
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 5914 Vigil Security, LLC
Category: Standards Track S. Ashmore
ISSN: 2070-1721 National Security Agency
 C. Wallace
 Cygnacom Solutions
 June 2010

 Trust Anchor Format

Abstract

 This document describes a structure for representing trust anchor
 information. A trust anchor is an authoritative entity represented
 by a public key and associated data. The public key is used to
 verify digital signatures, and the associated data is used to
 constrain the types of information or actions for which the trust
 anchor is authoritative. The structures defined in this document are
 intended to satisfy the format-related requirements defined in Trust
 Anchor Management Requirements.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5914.

Housley, et al. Standards Track [Page 1]

RFC 5914 TAF June 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Trust Anchor Information Syntax 3
 2.1. Version . 3
 2.2. Public Key . 3
 2.3. Key Identifier . 4
 2.4. Trust Anchor Title . 4
 2.5. Certification Path Controls 4
 2.6. Extensions . 8
 3. Trust Anchor List . 8
 4. Security Considerations 9
 5. References . 9
 5.1. Normative References 9
 5.2. Informative References 10
 Appendix A. ASN.1 Modules . 11
 A.1. ASN.1 Module Using 2002 Syntax 11
 A.2. ASN.1 Module Using 1988 Syntax 12
 A.2.1. ASN.1 Module . 12

Housley, et al. Standards Track [Page 2]

RFC 5914 TAF June 2010

1. Introduction

 Trust anchors are widely used to verify digital signatures and
 validate certification paths [RFC5280][X.509]. They are required
 when validating certification paths. Though widely used, there is no
 standard format for representing trust anchor information. This
 document describes the TrustAnchorInfo structure. This structure is
 intended to satisfy the format-related requirements expressed in
 Trust Anchor Management Requirements [TA-MGMT-REQS] and is expressed
 using ASN.1 [X.680]. It can provide a more compact alternative to
 X.509 certificates for exchanging trust anchor information and
 provides a means of associating additional or alternative constraints
 with certificates without breaking the signature on the certificate.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Trust Anchor Information Syntax

 This section describes the TrustAnchorInfo structure.

 TrustAnchorInfo ::= SEQUENCE {
 version TrustAnchorInfoVersion DEFAULT v1,
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] EXPLICIT Extensions OPTIONAL,
 taTitleLangTag [2] UTF8String OPTIONAL }

 TrustAnchorInfoVersion ::= INTEGER { v1(1) }

2.1. Version

 version identifies the version of TrustAnchorInfo. Future updates to
 this document may include changes to the TrustAnchorInfo structure,
 in which case the version number should be incremented. However, the
 default value, v1, cannot be changed.

2.2. Public Key

 pubKey identifies the public key and algorithm associated with the
 trust anchor using the SubjectPublicKeyInfo structure [RFC5280]. The
 SubjectPublicKeyInfo structure contains the algorithm identifier
 followed by the public key itself. The algorithm field is an

Housley, et al. Standards Track [Page 3]

RFC 5914 TAF June 2010

 AlgorithmIdentifier, which contains an object identifier and OPTIONAL
 parameters. The object identifier names the public key algorithm and
 indicates the syntax of the parameters, if present, as well as the
 format of the public key. The public key is encoded as a BIT STRING.

2.3. Key Identifier

 keyId contains the public key identifier of the trust anchor public
 key. See Section 4.2.1.2 of [RFC5280] for a description of common
 key identifier calculation methods.

2.4. Trust Anchor Title

 TrustAnchorTitle ::= UTF8String (SIZE (1..64))

 taTitle is OPTIONAL. When it is present, it provides a human-
 readable name for the trust anchor. The text is encoded in UTF-8
 [RFC3629], which accommodates most of the world’s writing systems.
 The taTitleLangTag field identifies the language used to express the
 taTitle. When taTitleLangTag is absent, English ("en" language tag)
 is used. The value of the taTitleLangTag should be a language tag as
 described in [RFC5646].

2.5. Certification Path Controls

 CertPathControls ::= SEQUENCE {
 taName Name,
 certificate [0] Certificate OPTIONAL,
 policySet [1] CertificatePolicies OPTIONAL,
 policyFlags [2] CertPolicyFlags OPTIONAL,
 nameConstr [3] NameConstraints OPTIONAL,
 pathLenConstraint[4] INTEGER (0..MAX) OPTIONAL}

 certPath is OPTIONAL. When it is present, it provides the controls
 needed to initialize an X.509 certification path validation algorithm
 implementation (see Section 6 of [RFC5280]). When absent, the trust
 anchor cannot be used to validate the signature on an X.509
 certificate.

 taName provides the X.500 distinguished name associated with the
 trust anchor, and this distinguished name is used to construct and
 validate an X.509 certification path. The name MUST NOT be an empty
 sequence.

 certificate provides an OPTIONAL X.509 certificate, which can be used
 in some environments to represent the trust anchor in certification
 path development and validation. If the certificate is present, the
 subject name in the certificate MUST exactly match the X.500

Housley, et al. Standards Track [Page 4]

RFC 5914 TAF June 2010

 distinguished name provided in the taName field, the public key MUST
 exactly match the public key in the pubKey field, and the
 subjectKeyIdentifier extension, if present, MUST exactly match the
 key identifier in the keyId field. The complete description of the
 syntax and semantics of the Certificate are provided in [RFC5280].
 Constraints defined in the policySet, policyFlags, nameConstr,
 pathLenConstraint, and exts fields within TrustAnchorInfo replace
 values contained in a certificate or provide values for extensions
 not present in the certificate. Values defined in these
 TrustAnchorInfo fields are always enforced. Extensions included in a
 certificate are enforced only if there is no corresponding value in
 the TrustAnchorInfo. Correspondence between extensions within
 certificate and TrustAnchorInfo fields is defined as follows:

 o an id-ce-certificatePolicies certificate extension corresponds to
 the CertPathControls.policySet field.

 o an id-ce-policyConstraints certificate extension corresponds to
 the CertPolicyFlags.inhibitPolicyMapping and
 CertPolicyFlags.requireExplicitPolicy fields.

 o an id-ce-inhibitAnyPolicy certificate extension corresponds to the
 CertPolicyFlags.inhibitAnyPolicy field.

 o an id-ce-nameConstraints certificate extension corresponds to the
 CertPathControls.nameConstr field.

 o the pathLenConstraint field of an id-ce-basicConstraints
 certificate extension corresponds to the
 CertPathControls.pathLenConstraint field (the presence of a
 CertPathControls structure corresponds to a TRUE value in the cA
 field of a BasicConstraints extension).

 o any other certificate extension corresponds to the same type of
 extension in the TrustAnchorInfo.exts field.

 CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation

 PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL }

 CertPolicyId ::= OBJECT IDENTIFIER

 policySet is OPTIONAL. When present, it contains a sequence of
 certificate policy identifiers to be provided as inputs to the
 certification path validation algorithm. When absent, the special

Housley, et al. Standards Track [Page 5]

RFC 5914 TAF June 2010

 value any-policy is provided as the input to the certification path
 validation algorithm. The complete description of the syntax and
 semantics of the CertificatePolicies are provided in [RFC5280],
 including the syntax for PolicyInformation. In this context, the
 OPTIONAL policyQualifiers structure MUST NOT be included.

 CertPolicyFlags ::= BIT STRING {
 inhibitPolicyMapping (0),
 requireExplicitPolicy (1),
 inhibitAnyPolicy (2) }

 policyFlags is OPTIONAL. When present, three Boolean values for
 input to the certification path validation algorithm are provided in
 a BIT STRING. When absent, the input to the certification path
 validation algorithm is { FALSE, FALSE, FALSE }, which represents the
 most liberal setting for these flags. The three bits are used as
 follows:

 inhibitPolicyMapping indicates if policy mapping is allowed in the
 certification path. When set to TRUE, policy mapping is not
 permitted. This value represents the initial-policy-mapping-
 inhibit input value to the certification path validation algorithm
 described in Section 6.1.1 of [RFC5280].

 requireExplicitPolicy indicates if the certification path MUST be
 valid for at least one of the certificate policies in the
 policySet. When set to TRUE, all certificates in the
 certification path MUST contain an acceptable policy identifier in
 the certificate policies extension. This value represents the
 initial-explicit-policy input value to the certification path
 validation algorithm described in Section 6.1.1 of [RFC5280]. An
 acceptable policy identifier is a member of the policySet or the
 identifier of a policy that is declared to be equivalent through
 policy mapping. This bit MUST be set to FALSE if policySet is
 absent.

 inhibitAnyPolicy indicates whether the special anyPolicy policy
 identifier, with the value { 2 5 29 32 0 }, is considered an
 explicit match for other certificate policies. This value
 represents the initial-any-policy-inhibit input value to the
 certification path validation algorithm described in Section 6.1.1
 of [RFC5280].

 NameConstraints ::= SEQUENCE {
 permittedSubtrees [0] GeneralSubtrees OPTIONAL,
 excludedSubtrees [1] GeneralSubtrees OPTIONAL }

 GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree

Housley, et al. Standards Track [Page 6]

RFC 5914 TAF June 2010

 GeneralSubtree ::= SEQUENCE {
 base GeneralName,
 minimum [0] BaseDistance DEFAULT 0,
 maximum [1] BaseDistance OPTIONAL }

 BaseDistance ::= INTEGER (0..MAX)

 nameConstr is OPTIONAL. It has the same syntax and semantics as the
 Name Constraints certificate extension [RFC5280], which includes a
 list of permitted names and a list of excluded names. The definition
 of GeneralName can be found in [RFC5280]. When it is present,
 constraints are provided on names (including alternative names) that
 might appear in subsequent X.509 certificates in a certification
 path. This field is used to set the initial-permitted-subtrees and
 initial-excluded-subtrees input values to the certification path
 validation algorithm described in Section 6.1.1 of [RFC5280]. When
 this field is absent, the initial-permitted-subtrees variable is
 unbounded and the initial-excluded-subtrees variable is empty.

 The pathLenConstraint field gives the maximum number of non-self-
 issued intermediate certificates that may follow this certificate in
 a valid certification path. (Note: The last certificate in the
 certification path is not an intermediate certificate and is not
 included in this limit. Usually, the last certificate is an end
 entity certificate, but it can be a CA certificate.) A
 pathLenConstraint of zero indicates that no non-self-issued
 intermediate certification authority (CA) certificates may follow in
 a valid certification path. Where it appears, the pathLenConstraint
 field MUST be greater than or equal to zero. Where pathLenConstraint
 does not appear, no limit is imposed.

 When the trust anchor is used to validate a certification path,
 CertPathControls provides limitations on certification paths that
 will successfully validate. An application that is validating a
 certification path SHOULD NOT ignore these limitations, but the
 application can impose additional limitations to ensure that the
 validated certification path is appropriate for the intended
 application context. As input to the certification path validation
 algorithm, an application MAY:

 o Provide a subset of the certification policies provided in the
 policySet;

 o Provide a TRUE value, if appropriate, for any of the flags in the
 policyFlags;

 o Provide a subset of the permitted names provided in the
 nameConstr;

Housley, et al. Standards Track [Page 7]

RFC 5914 TAF June 2010

 o Provide additional excluded names to the ones that are provided in
 the nameConstr;

 o Provide a smaller value for pathLenConstraint.

2.6. Extensions

 exts is OPTIONAL. When it is present, it can be used to associate
 additional information with the trust anchor using the standard
 Extensions structure. Extensions that are anticipated to be widely
 used have been included in the CertPathControls structure to avoid
 overhead associated with use of the Extensions structure. To avoid
 duplication with the CertPathControls field, the following types of
 extensions MUST NOT appear in the exts field and are ignored if they
 do appear: id-ce-certificatePolicies, id-ce-policyConstraints, id-ce-
 inhibitAnyPolicy, or id-ce-nameConstraints.

3. Trust Anchor List

 TrustAnchorInfo allows for the representation of a single trust
 anchor. In many cases, it is convenient to represent a collection of
 trust anchors. The TrustAnchorList structure is defined for this
 purpose. TrustAnchorList is defined as a sequence of one or more
 TrustAnchorChoice objects. TrustAnchorChoice provides three options
 for representing a trust anchor. The certificate option allows for
 the use of a certificate with no additional associated constraints.
 The tbsCert option allows for associating constraints by removing a
 signature on a certificate and changing the extensions field. The
 taInfo option allows for use of the TrustAnchorInfo structure defined
 in this document.

 TrustAnchorList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorChoice

 TrustAnchorChoice ::= CHOICE {
 certificate Certificate,
 tbsCert [1] EXPLICIT TBSCertificate,
 taInfo [2] EXPLICIT TrustAnchorInfo }

 trust-anchor-list PKCS7-CONTENT-TYPE ::=
 { TrustAnchorList IDENTIFIED BY id-ct-trustAnchorList }

 The TrustAnchorList structure can be protected using the SignedData
 structure defined in the Cryptographic Message Syntax (CMS)
 [RFC5652]. The id-ct-trustAnchorList object identifier has been
 defined to represent TrustAnchorList payloads with CMS structures.

Housley, et al. Standards Track [Page 8]

RFC 5914 TAF June 2010

4. Security Considerations

 Compromise of a trust anchor private key permits unauthorized parties
 to masquerade as the trust anchor, with potentially severe
 consequences. Where TA-based constraints are enforced, the
 unauthorized holder of the trust anchor private key will be limited
 by the certification path controls associated with the trust anchor,
 as expressed in the certPath and exts fields. For example, name
 constraints in the trust anchor will determine the name space that
 will be accepted in certificates that are validated using the
 compromised trust anchor. Reliance on an inappropriate or incorrect
 trust anchor public key has similar potentially severe consequences.

 The compromise of a CA’s private key leads to the same type of
 problems as the compromise of a trust anchor private key. The
 unauthorized holder of the CA private key will be limited by the
 certification path controls associated with the trust anchor, as
 expressed in the certPath field or as an extension.

 Usage of a certificate independent of the TrustAnchorInfo structure
 that envelopes it must be carefully managed to avoid violating
 constraints expressed in the TrustAnchorInfo. When enveloping a
 certificate in a TrustAnchorInfo structure, values included in the
 certificate should be evaluated to ensure there is no confusion or
 conflict with values in the TrustAnchorInfo structure.

5. References

5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)",
 RFC 5652, September 2009.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

Housley, et al. Standards Track [Page 9]

RFC 5914 TAF June 2010

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)",
 RFC 5912, June 2010.

 [X.680] "ITU-T Recommendation X.680: Information Technology -
 Abstract Syntax Notation One", 2002.

5.2. Informative References

 [TA-MGMT-REQS] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", Work in Progress, March 2010.

 [X.509] "ITU-T Recommendation X.509 - The Directory -
 Authentication Framework", 2000.

Housley, et al. Standards Track [Page 10]

RFC 5914 TAF June 2010

Appendix A. ASN.1 Modules

A.1. ASN.1 Module Using 2002 Syntax

 Appendix A.1 provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680]. It includes definitions imported from [RFC5280] and
 [RFC5912].

 TrustAnchorInfoModule
 { joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 33 }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, Name, SubjectPublicKeyInfo, TBSCertificate
 FROM PKIX1Explicit-2009 -- from [RFC5912]
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51)}
 CertificatePolicies, KeyIdentifier, NameConstraints
 FROM PKIX1Implicit-2009 -- from [RFC5912]
 {iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-implicit-02(59)}
 Extensions{}
 FROM PKIX-CommonTypes-2009 -- from [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) } ;

 TrustAnchorInfo ::= SEQUENCE {
 version TrustAnchorInfoVersion DEFAULT v1,
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] EXPLICIT Extensions {{...}} OPTIONAL,
 taTitleLangTag [2] UTF8String OPTIONAL }

 TrustAnchorInfoVersion ::= INTEGER { v1(1) }

 TrustAnchorTitle ::= UTF8String (SIZE (1..64))

 CertPathControls ::= SEQUENCE {
 taName Name,
 certificate [0] Certificate OPTIONAL,
 policySet [1] CertificatePolicies OPTIONAL,

Housley, et al. Standards Track [Page 11]

RFC 5914 TAF June 2010

 policyFlags [2] CertPolicyFlags OPTIONAL,
 nameConstr [3] NameConstraints OPTIONAL,
 pathLenConstraint[4] INTEGER (0..MAX) OPTIONAL}

 CertPolicyFlags ::= BIT STRING {
 inhibitPolicyMapping (0),
 requireExplicitPolicy (1),
 inhibitAnyPolicy (2) }

 TrustAnchorList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorChoice

 TrustAnchorChoice ::= CHOICE {
 certificate Certificate,
 tbsCert [1] EXPLICIT TBSCertificate,
 taInfo [2] EXPLICIT TrustAnchorInfo }

 id-ct-trustAnchorList OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-ct(1) 34 }

 PKCS7-CONTENT-TYPE ::= TYPE-IDENTIFIER

 trust-anchor-list PKCS7-CONTENT-TYPE ::=
 { TrustAnchorList IDENTIFIED BY id-ct-trustAnchorList }

 END

A.2. ASN.1 Module Using 1988 Syntax

 Appendix A.2 provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680].

A.2.1. ASN.1 Module

 TrustAnchorInfoModule-88
 { joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 37 }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, Name, Extensions,
 SubjectPublicKeyInfo, TBSCertificate
 FROM PKIX1Explicit88 -- from [RFC5280]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)

Housley, et al. Standards Track [Page 12]

RFC 5914 TAF June 2010

 id-pkix1-explicit(18) }
 CertificatePolicies, KeyIdentifier, NameConstraints
 FROM PKIX1Implicit88 -- [RFC5280]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit(19) }
 ;

 TrustAnchorInfo ::= SEQUENCE {
 version TrustAnchorInfoVersion DEFAULT v1,
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] EXPLICIT Extensions OPTIONAL,
 taTitleLangTag [2] UTF8String OPTIONAL }

 TrustAnchorInfoVersion ::= INTEGER { v1(1) }

 TrustAnchorTitle ::= UTF8String (SIZE (1..64))

 CertPathControls ::= SEQUENCE {
 taName Name,
 certificate [0] Certificate OPTIONAL,
 policySet [1] CertificatePolicies OPTIONAL,
 policyFlags [2] CertPolicyFlags OPTIONAL,
 nameConstr [3] NameConstraints OPTIONAL,
 pathLenConstraint[4] INTEGER (0..MAX) OPTIONAL}

 CertPolicyFlags ::= BIT STRING {
 inhibitPolicyMapping (0),
 requireExplicitPolicy (1),
 inhibitAnyPolicy (2) }

 TrustAnchorList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorChoice

 TrustAnchorChoice ::= CHOICE {
 certificate Certificate,
 tbsCert [1] EXPLICIT TBSCertificate,
 taInfo [2] EXPLICIT TrustAnchorInfo }

 id-ct-trustAnchorList OBJECT IDENTIFIER ::= { iso(1)
 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-ct(1) 34 }

 END

Housley, et al. Standards Track [Page 13]

RFC 5914 TAF June 2010

Authors’ Addresses

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170

 EMail: housley@vigilsec.com

 Sam Ashmore
 National Security Agency
 Suite 6751
 9800 Savage Road
 Fort Meade, MD 20755

 EMail: srashmo@radium.ncsc.mil

 Carl Wallace
 Cygnacom Solutions
 Suite 5400
 7925 Jones Branch Drive
 McLean, VA 22102

 EMail: cwallace@cygnacom.com

Housley, et al. Standards Track [Page 14]

