add",
      data:     "path": "/network-map/PID1/ipv4/2",
      data:     "value": "203.0.113.0/25"
      data:   }
      data: }

      event: application/alto-costmap+json,my-routingcost-map
      data: {
      data:   "meta" : {
      data:     "vtag": {
      data:       "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      data:     }
      data:   },
      data:   "cost-map" : {
      data:     "PID1": { "PID1": 1,  "PID2": 3,  "PID3": 7 },
      data:     "PID2": { "PID1": 12, "PID2": 1,  "PID3": 9 },
      data:     "PID3": { "PID1": 14, "PID2": 8  }
      data:   }
      data: }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 34



8.3. Example: Advanced Network and Cost Map Updates 
This example is similar to the previous one, except that the ALTO client requests updates for the
"hopcount" cost map as well as the "routingcost" cost map and provides the current version tag
of the network map, so the update stream server is not required to send the full network map
data update message at the beginning of the stream. In this example, the client uses the
substream-ids "net", "routing", and "hops" for those resources. The update stream server sends
the stream control URI and the full cost maps, followed by updates for the network map and cost
maps as they become available:

  POST /updates/costs HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 244

  { "add": {
      "net": {
        "resource-id": "my-network-map",
        "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      },
      "routing": {
        "resource-id": "my-routingcost-map"
      },
      "hops": {
        "resource-id": "my-hopcount-map"
      }
    }
  }

  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/2718281828459"}

  event: application/alto-costmap+json,routing
  data: { ... full routingcost cost map message ... }

  event: application/alto-costmap+json,hops
  data: { ... full hopcount cost map message ... }

     (pause)

  event: application/merge-patch+json,routing
  data: {"cost-map": {"PID2" : {"PID3" : 31}}}

  event: application/merge-patch+json,hops
  data: {"cost-map": {"PID2" : {"PID3" : 4}}}

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 35



If the ALTO client wishes to stop receiving updates for the "hopcount" cost map, the ALTO client
can send a "remove" request on the stream control URI:

The update stream server sends a "stopped" control update message on the original request
stream to inform the ALTO client that updates are stopped for that resource:

Below is an example of an invalid stream control request. The "remove" field of the request
includes an undefined substream-id, and the stream control server will return an error response
to the ALTO client.

  POST /updates/streams/2718281828459 HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 24

  {
    "remove": [ "hops" ]
  }

  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

  event: application/alto-updatestreamcontrol+json
  data: {
  data:   "stopped": ["hops"]
  data: }

      POST /updates/streams/2718281828459 HTTP/1.1
      Host: alto.example.com
      Accept: text/plain,application/alto-error+json
      Content-Type: application/alto-updatestreamparams+json
      Content-Length: 31
      {
        "remove": [ "properties" ]
      }

      HTTP/1.1 400 Bad Request
      Content-Length: 89
      Content-Type: application/alto-error+json

      {
        "meta":{
        "code": "E_INVALID_FIELD_VALUE",
        "field": "remove",
        "value": "properties"
      }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 36



If the ALTO client no longer needs any updates and wishes to shut the update stream down
gracefully, the client can send a "remove" request with an empty array:

The update stream server sends a final control update message on the original request stream to
inform the ALTO client that all updates are stopped and then closes the stream:

  POST /updates/streams/2718281828459 HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 17

  {
    "remove": [ ]
  }

  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

  event: application/alto-updatestreamcontrol+json
  data: {
  data:   "stopped": ["net", "routing"]
  data: }

      (server closes stream)

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 37



8.4. Example: Endpoint Property Updates 
As another example, here is how an ALTO client can request updates for the property "priv:ietf-
bandwidth" for one set of endpoints and "priv:ietf-load" for another. The update stream server
immediately sends full replacements with the property values for all endpoints. After that, the
update stream server sends data update messages for the individual endpoints as their property
values change.

  POST /updates/properties HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 511

  { "add": {
      "props-1": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-bandwidth" ],
          "endpoints" : [
            "ipv4:198.51.100.1",
            "ipv4:198.51.100.2",
            "ipv4:198.51.100.3"
          ]
        }
      },
      "props-2": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-load" ],
          "endpoints" : [
            "ipv6:2001:db8:100::1",
            "ipv6:2001:db8:100::2",
            "ipv6:2001:db8:100::3"
          ]
        }
      }
    }
  }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 38



  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/1414213562373"}

  event: application/alto-endpointprops+json,props-1
  data: { "endpoint-properties": {
  data:     "ipv4:198.51.100.1" : { "priv:ietf-bandwidth": "13" },
  data:     "ipv4:198.51.100.2" : { "priv:ietf-bandwidth": "42" },
  data:     "ipv4:198.51.100.3" : { "priv:ietf-bandwidth": "27" }
  data:  } }

  event: application/alto-endpointprops+json,props-2
  data: { "endpoint-properties": {
  data:     "ipv6:2001:db8:100::1" : { "priv:ietf-load": "8" },
  data:     "ipv6:2001:db8:100::2" : { "priv:ietf-load": "2" },
  data:     "ipv6:2001:db8:100::3" : { "priv:ietf-load": "9" }
  data:  } }

     (pause)

  event: application/merge-patch+json,props-1
  data: { "endpoint-properties":
  data:   {"ipv4:198.51.100.1" : {"priv:ietf-bandwidth": "3"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-2
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::3" : {"priv:ietf-load": "7"}}
  data: }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 39



If the ALTO client needs the "priv:ietf-bandwidth" property and the "priv:ietf-load" property for
additional endpoints, the ALTO client can send an "add" request on the stream control URI:

  POST /updates/streams/1414213562373" HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 448

  { "add": {
      "props-3": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-bandwidth" ],
          "endpoints" : [
            "ipv4:198.51.100.4",
            "ipv4:198.51.100.5"
          ]
        }
      },
      "props-4": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-load" ],
          "endpoints" : [
            "ipv6:2001:db8:100::4",
            "ipv6:2001:db8:100::5"
          ]
        }
      }
    }
  }

  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 40



The update stream server sends full replacements for the two new resources, followed by
incremental changes for all four requests as they arrive:

  event: application/alto-endpointprops+json,props-3
  data: { "endpoint-properties": {
  data:     "ipv4:198.51.100.4" : { "priv:ietf-bandwidth": "25" },
  data:     "ipv4:198.51.100.5" : { "priv:ietf-bandwidth": "31" },
  data:  } }

  event: application/alto-endpointprops+json,props-4
  data: { "endpoint-properties": {
  data:     "ipv6:2001:db8:100::4" : { "priv:ietf-load": "6" },
  data:     "ipv6:2001:db8:100::5" : { "priv:ietf-load": "4" },
  data:  } }

     (pause)

  event: application/merge-patch+json,props-3
  data: { "endpoint-properties":
  data:   {"ipv4:198.51.100.5" : {"priv:ietf-bandwidth": "15"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-2
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::2" : {"priv:ietf-load": "9"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-4
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::4" : {"priv:ietf-load": "3"}}
  data: }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 41



8.5. Example: Multipart Message Updates 
This example shows how an ALTO client can request a nonstandard ALTO service returning a
multipart response. The update stream server immediately sends full replacements of the
multipart response. After that, the update stream server sends data update messages for the
individual parts of the response as the ALTO data (object) in each part changes.

   POST /updates/pv HTTP/1.1
   Host: alto.example.com
   Accept: text/event-stream
   Content-Type: application/alto-updatestreamparams+json
   Content-Length: 382

   {
     "add": {
       "ecspvsub1": {
         "resource-id": "my-pv",
         "input": {
           "cost-type": {
             "cost-mode": "array",
             "cost-metric": "ane-path"
           },
           "endpoints": {
             "srcs": [ "ipv4:192.0.2.2" ],
             "dsts": [ "ipv4:192.0.2.89", "ipv4:203.0.113.45" ]
           },
           "ane-properties": [ "maxresbw", "persistent-entities" ]
         }
       }
     }
   }

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 42



   HTTP/1.1 200 OK
   Connection: keep-alive
   Content-Type: text/event-stream

   event: application/alto-updatestreamcontrol+json
   data: {"control-uri":
   data:    "https://alto.example.com/updates/streams/1414"}

   event: multipart/related;boundary=example-pv;
          type=application/alto-endpointcost+json,ecspvsub1
   data: --example-pv
   data: Content-ID: ecsmap
   data: Content-Type: application/alto-endpointcost+json
   data:
   data: { ... data (object) of an endpoint cost map ... }
   data: --example-pv
   data: Content-ID: propmap
   data: Content-Type: application/alto-propmap+json
   data:
   data: { ... data (object) of a property map ... }
   data: --example-pv--

      (pause)

   event: application/merge-patch+json,ecspvsub1.ecsmap
   data: { ... merge patch for updates of ecspvsub1.ecsmap ... }

   event: application/merge-patch+json,ecspvsub1.propmap
   data: { ... merge patch for updates of ecspvsub1.propmap ... }

9. Operation and Processing Considerations 

9.1. Considerations for Choosing Data Update Messages 
The update stream server should be cognizant of the effects of its update schedule, which
includes both the choice of timing (i.e., when/what to trigger an update) and the choice of
message format (i.e., given an update, send a full replacement or an incremental change). In
particular, the update schedule can have effects on both the overhead and the freshness of
information. To minimize overhead, the server may choose to batch a sequence of updates for
resources that frequently change by sending cumulative updates or a full replacement after a
while. The update stream server should be cognizant that batching reduces the freshness of
information. The server should also consider the effect of such delays on client behaviors (see
below on client timeout on waiting for updates of dependent resources).

For incremental updates, this design allows both JSON patch and JSON merge patch for
incremental changes. JSON merge patch is clearly superior to JSON patch for describing
incremental changes to cost maps, endpoint costs, and endpoint properties. For these data
structures, JSON merge patch is more space efficient, as well as simpler to apply. There is no
advantage allowing a server to use JSON patch for those resources.

The case is not as clear for incremental changes to network maps.

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 43



First, consider small changes, such as moving a prefix from one PID to another. JSON patch could
encode that as a simple insertion and deletion, while JSON merge patch would have to replace
the entire array of prefixes for both PIDs. On the other hand, to process a JSON patch update, the
ALTO client would have to retain the indexes of the prefixes for each PID. Logically, the prefixes
in a PID are an unordered set, not an array; aside from handling updates, a client has no need to
retain the array indexes of the prefixes. Hence, to take advantage of JSON patch for network
maps, ALTO clients would have to retain additional, otherwise unnecessary, data.

Second, consider more involved changes, such as removing half of the prefixes from a PID. JSON
merge patch would send a new array for that PID, while JSON patch would have to send a list of
remove operations and delete the prefix one by one.

Therefore, each update stream server may decide on its own whether to use JSON merge patch
or JSON patch according to the changes in network maps.

9.2. Considerations for Client Processing Data Update Messages 
In general, when an ALTO client receives a full replacement for a resource, the ALTO client
should replace the current version with the new version. When an ALTO client receives an
incremental change for a resource, the ALTO client should apply those patches to the current
version of the resource.

However, because resources can depend on other resources (e.g., cost maps depend on network
maps), an ALTO client  use a dependent resource if the resource on which it depends
has changed. There are at least two ways an ALTO client can do that. The following paragraphs
illustrate these techniques by referring to network and cost map messages, although these
techniques apply to any dependent resources.

Note that when a network map changes, the update stream server  send the network map
update message before sending the updates for the dependent cost maps (see Section 6.7.1).

One approach is for the ALTO client to save the network map update message in a buffer and
continue to use the previous network map and the associated cost maps until the ALTO client
receives the update messages for all dependent cost maps. The ALTO client then applies all
network and cost map updates atomically.

Alternatively, the ALTO client  update the network map immediately. In this case, the cost
maps using the network map become invalid because they are inconsistent with the current
network map; hence, the ALTO client  mark each such dependent cost map as temporarily
invalid and  use each such cost map until the ALTO client receives a cost map update
message indicating that it is based on the new network map version tag.

The update stream server  send updates for dependent resources (i.e., the cost maps in
the preceding example) in a timely fashion. However, if the ALTO client does not receive the
expected updates, a simple recovery method is that the ALTO client closes the update stream
connection, discards the dependent resources, and reestablishes the update stream. The ALTO

MUST NOT

MUST

MAY

MUST
MUST NOT

SHOULD

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 44



client  retain the version tag of the last version of any tagged resources and give those
version tags when requesting the new update stream. In this case, if a version is still current, the
update stream server will not resend that resource.

Although not as efficient as possible, this recovery method is simple and reliable.

MAY

9.3. Considerations for Updates to Filtered Cost Maps 
If an update stream provides updates to a Filtered Cost Map that allows constraint tests, then an
ALTO client  request updates to a Filtered Cost Map request with a constraint test. In this
case, when a cost changes, the update stream server  send an update if the new value
satisfies the test. If the new value does not, whether the update stream server sends an update
depends on whether the previous value satisfied the test. If it did not, the update stream server 

 send an update to the ALTO client. But if the previous value did, then the update
stream server  send an update with a "null" value to inform the ALTO client that this cost no
longer satisfies the criteria.

An update stream server can avoid having to handle such a complicated behavior by offering
update streams only for Filtered Cost Maps that do not allow constraint tests.

MAY
MUST

SHOULD NOT
MUST

9.4. Considerations for Updates to Ordinal Mode Costs 
For an ordinal mode cost map, a change to a single cost point may require updating many other
costs. As an extreme example, suppose the lowest cost changes to the highest cost. For a
numerical mode cost map, only that one cost changes. But for an ordinal mode cost map, every
cost might change. While this document allows an update stream server to offer incremental
updates for ordinal mode cost maps, update stream server implementors should be aware that
incremental updates for ordinal costs are more complicated than for numerical costs, and ALTO
clients should be aware that small changes may result in large updates.

An update stream server can avoid this complication by only offering full replacements for
ordinal cost maps.

9.5. Considerations for SSE Text Formatting and Processing 
SSE was designed for events that consist of relatively small amounts of line-oriented text data,
and SSE clients frequently read input one line at a time. However, an update stream sends a full
cost map as a single events, and a cost map may involve megabytes, if not tens of megabytes, of
text. This has implications that the ALTO client and the update stream server may consider.

First, some SSE client libraries read all data for an event into memory and then present it to the
client as a character array. However, a client may not have enough memory to hold the entire
JSON text for a large cost map. Hence, an ALTO client  consider using an SSE library that
presents the event data in manageable chunks, so the ALTO client can parse the cost map
incrementally and store the underlying data in a more compact format.

SHOULD

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 45



Second, an SSE client library may use a low-level, generic socket read library that stores each line
of an event data, just in case the higher-level parser may need the line delimiters as part of the
protocol formatting. A server sending a complete cost map as a single line may then generate a
multi-megabyte data "line", and such a long line may then require complex memory
management at the client. It is  that an update stream server limit the lengths of
data lines.

Third, an SSE server may use a library, which may put line breaks in places that would have
semantic consequences for the ALTO updates; see Section 11. The update stream server
implementation  ensure that no line breaks are introduced to change the semantics.

RECOMMENDED

MUST

10. Security Considerations 
The security considerations ( ) of the base protocol fully apply to this
extension. For example, the same authenticity and integrity considerations (

) still fully apply; the same considerations for the privacy of ALTO users (
) also still fully apply.

The additional services (addition of update streams and stream control URIs) provided by this
extension extend the attack surface described in . Below, we discuss
the additional risks and their remedies.

10.1. Update Stream Server: Denial-of-Service Attacks 
Allowing persistent update stream connections enables a new class of Denial-of-Service attacks.

For the update stream server, an ALTO client might create an unreasonable number of update
stream connections or add an unreasonable number of substream-ids to one update stream.

To avoid these attacks on the update stream server, the server  choose to limit the
number of active streams and reject new requests when that threshold is reached. An update
stream server  also choose to limit the number of active substream-ids on any given
stream or limit the total number of substream-ids used over the lifetime of a stream and reject
any stream control request that would exceed those limits. In these cases, the update stream
server  return the HTTP status "503 Service Unavailable".

It is important to note that the preceding approaches are not the only possibilities. For example,
it may be possible for the update stream server to use somewhat more clever logic involving IP
reputation, rate-limiting, and compartmentalization of the overall threshold into smaller
thresholds that apply to subsets of potential clients.

While the preceding techniques prevent update stream DoS attacks from disrupting an update
stream server's other services, it does make it easier for a DoS attack to disrupt the update
stream service. Therefore, an update stream server  prefer to restrict update stream services
to authorized clients, as discussed in .

Section 15 of [RFC7285]
Section 15.1 of

[RFC7285] Section 15.4 of
[RFC7285]

Section 15.1.1 of [RFC7285]

SHOULD

SHOULD

SHOULD

MAY
Section 15 of [RFC7285]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc7285#section-15
https://www.rfc-editor.org/rfc/rfc7285#section-15.1
https://www.rfc-editor.org/rfc/rfc7285#section-15.4
https://www.rfc-editor.org/rfc/rfc7285#section-15.1.1
https://www.rfc-editor.org/rfc/rfc7285#section-15


Alternatively, an update stream server  return the HTTP status "307 Temporary Redirect" to
redirect the client to another ALTO server that can better handle a large number of update
streams.

10.2. ALTO Client: Update Overloading or Instability 
The availability of continuous updates can also cause overload for an ALTO client, in particular,
an ALTO client with limited processing capabilities. The current design does not include any flow
control mechanisms for the client to reduce the update rates from the server. Under overloading,
the client  choose to remove the information resources with high update rates.

Also, under overloading, the client may no longer be able to detect whether information is still
fresh or has become stale. In such a case, the client should be careful in how it uses the
information to avoid stability or efficiency issues.

10.3. Stream Control: Spoofed Control Requests and Information
Breakdown 
An outside party that can read the update stream response or that can observe stream control
requests can obtain the control URI and use that to send a fraudulent "remove" requests, thus
disabling updates for the valid ALTO client. This can be avoided by encrypting the update stream
and stream control requests (see ). Also, the update stream server echoes
the "remove" requests on the update stream, so the valid ALTO client can detect unauthorized
requests.

In general, as the architecture allows the possibility for the update stream server and the stream
control server to be different entities, the additional risks should be evaluated and remedied. For
example, the private communication path between the servers may be attacked, resulting in a
risk of communications breakdown between them, as well as invalid or spoofed messages
claiming to be on that private communications path. Proper security mechanisms, including
confidentiality, authenticity, and integrity mechanisms, should be considered.

MAY

MAY

Section 15 of [RFC7285]

11. Requirements on Future ALTO Services to Use This Design 
Although this design is quite flexible, it has underlying requirements.

The key requirements are that (1) each data update message is for a single resource and (2) an
incremental change can be applied only to a resource that is a single JSON object, as both JSON
merge patch and JSON patch can apply only to a single JSON object. Hence, if a future ALTO
resource can contain multiple objects, then either each individual object also has a resource-id or
an extension to this design is made.

At the low-level encoding level, new line in SSE has its own semantics. Hence, this design
requires that resource encoding does not include new lines that can be confused with SSE
encoding. In particular, the data update message  include "event: " or "data: " at a new
line as part of data message.

MUST NOT

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc7285#section-15


If an update stream provides updates to a Filtered Cost Map that allows constraint tests, the
requirements for such services are stated in Section 9.3.

12. IANA Considerations 
This document defines two new media types: "application/alto-updatestreamparams+json", as
described in Section 6.5, and "application/alto-updatestreamcontrol+json", as described in Section
5.3. All other media types used in this document have already been registered, either for ALTO,
JSON merge patch, or JSON patch.

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

12.1. application/alto-updatestreamparams+json Media Type 

application 

alto-updatestreamparams+json 

N/A 

N/A 

Encoding considerations are identical to those specified for the
"application/json" media type. See . 

Security considerations relating to the generation and consumption of
ALTO Protocol messages are discussed in Section 10 of RFC 8895 and . 

RFC 8895 specifies format of conforming messages and the
interpretation thereof. 

Section 6.5 of RFC 8895. 

ALTO servers and ALTO clients either stand alone or are
embedded within other applications. 

N/A 

N/A 

N/A 

RFC 8895 uses the media type to refer to protocol messages and thus does
not require a file extension. 

N/A 

See Authors' Addresses section. 

COMMON 

N/A 

[RFC8259]

Section 15 of [RFC7285]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 48

https://www.rfc-editor.org/rfc/rfc7285#section-15


Author:

Change controller:

See Authors' Addresses section. 

Internet Engineering Task Force (mailto:iesg@ietf.org). 

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

12.2. application/alto-updatestreamcontrol+json Media Type 

application 

alto-updatestreamcontrol+json 

N/A 

N/A 

Encoding considerations are identical to those specified for the
"application/json" media type. See . 

Security considerations relating to the generation and consumption of
ALTO Protocol messages are discussed in Section 10 of RFC 8895 and . 

RFC 8895 specifies format of conforming messages and the
interpretation thereof. 

Section 5.3 of RFC 8895. 

ALTO servers and ALTO clients either stand alone or are
embedded within other applications. 

N/A 

N/A 

N/A 

RFC 8895 uses the media type to refer to protocol messages and thus does
not require a file extension. 

N/A 

See Authors' Addresses section. 

COMMON 

N/A 

See Authors' Addresses section. 

Internet Engineering Task Force (mailto:iesg@ietf.org). 

[RFC8259]

Section 15 of [RFC7285]

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 49

https://www.rfc-editor.org/rfc/rfc7285#section-15


[RFC2119]

14. References 

14.1. Normative References 

, , , 
, , March 1997, 
. 

13. Appendix: Design Decision: Not Allowing Stream Restart 
If an update stream is closed accidentally, when the ALTO client reconnects, the update stream
server must resend the full maps. This is clearly inefficient. To avoid that inefficiency, the SSE
specification allows an update stream server to assign an id to each event. When an ALTO client
reconnects, the ALTO client can present the id of the last successfully received event, and the
update stream server restarts with the next event.

However, that mechanism adds additional complexity. The update stream server must save SSE
messages in a buffer in case ALTO clients reconnect. But that mechanism will never be perfect: If
the ALTO client waits too long to reconnect or if the ALTO client sends an invalid ID, then the
update stream server will have to resend the complete maps anyway.

Furthermore, this is unlikely to be a problem in practice. ALTO clients who want continuous
updates for large resources, such as full network and cost maps, are likely to be things like P2P
trackers. These ALTO clients will be well connected to the network; they will rarely drop
connections.

Mobile devices certainly can and do drop connections and will have to reconnect. But mobile
devices will not need continuous updates for multi-megabyte cost maps. If mobile devices need
continuous updates at all, they will need them for small queries, such as the costs from a small
set of media servers from which the device can stream the currently playing movie. If the mobile
device drops the connection and reestablishes the update stream, the update stream server will
have to retransmit only a small amount of redundant data.

In short, using event ids to avoid resending the full map adds a considerable amount of
complexity to avoid a situation that is very rare. The complexity is not worth the benefit.

The update stream service does allow the ALTO client to specify the tag of the last received
version of any tagged resource, and if that is still current, the update stream server need not
retransmit the full resource. Hence, ALTO clients can use this to avoid retransmitting full
network maps. Cost maps are not tagged, so this will not work for them. Of course, the ALTO
protocol could be extended by adding version tags to cost maps, which would solve the
retransmission-on-reconnect problem. However, adding tags to cost maps might add a new set of
complications.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 50

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119


[RFC2387]

[RFC3986]

[RFC6838]

[RFC6902]

[RFC7285]

[RFC7396]

[RFC8174]

[RFC8259]

[SSE]

[RFC4960]

[RFC5789]

[RFC7230]

[RFC7231]

, , , 
, August 1998, . 

, 
, , , , January 2005, 

. 

, 
, , , , January 2013, 

. 

, , 
, , April 2013, 
. 

, 
, , , September 2014, 

. 

, , , , 
October 2014, . 

, , 
, , , May 2017, 

. 

, , 
, , , December 2017, 

. 

, , , February 2015, 
. 

14.2. Informative References 

, , , 
, September 2007, . 

, , , 
, March 2010, . 

, 
, , , June 2014, 

. 

, 
, , , June 2014, 

. 

Levinson, E. "The MIME Multipart/Related Content-type" RFC 2387 DOI
10.17487/RFC2387 <https://www.rfc-editor.org/info/rfc2387>

Berners-Lee, T., Fielding, R., and L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Freed, N., Klensin, J., and T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Bryan, P., Ed. and M. Nottingham, Ed. "JavaScript Object Notation (JSON) Patch"
RFC 6902 DOI 10.17487/RFC6902 <https://www.rfc-editor.org/info/
rfc6902>

Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S., Previdi, S., Roome, W.,
Shalunov, S., and R. Woundy "Application-Layer Traffic Optimization (ALTO)
Protocol" RFC 7285 DOI 10.17487/RFC7285 <https://www.rfc-
editor.org/info/rfc7285>

Hoffman, P. and J. Snell "JSON Merge Patch" RFC 7396 DOI 10.17487/RFC7396
<https://www.rfc-editor.org/info/rfc7396>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Hickson, I. "Server-Sent Events" W3C Recommendation
<https://www.w3.org/TR/eventsource/>

Stewart, R., Ed. "Stream Control Transmission Protocol" RFC 4960 DOI
10.17487/RFC4960 <https://www.rfc-editor.org/info/rfc4960>

Dusseault, L. and J. Snell "PATCH Method for HTTP" RFC 5789 DOI 10.17487/
RFC5789 <https://www.rfc-editor.org/info/rfc5789>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 51

https://www.rfc-editor.org/info/rfc2387
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6902
https://www.rfc-editor.org/info/rfc6902
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7396
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.w3.org/TR/eventsource/
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231


[RFC7540] , 
, , , May 2015, 

. 

Belshe, M., Peon, R., and M. Thomson, Ed. "Hypertext Transfer Protocol Version
2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540 <https://www.rfc-
editor.org/info/rfc7540>

Acknowledgments 
Thank you to  (Tongji University),  (Tongji University), and  (Yale
University) for their contributions to an earlier version of this document.

Dawn Chen Shawn Lin Xiao Shi

Contributors 
Sections 2, 5.1, 5.2, and 8.5 of this document are based on contributions from 

, and he is considered an author.
Jingxuan Jensen

Zhang

Authors' Addresses 
Wendy Roome
Nokia Bell Labs (Retired)
124 Burlington Rd

,   Murray Hill NJ 07974
United States of America

 +1-908-464-6975 Phone:
 wendy@wdroome.com Email:

Y. Richard Yang
Yale University
51 Prospect St

,  New Haven CT
United States of America

 yry@cs.yale.edu Email:

RFC 8895 ALTO Incremental Updates November 2020

Roome & Yang Standards Track Page 52

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
tel:+1-908-464-6975
mailto:wendy@wdroome.com
mailto:yry@cs.yale.edu

	RFC 8895
	Application-Layer Traffic Optimization (ALTO) Incremental Updates Using Server-Sent Events (SSE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terms
	2.1. Requirements Language

	3. Background
	3.1. Incremental Encoding: JSON Merge Patch
	3.1.1. JSON Merge Patch Encoding
	3.1.2. JSON Merge Patch ALTO Messages
	3.1.2.1. JSON Merge Patch Network Map Messages
	3.1.2.2. JSON Merge Patch Cost Map Messages


	3.2. Incremental Encoding: JSON Patch
	3.2.1. JSON Patch Encoding
	3.2.2. JSON Patch ALTO Messages
	3.2.2.1. JSON Patch Network Map Messages
	3.2.2.2. JSON Patch Cost Map Messages


	3.3. Multiplexing and Server Push: HTTP/2
	3.4. Server Push: Server-Sent Event

	4. Overview of Approach and High-Level Protocol Message Flow
	4.1. Update Stream Service Message Flow
	4.2. Stream Control Service Message Flow
	4.3. Service Announcement and Management Message Flow

	5. Update Messages: Data Update and Control Update Messages
	5.1. Generic ALTO Update Message Structure
	5.2. ALTO Data Update Message
	5.3. ALTO Control Update Message

	6. Update Stream Service
	6.1. Media Type
	6.2. HTTP Method
	6.3. Capabilities
	6.4. Uses
	6.5. Request: Accept Input Parameters
	6.6. Response
	6.7. Additional Requirements on Update Stream Service
	6.7.1. Event Sequence Requirements
	6.7.2. Cross-Stream Consistency Requirements
	6.7.3. Multipart Update Requirements

	6.8. Keep-Alive Messages

	7. Stream Control Service
	7.1. URI
	7.2. Media Type
	7.3. HTTP Method
	7.4. IRD Capabilities & Uses
	7.5. Request: Accept Input Parameters
	7.6. Response

	8. Examples
	8.1. Example: IRD Announcing Update Stream Services
	8.2. Example: Simple Network and Cost Map Updates
	8.3. Example: Advanced Network and Cost Map Updates
	8.4. Example: Endpoint Property Updates
	8.5. Example: Multipart Message Updates

	9. Operation and Processing Considerations
	9.1. Considerations for Choosing Data Update Messages
	9.2. Considerations for Client Processing Data Update Messages
	9.3. Considerations for Updates to Filtered Cost Maps
	9.4. Considerations for Updates to Ordinal Mode Costs
	9.5. Considerations for SSE Text Formatting and Processing

	10. Security Considerations
	10.1. Update Stream Server: Denial-of-Service Attacks
	10.2. ALTO Client: Update Overloading or Instability
	10.3. Stream Control: Spoofed Control Requests and Information Breakdown

	11. Requirements on Future ALTO Services to Use This Design
	12. IANA Considerations
	12.1. application/alto-updatestreamparams+json Media Type
	12.2. application/alto-updatestreamcontrol+json Media Type

	13. Appendix: Design Decision: Not Allowing Stream Restart
	14. References
	14.1. Normative References
	14.2. Informative References

	Acknowledgments
	Contributors
	Authors' Addresses



 
   
   
   
   
     Application-Layer Traffic Optimization (ALTO) Incremental Updates Using Server-Sent Events (SSE)
     
     
       Nokia Bell Labs (Retired)
       
         
           124 Burlington Rd
           Murray Hill
           NJ
           07974
           United States of America
        
         +1-908-464-6975
         wendy@wdroome.com
      
    
     
       Yale University
       
         
           51 Prospect St
           New Haven
           CT
           United States of America
        
         yry@cs.yale.edu
      
    
     
     TSV
     ALTO
     ALTO
     
       The Application-Layer Traffic Optimization (ALTO) protocol (RFC 7285)
      provides network-related information, called 
      network information resources, to client applications so that clients
      can make informed decisions in utilizing network resources. 
      This document presents a mechanism to allow an ALTO server to push
      updates to ALTO clients to achieve two benefits: (1) updates can be
      incremental, in that if only a small section of an information
      resource changes, the ALTO server can send just the changes and (2)
      updates can be immediate, in that the ALTO server can send updates
      as soon as they are available.
    
     
       
         Status of This Memo
         
            This is an Internet Standards Track document.
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by
            the Internet Engineering Steering Group (IESG).  Further
            information on Internet Standards is available in Section 2 of 
            RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
          
           
              .   Terms
             
               
                  .   Requirements Language
              
            
          
           
              .   Background
             
               
                  .   Incremental Encoding: JSON Merge Patch
                 
                   
                      .   JSON Merge Patch Encoding
                  
                   
                      .   JSON Merge Patch ALTO Messages
                  
                
              
               
                  .   Incremental Encoding: JSON Patch
                 
                   
                      .   JSON Patch Encoding
                  
                   
                      .   JSON Patch ALTO Messages
                  
                
              
               
                  .   Multiplexing and Server Push: HTTP/2
              
               
                  .   Server Push: Server-Sent Event
              
            
          
           
              .   Overview of Approach and High-Level Protocol Message Flow
             
               
                  .   Update Stream Service Message Flow
              
               
                  .   Stream Control Service Message Flow
              
               
                  .   Service Announcement and Management Message Flow
              
            
          
           
              .   Update Messages: Data Update and Control Update Messages
             
               
                  .   Generic ALTO Update Message Structure
              
               
                  .   ALTO Data Update Message
              
               
                  .   ALTO Control Update Message
              
            
          
           
              .   Update Stream Service
             
               
                  .   Media Type
              
               
                  .   HTTP Method
              
               
                  .   Capabilities
              
               
                  .   Uses
              
               
                  .   Request: Accept Input Parameters
              
               
                  .   Response
              
               
                  .   Additional Requirements on Update Stream Service
                 
                   
                      .   Event Sequence Requirements
                  
                   
                      .   Cross-Stream Consistency Requirements
                  
                   
                      .   Multipart Update Requirements
                  
                
              
               
                  .   Keep-Alive Messages
              
            
          
           
              .   Stream Control Service
             
               
                  .   URI
              
               
                  .   Media Type
              
               
                  .   HTTP Method
              
               
                  .   IRD Capabilities & Uses
              
               
                  .   Request: Accept Input Parameters
              
               
                  .   Response
              
            
          
           
              .   Examples
             
               
                  .   Example: IRD Announcing Update Stream Services
              
               
                  .   Example: Simple Network and Cost Map Updates
              
               
                  .   Example: Advanced Network and Cost Map Updates
              
               
                  .   Example: Endpoint Property Updates
              
               
                  .   Example: Multipart Message Updates
              
            
          
           
              .   Operation and Processing Considerations
             
               
                  .   Considerations for Choosing Data Update Messages
              
               
                  .   Considerations for Client Processing Data Update Messages
              
               
                  .   Considerations for Updates to Filtered Cost Maps
              
               
                  .   Considerations for Updates to Ordinal Mode Costs
              
               
                  .   Considerations for SSE Text Formatting and Processing
              
            
          
           
              .  Security Considerations
             
               
                  .   Update Stream Server: Denial-of-Service Attacks
              
               
                  .   ALTO Client: Update Overloading or Instability
              
               
                  .   Stream Control: Spoofed Control Requests and Information Breakdown
              
            
          
           
              .  Requirements on Future ALTO Services to Use This Design
          
           
              .  IANA Considerations
             
               
                  .   application/alto-updatestreamparams+json Media Type
              
               
                  .   application/alto-updatestreamcontrol+json Media Type
              
            
          
           
              .  Appendix: Design Decision: Not Allowing Stream Restart
          
           
              .  References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
               Acknowledgments
          
           
               Contributors
          
           
               Authors' Addresses
          
        
      
    
  
   
     
       Introduction
       The Application-Layer Traffic Optimization (ALTO) protocol   provides network-related information, called
      network information resources, to client applications so that clients may
      make informed decisions in utilizing network resources. For example, an
      ALTO server provides network and cost maps, where a network map
      partitions the set of endpoints into a manageable number of sets each
      defined by a Provider-Defined Identifier (PID) and a cost map provides
      directed costs between PIDs. Given network and cost maps, an ALTO client
      can obtain costs between endpoints by first using the network map to get
      the PID for each endpoint and then using the cost map to get the costs
      between those PIDs. Such costs can be used by the client to choose
      communicating endpoints with low network costs.
       The ALTO protocol defines only an ALTO client pull model without
      defining a mechanism to allow an ALTO client to obtain updates to
      network information resources, other than by periodically re-fetching
      them. In settings where an information resource may be large but only
      parts of it may change frequently (e.g., some entries of a cost map),
      complete re-fetching can be inefficient.
       
        This document presents a mechanism to allow an ALTO server
        to push incremental updates to ALTO clients. Integrating server push
	and incremental updates provides two benefits: 
        (1) updates can be small, in that if only a small section of an
	information resource changes, the ALTO server can send just the
	changes and 
        (2) updates can be immediate, in that the ALTO server can send updates
        as soon as they are available.
      
       While primarily intended to provide updates to GET-mode network and
      cost maps, the mechanism defined in this document can also provide
      updates to POST-mode ALTO services, such as the ALTO endpoint property
      and endpoint cost services. The mechanism can also support new ALTO
      services to be defined by future extensions, but a future service needs
      to satisfy requirements specified in  .
       The rest of this document is organized as follows.   gives background on the basic techniques used in
      this design: (1) JSON merge patch and JSON patch to allow incremental
      updates and (2) Server-Sent Events (SSE)   to allow
      server push. With the background,   gives a
      non-normative overview of the design.  
      defines individual messages in an update stream.   defines the update stream service.   defines the stream control service.
        gives several examples to illustrate the two
      types of services.  
      describes operation and processing considerations by both ALTO servers
      and clients.   discusses a design feature
      that is not supported.   discusses security
      issues. Sections   and   review the
      requirements for future ALTO services to use SSE and IANA
      considerations, respectively.
    
     
       Terms
       Besides the terminologies as defined in  ,
      this document also uses additional terminologies defined as follows: 
      
       
         Update Stream:
         A reliable, in-order connection compatible with HTTP/1.x between an ALTO
  client and an ALTO server so that the server can push a sequence of update
  messages using   to the client.
         Update Stream Server:
         This document refers to an ALTO server providing an update stream as an
  ALTO update stream server, or update stream server for short. Note that the
  ALTO server mentioned in this document refers to a general server that
  provides various kinds of services; it can be an update stream server or
  stream control server (see below). It can also be a server providing ALTO
  Information Resource Directory (IRD).
         Update Message:
         A message that is either a data update message or a control update
  message.
         Data Update Message:
         An update message that is for a single ALTO information resource and
  sent from the update stream server to the ALTO client when the resource
  changes. A data update message can be either a full-replacement message or
  an incremental-change message. Full replacement is a shorthand for a
  full-replacement message, and incremental change is a shorthand for an
  incremental-change message.
         Full Replacement:
         A data update message for a resource that encodes the content of the
  resource in its original ALTO encoding.
         Incremental Change:
         A data update message that specifies only the difference between the
  new content and the previous version.  An incremental change can be encoded
  using either JSON merge patch or JSON patch in this document.
         Stream Control Service:
         A service that provides an HTTP URI so that the ALTO client of an update
  stream can use it to send stream control requests to the ALTO server on the
  addition or removal of resources receiving update messages from the update
  stream. The ALTO server creates a new stream control resource for each
  update stream instance, assigns a unique URI to it, and sends the URI to the
  client as the first event in the stream. (Note that the stream control
  service in ALTO has no association with the similarly named Stream Control
  Transmission Protocol  .)
         Stream Control:
         A shorthand for stream control service.
         Stream Control Server:
         An ALTO server providing the stream control service.
         Substream-ID:
         An ALTO client can assign a unique substream-id when requesting the
  addition of a resource receiving update messages from an update stream.  The
  server puts the substream-id in each update event for that resource. The
  substream-id allows a client to use one update stream to receive updates to 
  multiple requests for the same resource (i.e., with the same resource-id in
  an ALTO IRD), for example, for a POST-mode resource with different input
  parameters.
         Data-ID:
         A subfield of the "event" field of   to identify the
  ALTO data (object) to be updated. For an ALTO resource returning a multipart
  response, the data-id to identify the data (object) is the substream-id, in
  addition to the Content-ID of the object in the multipart response. The
  data-id of a single-part response is just the substream-id.
         Control Update Message:
         An update message for the update stream server to notify the ALTO client
  of related control information of the update stream. A control update
  message may be triggered by an internal event at the server, such as server
  overloading and hence the update stream server will no longer send updates
  for an information resource, or as a result of a client sending a request
  through the stream control service. 
The first message of an update stream is a control update message that
provides 
a control URI to the ALTO client. The ALTO client can use the URI to send 
stream control requests to the stream control server.

      
      
       
         Requirements Language
         
    The key words " MUST", " MUST NOT",
    " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
    " RECOMMENDED", " NOT RECOMMENDED", 
    " MAY", and " OPTIONAL" in this document are to be interpreted as
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
        
      
    
     
       Background
       The design requires two basic techniques: encoding of incremental
      changes and server push.  For incremental changes, existing techniques
      include JSON merge patch and JSON patch; this design uses both. For
      server push, existing techniques include HTTP/2 and  ; this design adopts some design features of HTTP/2 but
      uses   as the basic server-push design. The rest of
      this section gives a non-normative summary of JSON merge patch, JSON
      patch, HTTP/2, and  .
       
         Incremental Encoding: JSON Merge Patch
         To avoid always sending complete data, a server needs mechanisms to
	encode incremental changes, and JSON merge patch is one
	mechanism.   defines the encoding of
	incremental changes (called JSON merge patch objects) to be used by
	the HTTP PATCH method  . From  , this document adopts only the JSON merge patch
	object 
	encoding and does not use the HTTP PATCH method, as the updates are
	sent as events instead of HTTP methods; also, the updates are
	server to client, and PATCH semantics are more for
	client to server. Below is a non-normative summary of JSON merge patch
	objects; see   for the normative
	definition.
         
           JSON Merge Patch Encoding
            Informally, a JSON merge patch message consists of a JSON merge
	  patch object (referred to as a patch in  ),
	  which defines how to transform one JSON value into another using a
	  recursive merge patch algorithm. Specifically, the patch is computed
	  by treating two JSON values (first one being the original and the
	  second being the updated) as trees of nested JSON objects
	  (dictionaries of name/value pairs), where the leaves are values
	  (e.g., JSON arrays, strings, and numbers), other than JSON objects, and
	  the path for each leaf is the sequence of keys leading to that
	  leaf. When the second tree has a different value for a leaf at a
	  path or adds a new leaf, the patch has a leaf, at that path, with
	  the new value. When a leaf in the first tree does not exist in the
	  second tree, the JSON merge patch tree has a leaf with a JSON "null"
	  value. Hence, in the patch, null as the value of a name/value pair
	  will delete the element with "name" in the original JSON value. The
	  patch does not have an entry for any leaf that has the same value in
	  both versions. See the MergePatch pseudocode at the beginning of
	    for the
	  formal specification of how to apply a given patch. As a result, if
	  all leaf values are simple scalars, JSON merge patch is a quite
	  efficient representation of incremental changes. It is less
	  efficient when leaf values are arrays, because JSON merge patch
	  replaces arrays in their entirety, even if only one entry
	  changes.
        
         
           JSON Merge Patch ALTO Messages
           
          To provide both examples of JSON merge patch and a demonstration of
	  the feasibility of applying JSON merge patch to ALTO, the sections
	  below show the application of JSON merge patch to two key ALTO
	  messages. 
          
           
             JSON Merge Patch Network Map Messages
              
	    defines the format of an ALTO network map message. Assume a simple
	    example ALTO message sending an initial network map:
             
  {
    "meta" : {
      "vtag": {
        "resource-id" : "my-network-map",
        "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
      }
    },
    "network-map" : {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25" ]
      },
      "PID2" : {
        "ipv4" : [ "198.51.100.128/25" ]
      },
      "PID3" : {
        "ipv4" : [ "0.0.0.0/0" ],
        "ipv6" : [ "::/0" ]
      }
    }
  }

             Consider the following JSON merge patch update message, which
	    (1) adds an ipv4 prefix "203.0.113.0/25" and an ipv6 prefix
	    "2001:db8:8000::/33" to "PID1", (2) deletes "PID2", and (3)
	    assigns a new "tag" to the network map:
             
  {
    "meta" : {
      "vtag" : {
        "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      }
    },
    "network-map": {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25",
                   "203.0.113.0/25" ],
        "ipv6" : [ "2001:db8:8000::/33" ]
      },
      "PID2" : null
    }
  }

             Applying the JSON merge patch update to the initial network map
	    is equivalent to the following ALTO network map:
             
  {
    "meta" : {
      "vtag": {
        "resource-id" : "my-network-map",
        "tag" : "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      }
    },
    "network-map" : {
      "PID1" : {
        "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25",
                   "203.0.113.0/25" ],
        "ipv6" : [ "2001:db8:8000::/33" ]
      },
      "PID3" : {
        "ipv4" : [ "0.0.0.0/0" ],
        "ipv6" : [ "::/0" ]
      }
    }
  }

          
           
             JSON Merge Patch Cost Map Messages
              
	    defines the format of an ALTO cost map message. Assume a simple
	    example ALTO message for an initial cost map:
             
  {
    "meta" : {
      "dependent-vtags" : [
        {"resource-id": "my-network-map",
         "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
        }
      ],
      "cost-type" : {
        "cost-mode"  : "numerical",
        "cost-metric": "routingcost"
      },
      "vtag": {
        "resource-id" : "my-cost-map",
        "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
      }
    },
    "cost-map" : {
      "PID1": { "PID1": 1,  "PID2": 5,  "PID3": 10 },
      "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
      "PID3": { "PID1": 20, "PID2": 15  }
    }
  }

             The following JSON merge patch message updates the example cost
	    map so that (1) the "tag" field of the cost map is updated, (2)
	    the cost of PID1->PID2 is 9 instead of 5, (3) the cost of
	    PID3->PID1 is no longer available, and (4) the cost of
	    PID3->PID3 is defined as 1. 
            
             
  {
    "meta" : {
      "vtag": {
        "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      }
    }
    "cost-map" : {
      "PID1" : { "PID2" : 9 },
      "PID3" : { "PID1" : null, "PID3" : 1 }
    }
  }

             Hence, applying the JSON merge patch to the initial cost map is
	    equivalent to the following ALTO cost map:
             
  {
    "meta" : {
      "dependent-vtags" : [
        {"resource-id": "my-network-map",
         "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
        }
      ],
      "cost-type" : {
        "cost-mode"  : "numerical",
        "cost-metric": "routingcost"
      },
      "vtag": {
        "resource-id": "my-cost-map",
        "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      }
    },
    "cost-map" : {
      "PID1": { "PID1": 1,  "PID2": 9,  "PID3": 10 },
      "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
      "PID3": {             "PID2": 15, "PID3": 1  }
    }
  }

          
        
      
       
         Incremental Encoding: JSON Patch
         
           JSON Patch Encoding
           One issue of JSON merge patch is that it does not handle array
	  changes well. In particular, JSON merge patch considers an array as
	  a single object and hence can only replace an array in its
	  entirety. When the change is to make a small change to an array, such
	  as the deletion of an element from a large array, whole-array
	  replacement is inefficient. Consider the example in  . To add a new entry to the ipv4
	  array for PID1, the server needs to send a whole new array. Another
	  issue is that JSON merge patch cannot change a value to be null, as
	  the JSON merge patch processing algorithm (MergePatch in  ) interprets a null as a removal
	  instruction. On the other hand, some ALTO resources can have null
	  values, and it is possible that the update will want to change the
	  new value to be null.
           JSON patch   can address the preceding
	  issues. It defines a set of operators to modify a JSON object. See
	    for the normative definition.
        
         
           JSON Patch ALTO Messages
           To provide both examples of JSON patch and a demonstration of the
	  difference between JSON patch and JSON merge patch, the sections
	  below show the application of JSON patch to the same updates shown
	  in  .
           
             JSON Patch Network Map Messages
             First, consider the same update as in   for the network map. Below is
	    the encoding using JSON patch:
             
  [
    {
      "op": "replace",
      "path": "/meta/vtag/tag",
      "value": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
    },
    {
      "op": "add",
      "path": "/network-map/PID1/ipv4/2",
      "value": "203.0.113.0/25"
    }
    {
      "op": "add",
      "path": "/network-map/PID1/ipv6",
      "value": ["2001:db8:8000::/33"]
    },
    {
      "op": "remove",
      "path": "/network-map/PID2"
    }
  ]

          
           
             JSON Patch Cost Map Messages
             Compared with JSON merge patch, JSON patch does not encode cost
	    map updates efficiently. Consider the cost map update shown in
	     , the encoding using JSON
	    patch is:
             
  [
    {
      "op": "replace",
      "path": "/meta/vtag/tag",
      "value": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
    },
    {
      "op": "replace",
      "path": "/cost-map/PID1/PID2",
      "value": 9
    },
    {
      "op": "remove",
      "path": "/cost-map/PID3/PID1"
    },
    {
      "op": "replace",
      "path": "/cost-map/PID3/PID3",
      "value": 1
    }
  ]

          
        
      
       
         Multiplexing and Server Push: HTTP/2
         HTTP/2   provides two related features:
	multiplexing and server push.  In particular, HTTP/2 allows a client
	and a server to multiplex multiple HTTP requests and responses over a
	single TCP connection. The requests and responses can be interleaved
	on a block (frame) by block (frame) basis, by indicating the requests
	and responses in HTTP/2 messages, avoiding the head-of-line blocking
	problem encountered with HTTP/1.1. To achieve the same goal, this
	design introduces substream-id to allow a client to receive updates to
	multiple resources. HTTP/2 also provides a server-push facility to
	allow a server to send asynchronous updates.
         Despite the two features of HTTP/2, this design chooses a design
	compatible with HTTP/1.x for the simplicity of HTTP/1.x. A design
	based on HTTP/2 may more likely need to be implemented using a more
	complex HTTP/2 client library. In such a case, one approach for using
	server push for updates is for the update stream server to send each
	data update message as a separate server-push item and let the client
	apply those updates as they arrive. An HTTP/2 client library may not
	necessarily inform a client application when the server pushes a
	resource. Instead, the library might cache the pushed resource and
	only deliver it to the client when the client explicitly requests that
	URI. Further, it is more likely that a design based on HTTP/2 may
	encounter issues with a proxy between the client and the server, in
	that server push is optional and can be disabled by any proxy between
	the client and the server. This is not a problem for the intended use
	of server push; eventually, the client will request those resources, so
	disabling server push just adds a delay. But this means that Server
	Push is not suitable for resources that the client does not know to
	request.
         Thus, this design leaves a design based on HTTP/2 as a future work
	and focuses on ALTO updates on HTTP/1.x and  .
      
       
         Server Push: Server-Sent Event
         Server-Sent Events (SSE) are techniques that can work with
	HTTP/1.1. The following is a non-normative summary of SSE; see   for its normative definition.
         SSE enable a server to send new data to a client by "server push".
        The client establishes an HTTP     connection to the server and keeps the connection
	open. The server continually sends messages. Each message has one or
	more lines, where a line is terminated by a carriage return
	immediately followed by a new line, 
        a carriage return not immediately followed by a new line,
        or a new line not immediately preceded by a carriage return.
        A message is terminated by a blank line (two line terminators in a row).
        
         Each line in a message is of the form "field-name: string
	value". Lines with a blank field name (that is, lines that start with
	a colon) are ignored, as are lines that do not have a colon. The
	protocol defines three field names: event, id, and data. If a message
	has more than one "data" line, the value of the data field is the
	concatenation of the values on those lines. There can be only one
	"event" and "id" line per message. The "data" field is required; the
	others are optional.
           is a sample SSE stream, starting with
	the client request. The server sends three events and then closes the
	stream.
         
           A Sample SSE Stream
           
  (Client request)
  GET /stream HTTP/1.1
  Host: example.com
  Accept: text/event-stream

  (Server response)
  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: start
  id: 1
  data: hello there

  event: middle
  id: 2
  data: let's chat some more ...
  data: and more and more and ...

  event: end
  id: 3
  data: goodbye

        
      
    
     
       Overview of Approach and High-Level Protocol Message Flow
       With the preceding background, this section now gives a non-normative
      overview of the update mechanisms and message flow to be defined in
      later sections of this document.   gives the main components and
      overall message flow.
       
         ALTO SSE Architecture and Message Flow
         
 -------------------------------------------------------------------
|                                                                   |
|          +-------+         +-------+ 1. init request   +------+   |
|          |       |         |       | <--------------   |      |   |
|          |       |         |       | -------------->   |      |   |
| 3.add/   |       |         |       | 1'. control URI   |      |   |
| remove   |       |         |       |                   |      |   |
| resource |Stream |         |Update |                   |      |   |
  -------->|Control| private |Stream | 2a. data update   |Client| --
           |Server |<------->|Server | messages          |      |
  -------- |       |         |       | --------------->  |      | <-
| response |       |         |       | --------------->  |      |   |
|          |       |         |       | 2b. control update|      |   |
|          +-------+         +-------+ messages          +------+   |
|                                                                   |
 -------------------------------------------------------------------

      
       
         Update Stream Service Message Flow
         
        The building block of the update mechanism defined in this document is the
        update stream service (defined in  ), where each update stream service is a
	POST-mode service that provides update streams. 
        
         
        Note that the lines of the format "** ... **" are used to describe
        message flows in this section and the following sections.
        
         
           ** Initial request: client -> update server **:
           
             
        When an ALTO client requests an update stream service,
        the ALTO client establishes a persistent connection to the update
	stream server and submits an initial update-stream request (defined in
	 ), creating an update
	stream. This initial request creating the update stream is labeled
	"1. init request" in  .
             
        An update stream can provide updates to both GET-mode resources, such
	as ALTO network and cost maps, and POST-mode resources, such as ALTO
	endpoint property service. Also, to avoid creating too many update
	streams, this design allows an ALTO client to use one update stream to
	receive updates to multiple requests. In particular, the client may
	request to receive updates for the same resource but with different
	parameters for a POST-mode resource, in addition to being able to
	consolidate updates for multiple resources into a single stream. 
        The updates for each request is called a substream and hence the
	update server needs an identifier to indicate the substream when
	sending an update. To achieve this goal, the client 
        assigns a unique substream-id when requesting updates to a resource in an update stream,
        and the server puts the substream-id in each update.
          
           ** Data updates: update server -> client **:
           
   The objective of an update stream is to continuously push (to an 
   ALTO client) the data value changes for a set of resources, where the 
   set of resources is specified by the ALTO client's requests. 

	This document
	refers to messages sending such data-value changes as data update
	messages (defined in  ). Although
	an update stream may update one or more requests, each data update
	message updates only one request and is sent as a Server-Sent Event
	(SSE), as defined by  . A data update message is
	encoded either as a full replacement or as an incremental change. A
	full replacement uses the JSON message format defined by the ALTO
	protocol. There can be multiple encodings for incremental changes. The
	current design supports incremental changes using JSON merge patch
	  or JSON patch   to
	describe the changes of the resource. Future documents may define
	additional mechanisms for incremental changes. The update stream
	server decides when to send data update messages and whether to send
	full replacements or incremental changes. These decisions can vary
	from resource to resource and from update to update. Since the
	transport is a design compatible with HTTP/1.x, data update messages
	are delivered reliably and in order, and the lossless, sequential
	delivery of its messages allows the server to know the exact state of
	the client to compute the correct incremental updates.   shows examples of data update messages (labeled
	"2a. data update messages") in the overall message flow.
           ** Control updates: update server -> client **:
           
       An update stream can run for a long time and hence there can be status
       changes at the update stream server side during the lifetime of an
       update stream; for example, the update stream server may encounter an
       error or need to shut down for maintenance. To support a robust, flexible
       protocol design, this document allows the update stream server to send
       control update messages (defined in  ) in addition to data update messages
       to the ALTO client.   shows that both data
       updates and control updates can be sent by the server to the client
       (labeled "2b. control update messages"). 
        
        
      
       
         Stream Control Service Message Flow
         
           ** Stream control: client -> stream control server **:
           
             In addition to control changes triggered from the update stream
	  server side, in a flexible design, an ALTO client may initiate
	  control changes as well, in particular, by adding or removing ALTO
	  resources receiving updates. An ALTO client initiates such changes
	  using the stream control service (defined in  ). Although one may use a design
	  that the client uses as the same HTTP connection to send the control
	  requests, it requires stronger server support, such as HTTP
	  pipeline. For more flexibility, this document introduces stream
	  control service. In particular, the update stream server of an
	  update stream uses the first message to provide the URI of the
	  stream control service (labeled "1': control URI" in  ).
             The ALTO client can then use the URI to ask the stream control
	  server specified in the URI to request the update stream server to
	  (1) send data update messages for additional resources, (2) stop
	  sending data update messages for previously requested resources, or
	  (3) gracefully stop and close the update stream altogether.
          
        
      
       
         Service Announcement and Management Message Flow
         
           ** Service announcements: IRD server -> client **:
           An update server may provide any number of update stream services,
	where each update stream may provide updates for a given subset of the
	ALTO server's resources. An ALTO server's Information Resource
	Directory (IRD) defines the update stream services and declares the
	set of resources for which each update stream service provides
	updates. The ALTO server selects the resource set for each update
	stream service. It is recommended that if a resource depends on one or
	more other resource(s) (indicated with the "uses" attribute defined in
	 ), these other resource(s) should also be part
	of that update stream. Thus, the update stream for a cost map should also 
        provide updates for the network map on which that cost map depends.
           ** Service management (server) **:
           An ALTO client may request any number of update streams
	simultaneously. Because each update stream consumes resources on the
	update stream server, an update stream server may require client
	authorization and/or authentication, limit the number of open update
	streams, close inactive streams, or redirect an ALTO client to another
	update stream server.
        
      
    
     
       Update Messages: Data Update and Control Update Messages
       This section defines the format of update messages sent from the
      server to the client. It first defines the generic structure of update
      messages ( ). It then defines the
      details of the data update messages ( ) and the control update messages ( ). These messages will be used in the
      next two sections to define the update stream service ( ) and the stream control service ( ).
       
         Generic ALTO Update Message Structure
         Both data update and control update messages from the server to the
	client have the same basic structure. Each message includes a data
	field to provide data information, which is typically a JSON object,
	and an event field preceding the data field, to specify the media type
	indicating the encoding of the data field.
         A data update message needs additional information to identify the
	ALTO data (object) to which the update message applies. To be generic,
	this document uses a data-id to identify the ALTO data (object) to be
	updated; see below.
         Hence, the event field of ALTO update message can include two
	subfields (media-type and data-id), where the two subfields are
	separated by a comma (',', U+002C):
         
      media-type [ ',' data-id ]

         According to  , the comma character is not allowed in a media-type
	name so there is no ambiguity when decoding of the two subfields.

        
         Note that an update message does not use the SSE "id" field.
      
       
         ALTO Data Update Message
         A data update message is sent when a monitored resource changes. As
	discussed in the preceding section, the event field of a data update
	message includes two subfields: 'media-type' and 'data-id'.
         The 'media-type' subfield depends on whether the data update is a
	complete specification of the identified data or an incremental patch
	(e.g., a JSON merge patch or JSON patch), if possible, describing the
	changes from the last version of the data. This document refers to
	these as full replacement and incremental change, respectively. The
	encoding of a full replacement is defined by its defining document
	(e.g., network and cost map messages by  ) and
	uses the media type defined in that document. The encoding of JSON
	merge patch is defined by  , with the media
	type "application/merge-patch+json"; the encoding of JSON patch is
	defined by  , with media type
	"application/json-patch+json".
         The 'data-id' subfield identifies the ALTO data to which the data
	update message applies.
         First, consider the case that the resource contains only a single
	JSON object. For example, since an ALTO client can request data
	updates for both a cost map resource (object) and its dependent
	network map resource (object) in the same update stream, to
	distinguish the updates, the client assigns a substream-id for each
	resource receiving data updates. Substream-ids  MUST be
	unique within an update stream but need not be globally unique. A
	substream-id is encoded as a JSON string with the same format as that
	of the type ResourceID ( ). The type SubstreamID is used in this document to
	indicate a string of this format. The substream-id of a single JSON
	object is the 'data-id'.
         As an example, assume that the ALTO client assigns substream-id "1"
	in its request to receive updates to the network map and substream-id
	"2" to the cost map. Then, the substream-ids are the data-ids
	indicating which objects will be updated.   shows some examples of ALTO data update
	messages: 

        
         
           Examples of ALTO Data Update Messages
           
  event: application/alto-networkmap+json,1
  data: { ... full network map message ... }

  event: application/alto-costmap+json,2
  data: { ... full cost map message ... }

  event: application/merge-patch+json,2
  data: { ... JSON merge patch update for the cost map ... }

        
         Next, consider the case that a resource may include multiple JSON
	objects. This document considers the case that a resource may contain
	multiple components (parts), and they are encoded using the media type
	"multipart/related"  . Each part of this
	multipart response  MUST be an HTTP message including a
	Content-ID header and a JSON object body. Each component requiring the
	update stream service (defined in  ) 
         MUST be identified by a unique Content-ID to be defined
	in its defining document. 
         For a resource using the media type "multipart/related", the
	'data-id' subfield  MUST be the concatenation of the
	substream-id, the '.' separator (U+002E), and the unique Content-ID, in
	order.
      
       
         ALTO Control Update Message
         
          Control update messages have the media type
          "application/alto-updatestreamcontrol+json",
          and the data is of type UpdateStreamControlEvent:
        
         
  object {
     [String          control-uri;]
     [SubstreamID     started<1..*>;]
     [SubstreamID     stopped<1..*>;]
     [String          description;]
  } UpdateStreamControlEvent;

         
           control-uri:
           the URI providing stream control for this update stream
        (see  ).
        The server sends a control update message notifying the client of the
	control-uri. This control  
        update message notifying the control-uri will be sent once and
	 MUST be the first event in an update stream. 
        If the URI value is NULL, the update stream server does not support
	stream control for this update stream; otherwise, the update stream
	server provides stream control through the given URI.
           started:
           a list of substream-ids of resources. It notifies the ALTO client that
	the update stream server will start sending data update messages for
	each resource listed.
           stopped:
           
        a list of substream-ids of resources. It notifies the ALTO client that
	the update stream server will no longer send data update messages for
	the listed resources. There can be multiple reasons for an update
	stream server to stop sending data update messages for a resource,
	including a request from the ALTO client using stream control ( ) or an internal
	server event.
           description:
           
        a non-normative, human-readable text providing an explanation for the
        control event. When an update stream server stops sending data update
        messages for a resource, it is  RECOMMENDED that the update stream
        server use the description field to provide details. There can be
        multiple reasons that trigger a "stopped" event; see above. The
        intention of this field is to provide a human-readable text for the
        developer and/or the administrator to diagnose potential problems.
        
      
    
     
       Update Stream Service
       An update stream service returns a stream of update messages, as
      defined in  . An ALTO server's IRD
      (Information Resource Directory)  MAY define one or more
      update stream services, which ALTO clients use to request new update
      stream instances. An IRD entry defining an update stream service
       MUST define the media type, HTTP method, and capabilities
      and uses as follows.
       
         Media Type
         
        The media type of an ALTO update stream service is
	"text/event-stream", as defined by  . 
        
      
       
         HTTP Method
         An ALTO update stream service is requested using the HTTP POST
	method.
      
       
         Capabilities
         The capabilities are defined as an object of type
	UpdateStreamCapabilities:
         
  object {
    IncrementalUpdateMediaTypes incremental-change-media-types;
    Boolean                     support-stream-control;
  } UpdateStreamCapabilities;

  object-map {
     ResourceID -> String;
  } IncrementalUpdateMediaTypes;

         If this update stream can provide data update messages with
	incremental changes for a resource, the
	"incremental-change-media-types" field has an entry for that
	resource-id, and the value is the supported media types of the
	incremental change separated by commas. Normally, this will be
	"application/merge-patch+json", "application/json-patch+json", or
	"application/merge-patch+json,application/json-patch+json", because,
	as described in  , they are the only
	incremental change types defined by this document. However, future
	extensions may define other types of incremental changes.
         When choosing the media types to encode incremental changes for a
	resource, the update stream server  MUST consider the
	limitations of the encoding. For example, when a JSON merge patch
	specifies that the value of a field is null, its semantics are that
	the field is removed from the target and hence the field is no longer
	defined (i.e., undefined); see the MergePatch algorithm in   on how null value is processed. This,
	however, may not be the intended result for the resource, when null
	and undefined have different semantics for the resource. In such a
	case, the update stream server  MUST choose JSON patch 
	over JSON merge patch if JSON patch is indicated as a capability of
	the update stream server. If the server does not support JSON patch to
	handle such a case, the server then need to send a full
	replacement.
         The "support-stream-control" field specifies whether the given update
	stream supports stream control. If the "support-stream-control" field is
	"true", the update stream server will use the stream control specified
	in this document; otherwise, the update stream server may use other
	mechanisms to provide the same functionality as stream control.
      
       
         Uses
         
        The "uses" attribute  MUST be an array with the
	resource-ids of every resource for which this update stream can
	provide updates. Each resource specified in the "uses"
	 MUST support full replacement; the update stream server
	can always send full replacement, and the ALTO client
	 MUST accept full replacement. 
        
         
        This set may be any subset of the ALTO server's resources
        and may include resources defined in linked IRDs.
        However, it is  RECOMMENDED that the ALTO server selects a set
        that is closed under the resource dependency relationship.
        That is, if an update stream's "uses" set includes resource R1
        and resource R1 depends on ("uses") resource R0, then
        the update stream's "uses" set  SHOULD include R0 as well as R1.
        For example, an update stream for a cost map  SHOULD also provide
        updates for the network map upon which that cost map depends.
        
      
       
         Request: Accept Input Parameters
         An ALTO client specifies the parameters for the new update stream
	by sending an HTTP POST body with the media type
	"application/alto-updatestreamparams+json". That body contains a JSON
	object of type UpdateStreamReq, where:
         
  object {
     [AddUpdatesReq   add;]
     [SubstreamID     remove<0..*>;]
  } UpdateStreamReq;

  object-map {
     SubstreamID -> AddUpdateReq;
  } AddUpdatesReq;

  object {
     ResourceID   resource-id;
     [JSONString  tag;]
     [Boolean     incremental-changes;]
     [Object      input;]
  } AddUpdateReq;

         
           add:
           Specifies the resources (and the parameters for the resources)
	  for which the ALTO client wants updates. In the scope of the same
	  update stream, the ALTO client  MUST assign a
	  substream-id that is unique in the scope of the update stream ( ) for each entry and use those
	  substream-ids as the keys in the "add" field.
           resource-id:
           The resource-id of an ALTO resource and  MUST be
	  in the update stream's "uses" list ( ). If the resource-id is a
	  GET-mode resource with a version tag (or "vtag"), as defined in
	  Sections  
	  and   of
	   , and the ALTO client has
	  previously retrieved a version of that resource from the update
	  stream server, the ALTO client  MAY set the "tag"
	  field to the tag part of the client's version of that resource. If
	  that version is not current, the update stream server
	   MUST send a full replacement before sending any
	  incremental changes, as described in  . If that version is
	  still current, the update stream server  MAY omit the
	  initial full replacement.
           incremental-changes:
           The ALTO client specifies whether it is willing to
      receive incremental changes from the update stream server for this substream.
      If the "incremental-changes" field is "true", the update stream server  MAY send
      incremental changes for this substream. In this case, the client  MUST
      support all incremental methods from the set announced in the server's
      capabilities for this resource; 
      see   for the server's
      announcement of potential incremental methods. If a client does not
      support 
      all incremental methods from the set announced in the server's capabilities,
      the client can set "incremental-changes" to "false", and the update stream server then
       MUST NOT send incremental changes for that substream. The default value for
      "incremental-changes" is "true", so to suppress incremental changes, the
      ALTO client  MUST explicitly set "incremental-changes" to "false".
      An alternative design of incremental-changes control
      is a more fine-grained control, by allowing a client to select a subset of
      incremental methods from the set announced in the server's capabilities. 
      But this alternative design is not adopted in this document, because it adds
      complexity to the server, which is more likely to be the bottleneck.
      Note that
      the ALTO client cannot suppress full replacement. When the ALTO client sets
      "incremental-changes" to "false", the update
      stream server
       MUST send a full replacement instead of an incremental
      change to the ALTO client. 
      The
      update stream server  MAY wait until more changes are available and send
      a single full replacement with those changes. Thus, an ALTO client that
      declines to accept incremental changes may not get updates as quickly as
      an ALTO client that does.
      
           input:
           
      If the resource is a POST-mode service that requires input, the
      ALTO client  MUST set the "input" field to a JSON object with the
      parameters that the resource expects.
      
           remove:
           
      It is used in update stream control requests
      ( ) and is not allowed
      in the update stream request. The update stream server  SHOULD
      ignore this field if it is included in the request.
      
        
         
      If a request has any errors, the update stream server  MUST NOT create an update stream. 
      Also, the update stream server will send an error response to the ALTO client, as
      specified in  .
        
      
       
         Response
         
If the update stream request has any errors, the update stream server
 MUST return an HTTP "400 Bad Request" to the ALTO client; the
body of the response follows the generic ALTO error response format specified
in  .  Hence, an
example ALTO error response has the format:
        
         
       HTTP/1.1 400 Bad Request
       Content-Length: 131
       Content-Type: application/alto-error+json
       Connection: Closed

       {
           "meta":{
               "code":  "E_INVALID_FIELD_VALUE",
               "field": "add/my-network-map/resource-id",
               "value": "my-networkmap/#"
           }
       }

         Note that "field" and "value" are optional fields. If the "value"
	field exists, the "field" field  MUST exist.
         
           If an update stream request does not have an "add" field
	  specifying one or more resources, the error code of the error
	  message  MUST be E_MISSING_FIELD and the "field" field
	   SHOULD be "add". The update stream server
	   MUST close the stream without sending any
	  events.
           If the "resource-id" field is invalid or is not associated with
	  the update stream, the error code of the error message
	   MUST be E_INVALID_FIELD_VALUE. The "field" field
	   SHOULD be the full path of the "resource-id" field,
	  and the "value" field  SHOULD be the invalid
	  resource-id. If there are more than one invalid resource-ids, the
	  update stream server  SHOULD pick one and return
	  it. The update stream server  MUST close the stream
	  (i.e., TCP connection) without sending any events.
           
      If the resource is a POST-mode service that requires input, the client
       MUST set the "input" field to a JSON object with the parameters that that
      resource expects. If the "input" field is missing or invalid, the update
      stream server
       MUST return the same error response that that resource would
      return for missing or invalid input (see  ).
      In this case, the
      update stream server  MUST close the update stream without
      sending any events. If the 
      input for several POST-mode resources is missing or invalid, the update stream server
       MUST pick one and return it.
      
        
         The response to a valid request is a stream of update
	messages.   defines the update
	messages, and   defines how they are encoded into a
	stream.
         An update stream server  SHOULD send updates only
	when the underlying values change. However, it may be difficult for an
	update stream server to guarantee that in all circumstances. Therefore,
	a client  MUST NOT assume that an update message
	represents an actual change.
      
       
         Additional Requirements on Update Stream Service
         
           Event Sequence Requirements
           
             The first event  MUST be a control update
	    message with the URI of the update stream control service (see
	     ) for this update
	    stream. Note that the value of the control-uri can be "null",
	    indicating that there is no control stream service.
             
        As soon as possible, after the ALTO client initiates the connection, the
        update stream server checks the "tag" field for each added update request.
        If the "tag" field is not specified in an added update request, the update stream server
         MUST first send a full replacement for the request. If the "tag" field
        is specified, the client can accept incremental changes, and the server can
        compute an incremental update based on the "tag" (the server needs to
	ensure that for a POST resource with input, the "tag" should indicate
	the correct result for different inputs); the update stream server 
         MAY omit the initial full replacement.
        
             If this update stream provides updates for resource-ids R0 and R1
	and if R1 depends on R0, then the update stream server
	 MUST send the update for R0 before sending the related
	updates for R1. For example, suppose an update stream provides updates
	to a network map and its dependent cost maps. When the network map
	changes, the update stream server  MUST send the network
	map update before sending the cost map updates.
             When the ALTO client uses the stream control service to stop
	updates for one or more resources ( ), the ALTO client
	 MUST send a stream control request. The update stream
	server  MUST send a control update message whose
	"stopped" field has the substream-ids of all stopped resources.
          
        
         
           Cross-Stream Consistency Requirements
           If multiple ALTO clients create multiple update streams from the
	  same update stream resource and with the same update request
	  parameters (i.e., same resource and same input), the update stream
	  server  MUST send the same updates to all of
	  them. However, the update stream server  MAY pack data
	  items into different patch events, as long as the net result of
	  applying those updates is the same.
           
          For example, suppose two different ALTO clients
          create two different update streams for the same cost map,
          and suppose the update stream server processes
          three separate cost point updates
          with a brief pause between each update.
          The server  MUST send all three new cost points to both clients.
          But the update stream server  MAY send a single patch event
          (with all three cost points) to one ALTO client
          while sending three separate patch events
          (with one cost point per event) to the other ALTO client.
          
           
          An update stream server  MAY offer several different update stream resources
          that provide updates to the same underlying resource
          (that is, a resource-id may appear in the "uses" field
          of more than one update stream resource).
          In this case, those update stream resources
           MUST return the same update.
          
        
         
           Multipart Update Requirements
           This design allows any valid media type for full
	  replacement. Hence, it supports ALTO resources using multipart to
	  contain multiple JSON objects. This realizes the push benefit but
	  not the incremental encoding benefit of SSE.
           
            JSON patch and merge patch provide the incremental encoding benefit
            but can be applied to only a single JSON object.  If an update stream
            service supports a resource providing a multipart media type, which
            we refer to as a multipart resource, then the update
            stream service needs to handle the issue that the message of a full multipart
            resource can include multiple JSON objects. To address the issue, when an
            update stream service specifies that it supports JSON patch or merge patch incremental
            updates for a multipart resource, the service  MUST 
            ensure that (1) each part of a multipart message is a single JSON object, 
            (2) each part is specified by a static Content-ID in the initial full message, (3) each
            data update event applies to only one part, and (4) each data update specifies
            substream-id.content-id as the "event" field of the event, to identify the part
            to be updated.
          
        
      
       
         Keep-Alive Messages
         
          In an SSE stream, any line that starts with a colon (U+003A) character
          is a comment, and an ALTO client  MUST ignore that
	  line  . 
          As recommended in  ,
          an update stream server  SHOULD send a comment line
	  (or an event) every 15 seconds 
          to prevent ALTO clients and proxy servers from dropping the HTTP connection.
          Note that
   although TCP also provides a Keep-Alive function, the interval between 
   TCP Keep-Alive messages can depend on the OS configuration and varies. 
   The preceding recommended SSE Keep-Alive allows the SSE client to detect
   the status of the update stream server with more certainty.
        
      
    
     
       Stream Control Service
       
        A stream control service allows an ALTO client
        to remove resources from the set of resources that
        are monitored by an update stream or add additional resources
        to that set. The service also allows an ALTO client
        to gracefully shut down an update stream.
      
       
        When an update stream server creates a new update stream and if the
	update stream server supports stream control for the update stream,
	the update stream server creates a stream control service for that
	update stream. 
        An ALTO client uses the stream control service to remove resources
        from the update stream instance
        or to request updates for additional resources.
        An ALTO client cannot obtain the stream control service through the IRD.
        Instead, the first event that the update stream server sends to the ALTO client
        has the URI for the associated stream control service
        (see  ).
      
       
        Each stream control request is an individual HTTP request.
        The ALTO client  MAY send multiple stream control requests
        to the stream control server using the same HTTP connection.
      
       
         URI
         The URI for a stream control service, by itself,
           MUST uniquely specify the
          update stream instance that it controls.
          The stream control server  MUST NOT use other properties of an HTTP request,
          such as cookies or the client's IP address,
          to determine the update stream.
          Furthermore, an update stream server  MUST NOT reuse a control service URI
          once the associated update stream has been closed.
        
         
          The ALTO client  MUST evaluate a relative control URI
	  reference   
          (for example, a URI reference without a host or with a relative path)
          in the context of the URI used to create the update stream.
          The stream control service's host  MAY be different
	  from the update stream's host. 
        
         
          It is expected that there is an internal mechanism to map a stream control
          URI to the unique update stream instance to be controlled. For example,
          the update stream service may assign a unique, internal stream id to
          each update stream instance. However, the exact 
          mechanism is left to the update stream service provider. 
        
         
          To prevent an attacker from forging a stream control URI and
          sending bogus requests to disrupt other update streams, the service
          should consider two security issues. First, if http, not https, is
          used, the stream control URI can be exposed to an on-path attacker.
          To address this issue, in a setting where the path from the server
          to the client can traverse such an attacker, the server  SHOULD use
          https. Second, even without direct exposure, an off-path attacker
          may guess valid stream control URIs. To address this issue, the
          server  SHOULD choose stream control URIs with enough randomness to
          make guessing difficult; the server  SHOULD introduce mechanisms
          that detect repeated guesses indicating an attack (e.g., keeping
          track of the number of failed stream control attempts). Please see
	  the W3C's "Good Practices for Capability URLs"
           .
        
      
       
         Media Type
         
        An ALTO stream control response does not have
        a specific media type.
        
      
       
         HTTP Method
         
        An ALTO update stream control resource is requested using the HTTP POST method.
        
      
       
         IRD Capabilities & Uses
         
          None (Stream control services do not appear in the IRD).
        
      
       
         Request: Accept Input Parameters
         
        A stream control service accepts the same input media
        type and input parameters as the update stream service
        ( ).
        The only difference is that a stream control service
        also accepts the "remove" field.
        
         
        If specified, the "remove" field is an array of substream-ids
        the ALTO client previously added to this update stream.
        An empty "remove" array is equivalent to a list
        of all currently active resources; the update stream server responds
        by removing all resources and closing the stream. 
        
         
        An ALTO client  MAY use the "add" field to add additional resources.
        The ALTO client  MUST assign a unique substream-id to each additional
        resource. Substream-ids  MUST be unique over the lifetime
        of this update stream; an ALTO client  MUST NOT reuse
        a previously removed substream-id. The processing of an "add" resource
        is the same as discussed in Sections   and  .
        
         If a request has any errors, the update stream server  MUST NOT add or remove any resources from the associated update
	stream. Also, the stream control server will return an error response
	to the client, as specified in  .
      
       
         Response
         
       The stream control server  MUST process the "add" field before the
       "remove" field. If the request removes all active resources without adding
       any additional resources, the update stream server  MUST
       close the update stream. 
       Thus, an update stream cannot have zero resources.
        
         
        If the request has any errors, the stream control server
	 MUST return
       an HTTP "400 Bad Request" to the ALTO client. 
   The body part of the
   response follows the generic ALTO error response format specified 
 in  .
      An error response has the same format as specified in
       . Detailed error code and
      error
      information are specified as below. 
        
         
           
          If the "add" request does not satisfy the requirements in
           , the stream control server  MUST
          return the ALTO error message defined in
           .
          
           If any substream-id in the "remove" field was not added in a
	  prior request, the error code of the error message
	   MUST be E_INVALID_FIELD_VALUE, the "field" field
	   SHOULD be "remove", and the "value" field
	   SHOULD be an array of the invalid
	  substream-ids. Thus, it is illegal to "add" and "remove" the same
	  substream-id in the same request. However, it is legal to remove a
	  substream-id twice. To support the preceding checking, the update
	  stream server  MUST keep track of previously used but
	  now closed substream-ids.
           
          If any substream-id in the "add" field has been used before in this stream,
          the error code of the error message  MUST be E_INVALID_FIELD_VALUE, the
  "field" field  SHOULD be "add", and the "value" field  SHOULD be
  an array of invalid substream-ids.
          
           If the request has a non-empty "add" field and a "remove" field
	  with an empty list of substream-ids (to replace all active resources
	  with a new set, the client  MUST explicitly enumerate
	  the substream-ids to be removed), the error code of the error
	  message  MUST be E_INVALID_FIELD_VALUE, the "field"
	  field  SHOULD be "remove", and the "value" field
	   SHOULD be an empty array.
        
         
        If the request is valid but the associated update stream has been
        closed, then the stream control server  MUST return an HTTP "404 Not
        Found".
        
         If the request is valid and the stream control server successfully
	processes the request without error, the stream control server should
	return either an HTTP "202 Accepted" response or an HTTP "204 No
	Content" response. The difference is that for the latter case, the
	stream control server is sure that the update stream server has also
	processed the request. Regardless of a 202 or 204 HTTP response, the
	final updates of related resources will be notified by the update
	stream server using its control update message(s), due to the modular
	design.
      
    
     
       Examples
       
         Example: IRD Announcing Update Stream Services
         
        Below is an example IRD announcing three
        update stream services.
        The first, which is named "update-my-costs", provides updates for the network map,
        the "routingcost" and "hopcount" cost maps,
        and a Filtered Cost Map resource.
        The second, which is named "update-my-prop", provides updates to the
	endpoint properties service. 
        The third, which is named "update-my-pv", provides updates to a
	nonstandard ALTO service returning a multipart response. 
        
         
      Note that in the "update-my-costs" update stream shown in the example
      IRD, the update stream server uses JSON patch for network map, and it
      uses JSON merge patch to update the other resources. Also, the update
      stream will only provide full replacements for
      "my-simple-filtered-cost-map". 
        
         
        Also, note that this IRD defines two Filtered Cost Map resources.
        They use the same cost types,
        but "my-filtered-cost-map" accepts cost constraint tests,
        while "my-simple-filtered-cost-map" does not.
        To avoid the issues discussed in  ,
        the update stream provides updates for the second
        but not the first.
        
         This IRD also announces a nonstandard ALTO service, which is named
	"my-pv". This service accepts an extended endpoint cost request as an
	input and returns a multipart response, including an endpoint cost
	resource and a property map resource. This document does not rely on
	any other design details of this new service. In this document, the
	"my-pv" service is only used to illustrate how the update stream
	service provides updates to an ALTO resource returning a multipart
	response.
         
  "my-network-map": {
    "uri": "https://alto.example.com/networkmap",
    "media-type": "application/alto-networkmap+json",
  },
  "my-routingcost-map": {
    "uri": "https://alto.example.com/costmap/routingcost",
    "media-type": "application/alto-costmap+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost"]
    }
  },
  "my-hopcount-map": {
    "uri": "https://alto.example.com/costmap/hopcount",
    "media-type": "application/alto-costmap+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-hopcount"]
    }
  },
  "my-filtered-cost-map": {
    "uri": "https://alto.example.com/costmap/filtered/constraints",
    "media-type": "application/alto-costmap+json",
    "accepts": "application/alto-costmapfilter+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost", "num-hopcount"],
      "cost-constraints": true
    }
  },
  "my-simple-filtered-cost-map": {
    "uri": "https://alto.example.com/costmap/filtered/simple",
    "media-type": "application/alto-costmap+json",
    "accepts": "application/alto-costmapfilter+json",
    "uses": ["my-networkmap"],
    "capabilities": {
      "cost-type-names": ["num-routingcost", "num-hopcount"],
      "cost-constraints": false
    }
  },
  "my-props": {
    "uri": "https://alto.example.com/properties",
    "media-type": "application/alto-endpointprops+json",
    "accepts": "application/alto-endpointpropparams+json",
    "capabilities": {
      "prop-types": ["priv:ietf-bandwidth"]
    }
  },
  "my-pv": {
    "uri": "https://alto.example.com/endpointcost/pv",
    "media-type": "multipart/related;
                   type=application/alto-endpointcost+json",
    "accepts": "application/alto-endpointcostparams+json",
    "capabilities": {
      "cost-type-names": [ "path-vector" ],
      "ane-properties": [ "maxresbw", "persistent-entities" ]
    }
  },
  "update-my-costs": {
    "uri": "https://alto.example.com/updates/costs",
    "media-type": "text/event-stream",
    "accepts": "application/alto-updatestreamparams+json",
    "uses": [
       "my-network-map",
       "my-routingcost-map",
       "my-hopcount-map",
       "my-simple-filtered-cost-map"
    ],
    "capabilities": {
      "incremental-change-media-types": {
        "my-network-map": "application/json-patch+json",
        "my-routingcost-map": "application/merge-patch+json",
        "my-hopcount-map": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  },
  "update-my-props": {
    "uri": "https://alto.example.com/updates/properties",
    "media-type": "text/event-stream",
    "uses": [ "my-props" ],
    "accepts": "application/alto-updatestreamparams+json",
    "capabilities": {
      "incremental-change-media-types": {
        "my-props": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  },
  "update-my-pv": {
    "uri": "https://alto.example.com/updates/pv",
    "media-type": "text/event-stream",
    "uses": [ "my-pv" ],
    "accepts": "application/alto-updatestreamparams+json",
    "capabilities": {
      "incremental-change-media-types": {
        "my-pv": "application/merge-patch+json"
      },
      "support-stream-control": true
    }
  }

      
       
         Example: Simple Network and Cost Map Updates
         
        Given the update streams announced in the preceding example IRD, the
	section below shows an example of an ALTO client's request and the
	update stream server's immediate response, 
        using the update stream resource "update-my-costs".
        In the example, the ALTO client requests updates for the network map and
        "routingcost" cost map but not for the "hopcount" cost map.
        The ALTO client uses the ALTO server's resource-ids as the substream-ids.
        Because the client does not provide a "tag" for the network map,
        the update stream server must send a full replacement for the network map
        as well as for the cost map.
        The ALTO client does not set "incremental-changes" to "false",
        so it defaults to "true".
        Thus, the update stream server will send patch updates for the cost map and the network map.
        
         
  POST /updates/costs HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 155

  { "add": {
      "my-network-map": {
        "resource-id": "my-network-map"
        },
      "my-routingcost-map": {
        "resource-id": "my-routingcost-map"
      }
    }
  }

         
  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/3141592653589"}

  event: application/alto-networkmap+json,my-network-map
  data: {
  data:   "meta" : {
  data:     "vtag": {
  data:       "resource-id" : "my-network-map",
  data:         "tag" : "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
  data:       }
  data:     },
  data:     "network-map" : {
  data:       "PID1" : {
  data:         "ipv4" : [ "192.0.2.0/24", "198.51.100.0/25" ]
  data:       },
  data:       "PID2" : {
  data:         "ipv4" : [ "198.51.100.128/25" ]
  data:       },
  data:       "PID3" : {
  data:         "ipv4" : [ "0.0.0.0/0" ],
  data:         "ipv6" : [ "::/0" ]
  data:       }
  data:     }
  data:   }
  data: }

  event: application/alto-costmap+json,my-routingcost-map
  data: {
  data:   "meta" : {
  data:     "dependent-vtags" : [{
  data:       "resource-id": "my-network-map",
  data:       "tag": "da65eca2eb7a10ce8b059740b0b2e3f8eb1d4785"
  data:     }],
  data:     "cost-type" : {
  data:       "cost-mode"  : "numerical",
  data:       "cost-metric": "routingcost"
  data:     },
  data:     "vtag": {
  data:       "resource-id" : "my-routingcost-map",
  data:       "tag" : "3ee2cb7e8d63d9fab71b9b34cbf764436315542e"
  data:     }
  data:   },
  data:   "cost-map" : {
  data:     "PID1": { "PID1": 1,  "PID2": 5,  "PID3": 10 },
  data:     "PID2": { "PID1": 5,  "PID2": 1,  "PID3": 15 },
  data:     "PID3": { "PID1": 20, "PID2": 15  }
  data:   }
  data: }

         
        After sending those events immediately,
        the update stream server will send additional events
        as the maps change. For example, the following
        represents a small change to the cost map. PID1->PID2 is changed to
	9 from 5, PID3->PID1 is no longer available, and PID3->PID3 is
	now defined as 1: 
        
         
  event: application/merge-patch+json,my-routingcost-map
  data: {
  data:   "meta" : {
  data:     "vtag": {
  data:       "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
  data:     }
  data:   },
  data:   "cost-map": {
  data:     "PID1" : { "PID2" : 9 },
  data:     "PID3" : { "PID1" : null, "PID3" : 1 }
  data:   }
  data: }

         As another example, the following represents a change to the
	network map: an ipv4 prefix "203.0.113.0/25" is added to PID1. It
	triggers changes to the cost map. The update stream server chooses to
	send an incremental change for the network map and send a full
	replacement instead of an incremental change for the cost map: 
        
         
      event: application/json-patch+json,my-network-map
      data: {
      data:   {
      data:     "op": "replace",
      data:     "path": "/meta/vtag/tag",
      data:     "value" :"a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      data:   },
      data:   {
      data:     "op": "add",
      data:     "path": "/network-map/PID1/ipv4/2",
      data:     "value": "203.0.113.0/25"
      data:   }
      data: }

      event: application/alto-costmap+json,my-routingcost-map
      data: {
      data:   "meta" : {
      data:     "vtag": {
      data:       "tag": "c0ce023b8678a7b9ec00324673b98e54656d1f6d"
      data:     }
      data:   },
      data:   "cost-map" : {
      data:     "PID1": { "PID1": 1,  "PID2": 3,  "PID3": 7 },
      data:     "PID2": { "PID1": 12, "PID2": 1,  "PID3": 9 },
      data:     "PID3": { "PID1": 14, "PID2": 8  }
      data:   }
      data: }

      
       
         Example: Advanced Network and Cost Map Updates
         
        This example is similar to the previous one,
        except that the ALTO client requests updates for the "hopcount" cost map
        as well as the "routingcost" cost map
        and provides the current version tag of the network map,
        so the update stream server is not required to send
        the full network map data update message
        at the beginning of the stream.
        In this example, the client uses the substream-ids "net",
        "routing", and "hops" for those resources.
        The update stream server sends the stream control URI and the full cost maps,
        followed by updates for the network map
        and cost maps as they become available:
        
         
  POST /updates/costs HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 244

  { "add": {
      "net": {
        "resource-id": "my-network-map",
        "tag": "a10ce8b059740b0b2e3f8eb1d4785acd42231bfe"
      },
      "routing": {
        "resource-id": "my-routingcost-map"
      },
      "hops": {
        "resource-id": "my-hopcount-map"
      }
    }
  }

         
  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/2718281828459"}

  event: application/alto-costmap+json,routing
  data: { ... full routingcost cost map message ... }

  event: application/alto-costmap+json,hops
  data: { ... full hopcount cost map message ... }

     (pause)

  event: application/merge-patch+json,routing
  data: {"cost-map": {"PID2" : {"PID3" : 31}}}

  event: application/merge-patch+json,hops
  data: {"cost-map": {"PID2" : {"PID3" : 4}}}

         
        If the ALTO client wishes to stop receiving updates for the "hopcount"
        cost map, the ALTO client can send a "remove" request
        on the stream control URI:
        
         
  POST /updates/streams/2718281828459 HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 24

  {
    "remove": [ "hops" ]
  }


  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

         
        The update stream server sends a "stopped" control update message on the
        original request stream to inform the ALTO client
        that updates are stopped for that resource:
        
         
  event: application/alto-updatestreamcontrol+json
  data: {
  data:   "stopped": ["hops"]
  data: }

         Below is an example of an invalid stream control request. The
	"remove" field of the request includes an undefined substream-id, and
	the stream control server will return an error response to the ALTO
	client.
         
      POST /updates/streams/2718281828459 HTTP/1.1
      Host: alto.example.com
      Accept: text/plain,application/alto-error+json
      Content-Type: application/alto-updatestreamparams+json
      Content-Length: 31
      {
        "remove": [ "properties" ]
      }

      HTTP/1.1 400 Bad Request
      Content-Length: 89
      Content-Type: application/alto-error+json

      {
        "meta":{
        "code": "E_INVALID_FIELD_VALUE",
        "field": "remove",
        "value": "properties"
      }

         
        If the ALTO client no longer needs any updates
        and wishes to shut the update stream down gracefully,
        the client can send a "remove" request
        with an empty array:
        
         
  POST /updates/streams/2718281828459 HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 17

  {
    "remove": [ ]
  }


  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

         
        The update stream server sends a final control update message on the
        original request stream to inform the ALTO client
        that all updates are stopped and then closes the stream:
        
         
  event: application/alto-updatestreamcontrol+json
  data: {
  data:   "stopped": ["net", "routing"]
  data: }

      (server closes stream)

      
       
         Example: Endpoint Property Updates
         
        As another example, here is how an ALTO client can request updates
        for the property "priv:ietf-bandwidth" for one set of endpoints
        and "priv:ietf-load" for another.
        The update stream server immediately sends full replacements
        with the property values for all endpoints.
        After that, the update stream server sends data update messages
        for the individual endpoints as their property values change.
        
         
  POST /updates/properties HTTP/1.1
  Host: alto.example.com
  Accept: text/event-stream
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 511

  { "add": {
      "props-1": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-bandwidth" ],
          "endpoints" : [
            "ipv4:198.51.100.1",
            "ipv4:198.51.100.2",
            "ipv4:198.51.100.3"
          ]
        }
      },
      "props-2": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-load" ],
          "endpoints" : [
            "ipv6:2001:db8:100::1",
            "ipv6:2001:db8:100::2",
            "ipv6:2001:db8:100::3"
          ]
        }
      }
    }
  }

         
  HTTP/1.1 200 OK
  Connection: keep-alive
  Content-Type: text/event-stream

  event: application/alto-updatestreamcontrol+json
  data: {"control-uri":
  data: "https://alto.example.com/updates/streams/1414213562373"}

  event: application/alto-endpointprops+json,props-1
  data: { "endpoint-properties": {
  data:     "ipv4:198.51.100.1" : { "priv:ietf-bandwidth": "13" },
  data:     "ipv4:198.51.100.2" : { "priv:ietf-bandwidth": "42" },
  data:     "ipv4:198.51.100.3" : { "priv:ietf-bandwidth": "27" }
  data:  } }

  event: application/alto-endpointprops+json,props-2
  data: { "endpoint-properties": {
  data:     "ipv6:2001:db8:100::1" : { "priv:ietf-load": "8" },
  data:     "ipv6:2001:db8:100::2" : { "priv:ietf-load": "2" },
  data:     "ipv6:2001:db8:100::3" : { "priv:ietf-load": "9" }
  data:  } }

     (pause)

  event: application/merge-patch+json,props-1
  data: { "endpoint-properties":
  data:   {"ipv4:198.51.100.1" : {"priv:ietf-bandwidth": "3"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-2
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::3" : {"priv:ietf-load": "7"}}
  data: }

         
        If the ALTO client needs the "priv:ietf-bandwidth" property and
        the "priv:ietf-load" property
        for additional endpoints,
        the ALTO client can send an "add" request
        on the stream control URI:
        
         
  POST /updates/streams/1414213562373" HTTP/1.1
  Host: alto.example.com
  Accept: text/plain,application/alto-error+json
  Content-Type: application/alto-updatestreamparams+json
  Content-Length: 448

  { "add": {
      "props-3": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-bandwidth" ],
          "endpoints" : [
            "ipv4:198.51.100.4",
            "ipv4:198.51.100.5"
          ]
        }
      },
      "props-4": {
        "resource-id": "my-props",
        "input": {
          "properties" : [ "priv:ietf-load" ],
          "endpoints" : [
            "ipv6:2001:db8:100::4",
            "ipv6:2001:db8:100::5"
          ]
        }
      }
    }
  }


  HTTP/1.1 204 No Content
  Content-Length: 0

      (stream closed without sending data content)

         
        The update stream server sends full replacements
        for the two new resources, followed by incremental
        changes for all four requests as they arrive:
        
         
  event: application/alto-endpointprops+json,props-3
  data: { "endpoint-properties": {
  data:     "ipv4:198.51.100.4" : { "priv:ietf-bandwidth": "25" },
  data:     "ipv4:198.51.100.5" : { "priv:ietf-bandwidth": "31" },
  data:  } }

  event: application/alto-endpointprops+json,props-4
  data: { "endpoint-properties": {
  data:     "ipv6:2001:db8:100::4" : { "priv:ietf-load": "6" },
  data:     "ipv6:2001:db8:100::5" : { "priv:ietf-load": "4" },
  data:  } }

     (pause)

  event: application/merge-patch+json,props-3
  data: { "endpoint-properties":
  data:   {"ipv4:198.51.100.5" : {"priv:ietf-bandwidth": "15"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-2
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::2" : {"priv:ietf-load": "9"}}
  data: }

     (pause)

  event: application/merge-patch+json,props-4
  data: { "endpoint-properties":
  data:   {"ipv6:2001:db8:100::4" : {"priv:ietf-load": "3"}}
  data: }

      
       
         Example: Multipart Message Updates
         
        This example shows how an ALTO client can request a nonstandard ALTO
	service returning a multipart response. The update stream server
	immediately sends full replacements of the multipart response. After
	that, the update stream server sends data update messages for the
	individual parts of the response as the ALTO data (object) in each
	part changes. 
        
         
   POST /updates/pv HTTP/1.1
   Host: alto.example.com
   Accept: text/event-stream
   Content-Type: application/alto-updatestreamparams+json
   Content-Length: 382

   {
     "add": {
       "ecspvsub1": {
         "resource-id": "my-pv",
         "input": {
           "cost-type": {
             "cost-mode": "array",
             "cost-metric": "ane-path"
           },
           "endpoints": {
             "srcs": [ "ipv4:192.0.2.2" ],
             "dsts": [ "ipv4:192.0.2.89", "ipv4:203.0.113.45" ]
           },
           "ane-properties": [ "maxresbw", "persistent-entities" ]
         }
       }
     }
   }

         
   HTTP/1.1 200 OK
   Connection: keep-alive
   Content-Type: text/event-stream

   event: application/alto-updatestreamcontrol+json
   data: {"control-uri":
   data:    "https://alto.example.com/updates/streams/1414"}

   event: multipart/related;boundary=example-pv;
          type=application/alto-endpointcost+json,ecspvsub1
   data: --example-pv
   data: Content-ID: ecsmap
   data: Content-Type: application/alto-endpointcost+json
   data:
   data: { ... data (object) of an endpoint cost map ... }
   data: --example-pv
   data: Content-ID: propmap
   data: Content-Type: application/alto-propmap+json
   data:
   data: { ... data (object) of a property map ... }
   data: --example-pv--

      (pause)

   event: application/merge-patch+json,ecspvsub1.ecsmap
   data: { ... merge patch for updates of ecspvsub1.ecsmap ... }

   event: application/merge-patch+json,ecspvsub1.propmap
   data: { ... merge patch for updates of ecspvsub1.propmap ... }

      
    
     
       Operation and Processing Considerations
       
         Considerations for Choosing Data Update Messages
         
            The update stream server should be cognizant of the effects of
            its update schedule, which includes both the choice of timing
            (i.e., when/what to trigger an update) and the choice of message
            format (i.e., given an update, send a full replacement or an
            incremental change). In particular, the update schedule can have
            effects on both the overhead and the freshness of information. To
            minimize overhead, the server may choose to batch a sequence of
            updates for resources that frequently change by sending
            cumulative updates or a full replacement after a while. The
            update stream server should be cognizant that batching reduces
            the freshness of information. The server should also consider the
            effect of such delays on client behaviors (see below on client
            timeout on waiting for updates of dependent resources).
        
         
          For incremental updates, this design allows both JSON patch and JSON
	  merge patch for incremental changes. JSON merge patch is clearly
	  superior to JSON patch for describing incremental changes to 
          cost maps, endpoint costs, and endpoint properties.
          For these data structures, JSON merge patch is more space efficient,
	  as well as simpler to apply. There is no advantage allowing a server
	  to use JSON patch for those resources. 
        
         
          The case is not as clear for incremental changes to network maps.
        
         
          First, consider small changes, such as moving a prefix from one PID to another.
          JSON patch could encode that as a simple insertion and deletion,
          while JSON merge patch would have to replace the entire array of prefixes
          for both PIDs.
          On the other hand, to process a JSON patch update,
          the ALTO client would have to retain the indexes of the prefixes for each PID.
          Logically, the prefixes in a PID are an unordered set,
          not an array; aside from handling updates,
          a client has no need to retain the array indexes of the prefixes.
          Hence, to take advantage of JSON patch for network maps,
          ALTO clients would have to retain additional, otherwise unnecessary, data.
        
         
          Second, consider more involved changes, such as removing half of the
	  prefixes from a PID. JSON merge patch would send a new array for
	  that PID, while JSON patch would have to send a list of remove
	  operations and delete the prefix one by one. 
        
         
          Therefore, each update stream server may decide on its own whether
	  to use JSON merge patch or JSON patch according to the changes in
	  network maps. 
        
      
       
         Considerations for Client Processing Data Update Messages
         
        In general, when an ALTO client receives a full replacement
        for a resource, the ALTO client should replace the current version
        with the new version.
        When an ALTO client receives an incremental change
        for a resource, the ALTO client should apply those patches
        to the current version of the resource.
        
         
        However, because resources can depend on other resources
        (e.g., cost maps depend on network maps),
        an ALTO client  MUST NOT use a dependent resource
        if the resource on which it depends has changed.
        There are at least two ways an ALTO client can do that.
        The following paragraphs illustrate these techniques by referring to
	network and cost map messages,
        although these techniques apply to any dependent resources.
        
         
        Note that when a network map changes,
        the update stream server  MUST send the network map update message
        before sending the updates for the dependent cost maps
        (see  ).
        
         
        One approach is for the ALTO client to save
        the network map update message in a buffer
        and continue to use the previous network map
        and the associated cost maps
        until the ALTO client receives the update messages
        for all dependent cost maps.
        The ALTO client then applies all network and cost map updates atomically.
        
         Alternatively, the ALTO client  MAY update the
	network map immediately. In this case, the cost maps using the network
	map become invalid because they are inconsistent with the current
	network map; hence, the ALTO client  MUST mark each such
	dependent cost map as temporarily invalid and  MUST NOT
	use each such cost map until the ALTO client receives a cost map
	update message indicating that it is based on the new network map
	version tag.
         The update stream server  SHOULD send updates for
	dependent resources (i.e., the cost maps in the preceding example) in
	a timely fashion. However, if the ALTO client does not receive the
	expected updates, a simple recovery method is that the ALTO client
	closes the update stream connection, discards the dependent resources,
	and reestablishes the update stream. The ALTO client
	 MAY retain the version tag of the last version of any
	tagged resources and give those version tags when requesting the new
	update stream. In this case, if a version is still current, the update
	stream server will not resend that resource.
         
        Although not as efficient as possible, this recovery method is simple and reliable.
        
      
       
         Considerations for Updates to Filtered Cost Maps
         If an update stream provides updates to a Filtered Cost Map that
	allows constraint tests, then an ALTO  client  MAY
	request updates to a Filtered Cost Map request with a constraint
	test. In this case, when a cost changes, the update stream server
	 MUST send an update if the new value satisfies the
	test. If the new value does not, whether the update stream server
	sends an update depends on whether the previous value satisfied the
	test. If it did not, the update stream server  SHOULD NOT send an update to the ALTO client. But if the previous
	value did, then the update stream server  MUST send an
	update with a "null" value to inform the ALTO client that this cost no
	longer satisfies the criteria.
         An update stream server can avoid having to handle such a
	complicated behavior by offering update streams only for Filtered Cost
	Maps that do not allow constraint tests.
      
       
         Considerations for Updates to Ordinal Mode Costs
         
        For an ordinal mode cost map, a change to a single cost point
        may require updating many other costs.
        As an extreme example, suppose the lowest cost changes to the highest cost.
        For a numerical mode cost map, only that one cost changes.
        But for an ordinal mode cost map, every cost might change.
        While this document allows an update stream server to offer incremental updates
        for ordinal mode cost maps, update stream server implementors should be aware
        that incremental updates for ordinal costs are more complicated
        than for numerical costs, and ALTO clients should be aware that
        small changes may result in large updates.
        
         
        An update stream server can avoid this complication
        by only offering full replacements for ordinal cost maps.
        
      
       
         Considerations for SSE Text Formatting and Processing
         
        SSE was designed for events that consist of relatively small amounts
	of line-oriented text data, and SSE clients frequently read input one
	line at a time.  However, an update stream sends a full cost map as a
	single events, and a cost map may involve megabytes, if not tens of
	megabytes, of text. This has implications that the ALTO client and the
	update stream server may consider. 
        
         
          First, some SSE client libraries read all data for an event into
	  memory and then present it to the client as a character
	  array. However, a client may not have enough memory to hold the
	  entire JSON text for a large cost map.  Hence, an ALTO client
	   SHOULD consider using an SSE library that presents
	  the event data in manageable chunks, so the ALTO client can parse
	  the cost map incrementally and store the underlying data in a more
	  compact format. 
        
         
          Second, an SSE client library may use a low-level, generic socket
	  read library that stores each line of an event data, just in case
	  the higher-level parser may need the line delimiters as part of the
	  protocol formatting. A server sending a complete cost map as a
	  single line may then generate a multi-megabyte data "line", and such
	  a long line may then require complex memory management at the
	  client. It is  RECOMMENDED that an update stream
	  server limit the lengths of data lines. 
        
         
          Third, an SSE server may use a library, which may put line breaks in
	  places that would have semantic consequences for the ALTO updates;
	  see  . The update stream
	  server implementation  MUST ensure that no line breaks
	  are introduced to change the semantics. 
        
      
    
     
       Security Considerations
       
        The security considerations ( ) of the base protocol fully
        apply to this extension. For example, the same authenticity and
        integrity considerations ( ) still fully
        apply; the same considerations for the privacy of ALTO users ( ) also still fully
      apply.
       
        The additional services (addition of update streams and stream
        control URIs) provided by this extension extend the attack surface
        described in  . Below, we 
        discuss the additional risks and their remedies.
      
       
         Update Stream Server: Denial-of-Service Attacks
         
        Allowing persistent update stream connections
        enables a new class of Denial-of-Service attacks.
        
         For the update stream server, an ALTO client might create an unreasonable
        number of update stream connections
        or add an unreasonable number of substream-ids
        to one update stream.
        
         
        To avoid these attacks on the update stream server, the server  SHOULD choose
        to limit the number of active streams and
        reject new requests when that threshold is reached.
        An update stream server  SHOULD also choose to limit the number of active
        substream-ids on any given stream or limit the total
        number of substream-ids used over the lifetime of a stream
        and reject any stream control request
        that would exceed those limits.
        In these cases, the update stream server  SHOULD return
        the HTTP status "503 Service Unavailable".        
        
         It is important to note that the preceding approaches are not the
	only possibilities. For example, it may be possible for the update
	stream server to use somewhat more clever logic involving IP
	reputation, rate-limiting, and compartmentalization of the overall
	threshold into smaller thresholds that apply to subsets of potential
	clients.
         
        While the preceding techniques prevent update stream DoS attacks from disrupting
        an update stream server's other services, it does make it easier
        for a DoS attack to disrupt the update stream service.
        Therefore, an update stream server  MAY prefer to restrict update stream
        services to authorized clients, as discussed in  . 
        
         
        Alternatively, an update stream server  MAY return
        the HTTP status "307 Temporary Redirect"
        to redirect the client to another ALTO server
        that can better handle a large number of update streams.
        
      
       
         ALTO Client: Update Overloading or Instability
         The availability of continuous updates can also cause overload for
	an ALTO client, in particular, an ALTO client with limited processing
	capabilities. The current design does not include any flow control
	mechanisms for the client to reduce the update rates from the
	server. Under overloading, the client  MAY choose to
	remove the information resources with high update rates.
         Also, under overloading, the client may no longer be able to detect
	whether information is still fresh or has become stale. In such a
	case, the client should be careful in how it uses the information to
	avoid stability or efficiency issues.
      
       
         Stream Control: Spoofed Control Requests and Information Breakdown
         
        An outside party that can read the update stream response
        or that can observe stream control requests
        can obtain the control URI and use that
        to send a fraudulent "remove" requests,
        thus disabling updates for the valid ALTO client.
        This can be avoided by encrypting the update stream
        and stream control requests
        (see  ).
        Also, the update stream server echoes the "remove" requests
        on the update stream, so the valid ALTO client can detect
        unauthorized requests.
        
         In general, as the architecture allows the possibility for the update 
         stream server and the stream control server to be different entities, the
         additional risks should be evaluated and remedied. For example, the 
         private communication path between the servers may be attacked, resulting
         in a risk of communications breakdown between them, as well as invalid or 
         spoofed messages claiming to be on that private communications path. Proper
         security mechanisms, including confidentiality, authenticity, and integrity
         mechanisms, should be considered. 
        
      
    
     
       Requirements on Future ALTO Services to Use This Design
       Although this design is quite flexible, it has underlying requirements.
       The key requirements are that (1) each data update message is for a
      single resource and (2) an incremental change can be applied only to a
      resource that is a single JSON object, as both JSON merge patch and JSON
      patch can apply only to a single JSON object. Hence, if a future ALTO
      resource can contain multiple objects, then either each individual
      object also has a resource-id or an extension to this design is made. 
      
       At the low-level encoding level, new line in SSE has its own
      semantics. Hence, this design requires that resource encoding does not
      include new lines that can be confused with SSE encoding. In particular,
      the 
      data update message  MUST NOT include "event: " or "data:
      " at a new line as part of data message. 
      
       If an update stream provides updates to a Filtered Cost Map that
      allows constraint tests, the requirements for such services are stated
      in  . 
      
    
     
       IANA Considerations
       
        This document defines two new media types:
        "application/alto-updatestreamparams+json",
        as described in  ,
        and "application/alto-updatestreamcontrol+json",
        as described in  .
        All other media types used in this document have already been registered,
        either for ALTO, JSON merge patch, or JSON patch.
      
       
         application/alto-updatestreamparams+json Media Type
         
           Type name:
           application
           Subtype name:
           alto-updatestreamparams+json
           Required parameters:
           N/A
           Optional parameters:
           N/A
           Encoding considerations:
           Encoding considerations are
          identical to those specified for the "application/json" media type. See
           .
           Security considerations:
           Security considerations relating
          to the generation and consumption of ALTO Protocol messages are
          discussed in   of RFC 8895
          and  .
           Interoperability considerations:
           RFC 8895 specifies
          format of conforming messages and the interpretation thereof.
           Published specification:
           
             
          of RFC 8895.
           Applications that use this media type:
           ALTO servers and
          ALTO clients either stand alone or are embedded within other
          applications.
           Fragment identifier considerations:
           N/A
           Additional information:
           
              
             
               Deprecated alias names for this type:
               N/A
               Magic number(s):
               N/A
               File extension(s):
               RFC 8895 uses the media type
            to refer to protocol messages and thus does not require a file
            extension.
               Macintosh file type code(s):
               N/A
            
          
           Person & email address to contact for further information:
           
          See Authors' Addresses section.
           Intended usage:
           COMMON
           Restrictions on usage:
           N/A
           Author:
           See Authors' Addresses section.
           Change controller:
           Internet Engineering Task Force (mailto:iesg@ietf.org).
        
      
       
         application/alto-updatestreamcontrol+json Media Type
         
           Type name:
           application
           Subtype name:
           alto-updatestreamcontrol+json
           Required parameters:
           N/A
           Optional parameters:
           N/A
           Encoding considerations:
           Encoding considerations are
          identical to those specified for the "application/json" media type. See
           .
           Security considerations:
           Security considerations relating
          to the generation and consumption of ALTO Protocol messages are
          discussed in   of RFC 8895
          and  .
           Interoperability considerations:
           RFC 8895 specifies
          format of conforming messages and the interpretation thereof.
           Published specification:
           
             
          of RFC 8895.
           Applications that use this media type:
           ALTO servers and
          ALTO clients either stand alone or are embedded within other
          applications.
           Fragment identifier considerations:
           N/A
           Additional information:
           
              
             
               Deprecated alias names for this type:
               N/A
               Magic number(s):
               N/A
               File extension(s):
               RFC 8895 uses the media type
            to refer to protocol messages and thus does not require a file
            extension.
               Macintosh file type code(s):
               N/A
            
          
           Person & email address to contact for further information:
           
          See Authors' Addresses section.
           Intended usage:
           COMMON
           Restrictions on usage:
           N/A
           Author:
           See Authors' Addresses section.
           Change controller:
           Internet Engineering Task Force (mailto:iesg@ietf.org).
        
      
    
     
       Appendix: Design Decision: Not Allowing Stream Restart
       
        If an update stream is closed accidentally,
        when the ALTO client reconnects, the update stream server must
        resend the full maps.
        This is clearly inefficient.
        To avoid that inefficiency,
        the SSE specification allows an update stream server to assign an id
        to each event. When an ALTO client reconnects,
        the ALTO client can present the id of the last successfully
        received event, and the update stream server restarts with the
        next event.
      
       
        However, that mechanism adds additional complexity.
        The update stream server must save SSE messages in a buffer
        in case ALTO clients reconnect.
        But that mechanism will never be perfect:
        If the ALTO client waits too long to reconnect
        or if the ALTO client sends an invalid ID,
        then the update stream server will have to resend the complete maps anyway.
      
       
        Furthermore, this is unlikely to be a problem in practice.
        ALTO clients who want continuous updates for large resources,
        such as full network and cost maps,
        are likely to be things like P2P trackers.
        These ALTO clients will be well connected to the network;
        they will rarely drop connections.
      
       
        Mobile devices certainly can and do drop connections
        and will have to reconnect.
        But mobile devices will not need continuous updates
        for multi-megabyte cost maps.
        If mobile devices need continuous updates at all,
        they will need them for small queries,
        such as the costs from a small set of media servers
        from which the device can stream the currently playing movie.
        If the mobile device drops the connection and reestablishes the update stream,
        the update stream server will have to retransmit only a small amount
        of redundant data.
      
       
        In short, using event ids to avoid resending the full map
        adds a considerable amount of complexity to avoid a situation that
        is very rare. The complexity is not worth the benefit.
      
       
        The update stream service does allow the ALTO client
        to specify the tag of the last received version of any tagged
        resource, and if that is still current, the update stream server need not
        retransmit the full resource.
        Hence, ALTO clients can use this to avoid retransmitting full network maps.
        Cost maps are not tagged, so this will not work for them.
        Of course, the ALTO protocol could be extended by adding version tags
        to cost maps, which would solve the retransmission-on-reconnect problem.
        However, adding tags to cost maps might add a new set of complications.
      
    
  
   
     
       References
       
         Normative References
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             The MIME Multipart/Related Content-type
             
               
            
             
             
               This document defines the Multipart/Related content-type and provides examples of its use.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Uniform Resource Identifier (URI): Generic Syntax
             
               
            
             
               
            
             
               
            
             
             
               A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource.  This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet.  The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier.  This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme.  [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             Media Type Specifications and Registration Procedures
             
               
            
             
               
            
             
               
            
             
             
               This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols.  This memo documents an Internet Best Current Practice.
            
          
           
           
           
        
         
           
             JavaScript Object Notation (JSON) Patch
             
               
            
             
               
            
             
             
               JSON Patch defines a JSON document structure for expressing a sequence of operations to apply to a JavaScript Object Notation (JSON) document; it is suitable for use with the HTTP PATCH method. The "application/json-patch+json" media type is used to identify such patch documents.
            
          
           
           
        
         
           
             Application-Layer Traffic Optimization (ALTO) Protocol
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Applications using the Internet already have access to some topology information of Internet Service Provider (ISP) networks.  For example, views to Internet routing tables at Looking Glass servers are available and can be practically downloaded to many network application clients.  What is missing is knowledge of the underlying network topologies from the point of view of ISPs.  In other words, what an ISP prefers in terms of traffic optimization -- and a way to distribute it.
               The Application-Layer Traffic Optimization (ALTO) services defined in this document provide network information (e.g., basic network location structure and preferences of network paths) with the goal of modifying network resource consumption patterns while maintaining or improving application performance.  The basic information of ALTO is based on abstract maps of a network.  These maps provide a simplified view, yet enough information about a network for applications to effectively utilize them.  Additional services are built on top of the maps.
               This document describes a protocol implementing the ALTO services. Although the ALTO services would primarily be provided by ISPs, other entities, such as content service providers, could also provide ALTO services.  Applications that could use the ALTO services are those that have a choice to which end points to connect.  Examples of such applications are peer-to-peer (P2P) and content delivery networks.
            
          
           
           
        
         
           
             JSON Merge Patch
             
               
            
             
               
            
             
             
               This specification defines the JSON merge patch format and processing rules.  The merge patch format is primarily intended for use with the HTTP PATCH method as a means of describing a set of modifications to a target resource's content.
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             The JavaScript Object Notation (JSON) Data Interchange Format
             
               
            
             
             
               JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format.  It was derived from the ECMAScript Programming Language Standard.  JSON defines a small set of formatting rules for the portable representation of structured data.
               This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.
            
          
           
           
           
        
         
           
             Server-Sent Events
             
             
          
           W3C Recommendation
        
      
       
         Informative References
         
           
             Stream Control Transmission Protocol
             
               
            
             
             
               This document obsoletes RFC 2960 and RFC 3309.  It describes the Stream Control Transmission Protocol (SCTP).  SCTP is designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks, but is capable of broader applications.
               SCTP is a reliable transport protocol operating on top of a connectionless packet network such as IP.  It offers the following services to its users:
               --  acknowledged error-free non-duplicated transfer of user data,
               --  data fragmentation to conform to discovered path MTU size,
               --  sequenced delivery of user messages within multiple streams, with an option for order-of-arrival delivery of individual user messages,
               --  optional bundling of multiple user messages into a single SCTP packet, and
               --  network-level fault tolerance through supporting of multi-homing at either or both ends of an association.
                The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             PATCH Method for HTTP
             
               
            
             
               
            
             
             
               Several applications extending the Hypertext Transfer Protocol (HTTP) require a feature to do partial resource modification.  The existing HTTP PUT method only allows a complete replacement of a document. This proposal adds a new HTTP method, PATCH, to modify an existing HTTP resource.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing
             
               
            
             
               
            
             
             
               The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems.  This document provides an overview of HTTP architecture and its associated terminology, defines the "http" and "https" Uniform Resource Identifier (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements, and describes related security concerns for implementations.
            
          
           
           
        
         
           
             Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
             
               
            
             
               
            
             
             
               The Hypertext Transfer Protocol (HTTP) is a stateless \%application- level protocol for distributed, collaborative, hypertext information systems.  This document defines the semantics of HTTP/1.1 messages, as expressed by request methods, request header fields, response status codes, and response header fields, along with the payload of messages (metadata and body content) and mechanisms for content negotiation.
            
          
           
           
        
         
           
             Hypertext Transfer Protocol Version 2 (HTTP/2)
             
               
            
             
               
            
             
               
            
             
             
               This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2).  HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection.  It also introduces unsolicited push of representations from servers to clients.
               This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax.  HTTP's existing semantics remain unchanged.
            
          
           
           
        
      
    
     
       Acknowledgments
       Thank you to   (Tongji University),
        (Tongji University), and   (Yale University) for their contributions to an
      earlier version of this document.
    
     
       Contributors
       Sections  ,  ,  , and  
      of this document are based on contributions from  , and he is considered an author.
    
     
       Authors' Addresses
       
         Nokia Bell Labs (Retired)
         
           
             124 Burlington Rd
             Murray Hill
             NJ
             07974
             United States of America
          
           +1-908-464-6975
           wendy@wdroome.com
        
      
       
         Yale University
         
           
             51 Prospect St
             New Haven
             CT
             United States of America
          
           yry@cs.yale.edu
        
      
    
  


