
Network Working Group D. Cridland
Request for Comments: 5267 C. King
Category: Standards Track Isode Limited
 July 2008

 Contexts for IMAP4

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The IMAP4rev1 protocol has powerful search facilities as part of the
 core protocol, but lacks the ability to create live, updated results
 that can be easily handled. This memo provides such an extension,
 and shows how it can be used to provide a facility similar to virtual
 mailboxes.

Cridland & King Standards Track [Page 1]

RFC 5267 IMAP CONTEXT July 2008

Table of Contents

 1. Introduction . 3
 2. Conventions Used in This Document 3
 3. Extended Sort Syntax . 3
 3.1. ESORT Extension . 4
 3.2. Ranges in Extended Sort Results 4
 3.3. Extended SORT Example 4
 4. Contexts . 5
 4.1. Overview . 5
 4.2. Context Hint . 5
 4.3. Notifications of Changes 6
 4.3.1. Refusing to Update Contexts 7
 4.3.2. Common Features of ADDTO and REMOVEFROM 8
 4.3.3. ADDTO Return Data Item 8
 4.3.4. REMOVEFROM Return Data Item 9
 4.3.5. The CANCELUPDATE Command 10
 4.4. Partial Results . 10
 4.5. Caching Results . 11
 5. Formal Syntax . 12
 6. Security Considerations 13
 7. IANA Considerations . 13
 8. Acknowledgements . 13
 9. References . 14
 9.1. Normative References 14
 9.2. Informative References 14
 Appendix A. Cookbook . 15
 A.1. Virtual Mailboxes . 15
 A.2. Trash Mailboxes . 15
 A.3. Immediate EXPUNGE Notifications 15
 A.4. Monitoring Counts . 15
 A.5. Resynchronizing Contexts 16
 Appendix B. Server Implementation Notes 16

Cridland & King Standards Track [Page 2]

RFC 5267 IMAP CONTEXT July 2008

1. Introduction

 Although the basic SEARCH command defined in [IMAP], and as enhanced
 by [ESEARCH], is relatively compact in its representation, this
 reduction saves only a certain amount of data, and huge mailboxes
 might overwhelm the storage available for results on even relatively
 high-end desktop machines.

 The SORT command defined in [SORT] provides useful features, but is
 hard to use effectively on changing mailboxes over low-bandwidth
 connections.

 This memo borrows concepts from [ACAP], such as providing a windowed
 view onto search or sort results, and making updates that are
 bandwidth and round-trip efficient. These are provided by two
 extensions: "ESORT" and "CONTEXT".

2. Conventions Used in This Document

 In examples, "C:" and "S:" indicate lines sent by the client
 messaging user agent and IMAP4rev1 ([IMAP]) server, respectively.
 "//" indicates inline comments not part of the protocol exchange.
 Line breaks are liberally inserted for clarity. Examples are
 intended to be read in order, such that the state remains from one
 example to the next.

 Although the examples show a server that supports [ESEARCH], this is
 not a strict requirement of this specification.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 Other capitalized words are typically names of IMAP extensions or
 commands -- these are uppercased for clarity only, and are case-
 insensitive.

3. Extended Sort Syntax

 Servers implementing the extended SORT provide a suite of extensions
 to the SORT and UID SORT commands defined in [SORT]. This allows for
 return options, as used with SEARCH and specified in [IMAP-ABNF], to
 be used with SORT in a similar manner.

 The SORT and UID SORT commands are extended by the addition of an
 optional list of return options that follow a RETURN atom immediately
 after the command. If this is missing, the server will return
 results as specified in [SORT].

Cridland & King Standards Track [Page 3]

RFC 5267 IMAP CONTEXT July 2008

 The extended SORT command always returns results in the requested
 sort order, but is otherwise identical in its behaviour to the
 extended SEARCH command defined in [IMAP-ABNF], as extended by
 [ESEARCH]. In particular, the extended SORT command returns results
 in an ESEARCH response.

3.1. ESORT Extension

 Servers advertising the capability "ESORT" support the return options
 specified in [ESEARCH] in the SORT command. These return options are
 adapted as follows:

 MIN
 Return the message number/UID of the lowest sorted message
 satisfying the search criteria.

 MAX
 Return the message number/UID of the highest sorted message
 satisfying the search criteria.

 ALL
 Return all message numbers/UIDs which match the search criteria,
 in the requested sort order, using a sequence-set. Note the use
 of ranges described below in Section 3.2.

 COUNT
 As in [ESEARCH].

3.2. Ranges in Extended Sort Results

 Any ranges given by the server, including those given as part of the
 sequence-set, in an ESEARCH response resulting from an extended SORT
 or UID SORT command, MUST be ordered in increasing numerical order
 after expansion, as per usual [IMAP] rules.

 In particular this means that 10:12 is equivalent to 12:10, and
 10,11,12. To avoid confusion, servers SHOULD present ranges only
 when the first seq-number is lower than the second; that is, either
 of the forms 10:12 or 10,11,12 is acceptable, but 12:10 SHOULD be
 avoided.

3.3. Extended SORT Example

 If the list of return options is present but empty, then the server
 provides the ALL return data item in an ESEARCH response. This is
 functionally equivalent to an unextended UID SORT command, but can
 use a smaller representation:

Cridland & King Standards Track [Page 4]

RFC 5267 IMAP CONTEXT July 2008

 C: E01 UID SORT RETURN () (REVERSE DATE) UTF-8 UNDELETED
 UNKEYWORD $Junk
 S: * ESEARCH (TAG "E01") UID ALL 23765,23764,23763,23761,[...]
 S: E01 OK Sort completed

 Note that the initial three results are not represented as the range
 23765:23763 as mandated in Section 3.2.

4. Contexts

4.1. Overview

 The Contexts extension is present in any IMAP4rev1 server that
 includes the string "CONTEXT=SEARCH", and/or "CONTEXT=SORT", within
 its advertised capabilities.

 In the case of CONTEXT=SEARCH, the server supports the extended
 SEARCH command syntax described in [IMAP-ABNF], and accepts three
 additional return options.

 Servers advertising CONTEXT=SORT also advertise the SORT capability,
 as described in [SORT], support the extended SORT command syntax
 described in Section 3, and accept three additional return options
 for this extended SORT.

 These additional return options allow for notifications of changes to
 the results of SEARCH or SORT commands, and also allow for access to
 partial results.

 A server advertising the CONTEXT=SEARCH extension will order all
 SEARCH results, whether from a UID SEARCH or SEARCH command, in
 mailbox order -- that is, by message number and UID. Therefore, the
 UID SEARCH, SEARCH, UID SORT, or SORT command used -- collectively
 known as the searching command -- will always have an order, the
 requested order, which will be the mailbox order for UID SEARCH and
 SEARCH commands.

 All of the return specifiers have no interaction with either each
 other or any return specifiers defined in [ESEARCH] or Section 3.1;
 however, it is believed that implementations supporting CONTEXT will
 also support ESEARCH and ESORT.

4.2. Context Hint

 The return option CONTEXT SHOULD be used by a client to indicate that
 subsequent use of the search criteria are likely. Servers MAY ignore
 this return option or use it as a hint to maintain a full result
 cache, or index.

Cridland & King Standards Track [Page 5]

RFC 5267 IMAP CONTEXT July 2008

 A client might choose to obtain a count of matching messages prior to
 obtaining actual results. Here, the client signals its intention to
 fetch the results themselves:

 C: A01 SEARCH RETURN (CONTEXT COUNT) UNDELETED
 UNKEYWORD $Junk
 S: * ESEARCH (TAG "A01") COUNT 23765
 S: A01 OK Search completed.

4.3. Notifications of Changes

 The search return option UPDATE, if used by a client, causes the
 server to issue unsolicited notifications containing updates to the
 results that would be returned by an unmodified searching command.
 These update sets are carried in ADDTO and REMOVEFROM data items in
 ESEARCH responses.

 These ESEARCH responses carry a search correlator of the searching
 command, hence clients MUST NOT reuse tags, as already specified in
 Section 2.2.1 of [IMAP]. An attempt to use UPDATE where a tag is
 already in use with a previous searching command that itself used
 UPDATE SHALL result in the server rejecting the searching command
 with a BAD response.

 Both ADDTO and REMOVEFROM data items SHOULD be delivered to clients
 in a timely manner, as and when results change, whether by new
 messages arriving in the mailbox, metadata such as flags being
 changed, or messages being expunged.

 Typically, this would occur at the same time as the FETCH, EXISTS, or
 EXPUNGE responses carrying the source of the change.

 Updates will cease when the mailbox is no longer selected, or when
 the CANCELUPDATE command, defined in Section 4.3.5, is issued by the
 client, whichever is sooner.

 Unlike [ACAP], there is no requirement that a context need be created
 with CONTEXT to use UPDATE, and in addition, the lack of UPDATE with
 a CONTEXT does not affect the results caused by later searching
 commands -- there is no snapshot facility.

 There is no interaction between UPDATE and any other return options;
 therefore, use of RETURN (UPDATE MIN), for example, does not notify
 about the minimum UID or sequence number, but notifies instead about
 all changes to the set of matching messages. In particular, this
 means that a client using UPDATE and PARTIAL on the same search
 program could receive notifications about messages that do not
 currently interest it.

Cridland & King Standards Track [Page 6]

RFC 5267 IMAP CONTEXT July 2008

 Finally, as specified in the errata to [IMAP], any message sequence
 numbers used in the search program are evaluated at the time the
 command is received; therefore, if the messages referred to by such
 message sequence numbers change, no notifications will be emitted.

 This time, the client will require notifications of updates and
 chooses to obtain a count:

 C: B01 UID SEARCH RETURN (UPDATE COUNT) DELETED
 KEYWORD $Junk
 S: * ESEARCH (TAG "B01") COUNT 74
 S: B01 OK Search completed, will notify.
 // Note that the following is rejected, and has no effect:
 C: B01 SORT RETURN (UPDATE) FLAGGED
 S: B01 BAD Tag reuse

4.3.1. Refusing to Update Contexts

 In some cases, the server MAY refuse to provide updates, such as if
 an internal limit on the number of update contexts is reached. In
 such a case, an untagged NO is generated during processing of the
 command with a response-code of NOUPDATE. The response-code
 contains, as argument, the tag of the search command for which the
 server is refusing to honour the UPDATE request.

 Other return options specified SHALL still be honoured.

 Servers MUST provide at least one updating context per client, and
 SHOULD provide more -- see Appendix B for strategies on reducing the
 impact of additional updating contexts. Since sorted contexts
 require a higher implementation cost than unsorted contexts, refusal
 to provide updates for a SORT command does not imply that SEARCH
 contexts will also be refused.

 This time, the client will require notifications of updates, and
 chooses to obtain a count:

 C: B02 UID SORT RETURN (UPDATE COUNT) UTF-8
 KEYWORD $Junk
 S: * ESEARCH (TAG "B02") COUNT 74
 S: * NO [NOUPDATE "B02"] Too many contexts
 S: B02 OK Search completed, will not notify.

 Client handling might be to retry with a UID SEARCH command, or else
 cancel an existing context; see Section 4.3.5.

Cridland & King Standards Track [Page 7]

RFC 5267 IMAP CONTEXT July 2008

4.3.2. Common Features of ADDTO and REMOVEFROM

 The result update set included in the return data item is specified
 as UIDs or message numbers, depending on how the UPDATE was
 specified. If the UPDATE was present in a SEARCH or SORT command,
 the results will be message numbers; in a UID SEARCH or UID SORT
 command, they will be UIDs.

 The client MUST process ADDTO and REMOVEFROM return data items in the
 order they appear, including those within a single ESEARCH response.
 Correspondingly, servers MUST generate ADDTO and REMOVEFROM responses
 such that the results are maintained in the requested order.

 As with any response aside from EXPUNGE, ESEARCH responses carrying
 ADDTO and/or REMOVEFROM return data items MAY be sent at any time.
 In particular, servers MAY send such responses when no command is in
 progress, during the processing of any command, or when the client is
 using the IDLE facility described in [IDLE]. Implementors are
 recommended to read [NOTIFY] as a mechanism for clients to signal
 servers that they are willing to process responses at any time, and
 are also recommended to pay close attention to Section 5.3 of [IMAP].

 It is anticipated that typical server implementations will emit ADDTO
 when they normally emit the causal FETCH or EXISTS, and similarly
 emit REMOVEFROM when they normally emit the causal FETCH or EXPUNGE.

4.3.3. ADDTO Return Data Item

 The ADDTO return data item contains, as payload, a list containing
 pairs of a context position and a set of result updates in the
 requested order to be inserted at the context position. Where the
 searching command is a SEARCH or UID SEARCH command, the context
 position MAY be zero. Each pair is processed in the order that it
 appears.

 Note that an ADDTO containing message sequence numbers added as a
 result of those messages being delivered or appended MUST be sent
 after the EXISTS notification itself, in order that those sequence
 numbers are valid.

 If the context position is non-zero, the result update is inserted at
 the given context position, meaning that the first result in the set
 will occupy the new context position after insertion, and any prior
 existing result at that context position will be shifted to a later
 context position.

Cridland & King Standards Track [Page 8]

RFC 5267 IMAP CONTEXT July 2008

 Where the context position is zero, the client MAY insert the message
 numbers or UIDs in the result list such that the result list is
 maintained in mailbox order. In this case, servers are RECOMMENDED
 to order the result update into mailbox order to produce the shortest
 representation in set-syntax.

 [...]
 S: * 23762 FETCH (FLAGS (\Deleted \Seen))
 S: * 23763 FETCH (FLAGS ($Junk \Seen))
 S: * ESEARCH (TAG "B01") UID ADDTO (0 32768:32769)

 Note that this example assumes messages 23762 and 23763 with UIDs
 32768 and 32769 (respectively) previously had neither \Deleted nor
 $Junk set. Also note that only the ADDTO is included, and not the
 (now changed) COUNT.

 If the searching command "C01" initially generated a result list of
 2734:2735, then the following three responses are equivalent, and
 yield a result list of 2731:2735:

 [...]
 S: * ESEARCH (TAG "C01") UID ADDTO (1 2733 1 2732 1 2731)
 S: * ESEARCH (TAG "C01") UID ADDTO (1 2733) ADDTO (1 2731:2732)
 S: * ESEARCH (TAG "C01") UID ADDTO (1 2731:2733)

 The last is the preferred representation.

4.3.4. REMOVEFROM Return Data Item

 The REMOVEFROM return data item contains, as payload, a list
 containing pairs of a context position and a set of result updates in
 the requested order to be removed starting from the context position.
 Where the searching command is a SEARCH or UID SEARCH command, the
 context position MAY be zero. Each pair is processed in the order
 that it appears.

 If the context position is non-zero, the results are removed at the
 given context position, meaning that the first result in the set will
 occupy the given context position before removal, and any prior
 existing result at that context position will be shifted to an
 earlier context position.

 Where the context position is zero, the client removes the message
 numbers or UIDs in the result list wherever they occur, and servers
 are RECOMMENDED to order the result list in mailbox order to obtain
 the best benefit from the set-syntax.

Cridland & King Standards Track [Page 9]

RFC 5267 IMAP CONTEXT July 2008

 Note that a REMOVEFROM containing message sequence numbers removed as
 a result of those messages being expunged MUST be sent prior to the
 expunge notification itself, in order that those sequence numbers
 remain valid.

 Here, a message in the result list is expunged. The REMOVEFROM is
 shown to happen without any command in progress; see Section 4.3.2.
 Note that EXPUNGE responses do not have this property.

 [...]
 S: * ESEARCH (TAG "B01") UID REMOVEFROM (0 32768)
 C: B03 NOOP
 S: * 23762 EXPUNGE
 S: B03 OK Nothing done.

4.3.5. The CANCELUPDATE Command

 When a client no longer wishes to receive updates, it may issue the
 CANCELUPDATE command, which will prevent all updates to the contexts
 named in the arguments from being transmitted by the server. The
 command takes, as arguments, one or more tags of the commands used to
 request updates.

 The server MAY free any resource associated with a context so
 disabled -- however, the client is free to issue further searching
 commands with the same criteria and requested order, including
 PARTIAL requests.

 C: B04 CANCELUPDATE "B01"
 S: B04 OK No further updates.

4.4. Partial Results

 The PARTIAL search return option causes the server to provide in an
 ESEARCH response a subset of the results denoted by the sequence
 range given as the mandatory argument. The first result is 1; thus,
 the first 500 results would be obtained by a return option of
 "PARTIAL 1:500", and the second 500 by "PARTIAL 501:1000". This
 intentionally mirrors message sequence numbers.

 A single command MUST NOT contain more than one PARTIAL or ALL search
 return option -- that is, either one PARTIAL, one ALL, or neither
 PARTIAL nor ALL is allowed.

 For SEARCH results, the entire result list MUST be ordered in mailbox
 order, that is, in UID or message sequence number order.

Cridland & King Standards Track [Page 10]

RFC 5267 IMAP CONTEXT July 2008

 Where a PARTIAL search return option references results that do not
 exist, by using a range which starts or ends higher than the current
 number of results, then the server returns the results that are in
 the set. This yields a PARTIAL return data item that has, as
 payload, the original range and a potentially missing set of results
 that may be shorter than the extent of the range.

 Clients need not request PARTIAL results in any particular order.
 Because mailboxes may change, clients will often wish to use PARTIAL
 in combination with UPDATE, especially if the intent is to walk a
 large set of results; however, these return options do not interact
 -- the UPDATE will provide notifications for all matching results.

 // Recall from A01 that there are 23764 results.
 C: A02 UID SEARCH RETURN (PARTIAL 23500:24000) UNDELETED
 UNKEYWORD $Junk
 C: A03 UID SEARCH RETURN (PARTIAL 1:500) UNDELETED
 UNKEYWORD $Junk
 C: A04 UID SEARCH RETURN (PARTIAL 24000:24500) UNDELETED
 UNKEYWORD $Junk
 S: * ESEARCH (TAG "A02") UID PARTIAL (23500:24000 ...)
 // 264 results in set syntax elided,
 // this spans the end of the results.
 S: A02 OK Completed.
 S: * ESEARCH (TAG "A03") UID PARTIAL (1:500 ...)
 // 500 results in set syntax elided.
 S: A03 OK Completed.
 S: * ESEARCH (TAG "A04") UID PARTIAL (24000:24500 NIL)
 // No results are present, this is beyond the end of the results.
 S: A04 OK Completed.

4.5. Caching Results

 Server implementations MAY cache results from a SEARCH or SORT,
 whether or not hinted to by CONTEXT, in order to make subsequent
 searches more efficient, perhaps by recommencing a subsequent PARTIAL
 search where a previous search left off. However, servers MUST
 behave identically whether or not internal caching is taking place;
 therefore, any such cache is required to be updated as changes to the
 mailbox occur. An alternate strategy would be to discard results
 when any change occurs to the mailbox.

Cridland & King Standards Track [Page 11]

RFC 5267 IMAP CONTEXT July 2008

5. Formal Syntax

 The collected formal syntax. This uses ABNF as defined in [ABNF].
 It includes definitions from [IMAP], [IMAP-ABNF], and [SORT].

 capability =/ "CONTEXT=SEARCH" / "CONTEXT=SORT" / "ESORT"
 ;; <capability> from [IMAP]

 command-select =/ "CANCELUPDATE" 1*(SP quoted)
 ;; <command-select> from [IMAP]

 context-position = number
 ;; Context position may be 0 for SEARCH result additions.
 ;; <number> from [IMAP]

 modifier-context = "CONTEXT"

 modifier-partial = "PARTIAL" SP partial-range

 partial-range = nz-number ":" nz-number
 ;; A range 500:400 is the same as 400:500.
 ;; This is similar to <seq-range> from [IMAP],
 ;; but cannot contain "*".

 modifier-update = "UPDATE"

 search-return-opt =/ modifier-context / modifier-partial /
 modifier-update
 ;; All conform to <search-return-opt>, from [IMAP-ABNF]

 resp-text-code =/ "NOUPDATE" SP quoted
 ;; <resp-text-code> from [IMAP]

 ret-data-addto = "ADDTO"
 SP "(" context-position SP sequence-set
 *(SP context-position SP sequence-set)
 ")"
 ;; <sequence-set> from [IMAP]

 ret-data-partial = "PARTIAL"
 SP "(" partial-range SP partial-results ")"
 ;; <partial-range> is the requested range.

 partial-results = sequence-set / "NIL"
 ;; <sequence-set> from [IMAP]
 ;; NIL indicates no results correspond to the requested range.

Cridland & King Standards Track [Page 12]

RFC 5267 IMAP CONTEXT July 2008

 ret-data-removefrom = "REMOVEFROM"
 SP "(" context-position SP sequence-set
 *(SP context-position SP sequence-set)
 ")"
 ;; <sequence-set> from [IMAP]

 search-return-data =/ ret-data-partial / ret-data-addto /
 ret-data-removefrom
 ;; All conform to <search-return-data>, from [IMAP-ABNF]

 sort =/ extended-sort
 ;; <sort> from [SORT]

 extended-sort = ["UID" SP] "SORT" search-return-opts
 SP sort-criteria SP search-criteria
 ;; <search-return-opts> from [IMAP-ABNF]
 ;; <sort-criteria> and <search-criteria> from [SORT]

6. Security Considerations

 This document defines additional IMAP4 capabilities. As such, it
 does not change the underlying security considerations of [IMAP].
 The authors and reviewers believe that no new security issues are
 introduced with these additional IMAP4 capabilities.

 Creation of a large number of contexts may provide an avenue for
 denial-of-service attacks by authorized users. Implementors may
 reduce this by limiting the number of contexts possible to create,
 via the protocol features described in Section 4.3.1; by reducing the
 impact of contexts by the implementation strategies described in
 Appendix B; and by logging context creation and usage so that
 administrative remedies may be applied.

7. IANA Considerations

 IMAP4 capabilities are registered by publishing a Standards Track or
 IESG-approved Experimental RFC.

 This document defines the ESORT, CONTEXT=SEARCH, and CONTEXT=SORT
 IMAP capabilities. IANA has added them to the registry accordingly.

8. Acknowledgements

 Much of the design of this extension can be found in ACAP. Valuable
 comments, both in agreement and in dissent, were received from Alexey
 Melnikov, Arnt Gulbrandsen, Cyrus Daboo, Filip Navara, Mark Crispin,
 Peter Coates, Philip Van Hoof, Randall Gellens, Timo Sirainen, Zoltan

Cridland & King Standards Track [Page 13]

RFC 5267 IMAP CONTEXT July 2008

 Ordogh, and others, and many of these comments have had significant
 influence on the design or the text. The authors are grateful to all
 those involved, including those not mentioned here.

9. References

9.1. Normative References

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [ESEARCH] Melnikov, A. and D. Cridland, "IMAP4 Extension to SEARCH
 Command for Controlling What Kind of Information Is
 Returned", RFC 4731, November 2006.

 [IMAP] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1", RFC 3501, March 2003.

 [IMAP-ABNF] Melnikov, A. and C. Daboo, "Collected Extensions to
 IMAP4 ABNF", RFC 4466, April 2006.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SORT] Crispin, M. and K. Murchison, "Internet Message Access
 Protocol - SORT and THREAD Extensions", RFC 5256,
 June 2008.

9.2. Informative References

 [ACAP] Newman, C. and J. Myers, "ACAP -- Application
 Configuration Access Protocol", RFC 2244, November 1997.

 [IDLE] Leiba, B., "IMAP4 IDLE command", RFC 2177, June 1997.

 [NOTIFY] Melnikov, A., Gulbrandsen, A., and C. King, "The IMAP
 NOTIFY Extension", Work in Progress, March 2008.

Cridland & King Standards Track [Page 14]

RFC 5267 IMAP CONTEXT July 2008

Appendix A. Cookbook

A.1. Virtual Mailboxes

 It is possible to use the facilities described within this memo to
 create a facility largely similar to a virtual mailbox, but handled
 on the client side.

 Initially, the client SELECTs the real "backing" mailbox. Next, it
 can switch to a filtered view at any time by issuing a RETURN (COUNT
 UPDATE CONTEXT), and using RETURN (PARTIAL x:y) as the user scrolls,
 feeding the results into a FETCH as required to populate summary
 views.

 A typically useful view is "UID SORT (DATE) RETURN (...) UTF-8
 UNSEEN UNDELETED", which can be used to show the mailbox sorted into
 INTERNALDATE order, filtered to only show messages which are unread
 and not yet deleted.

A.2. Trash Mailboxes

 Certain contexts are particularly useful for client developers
 wishing to present something similar to the common trash mailbox
 metaphor in limited bandwidth. The simple criteria of UNDELETED only
 matches undeleted messages, and the corresponding DELETED search key
 can be used to display a per-mailbox trash-like virtual mailbox.

A.3. Immediate EXPUNGE Notifications

 The command "SEARCH RETURN (UPDATE) ALL" can be used to create a
 context that notifies immediately about expunged messages, yet will
 not affect message sequence numbers until the normal EXPUNGE message
 can be sent. This may be useful for clients wishing to show this
 behavior without losing the benefit of sequence numbering.

A.4. Monitoring Counts

 A client need not maintain any result cache at all, but instead it
 can maintain a simple count of messages matching the search criteria.
 Typically, this would use the SEARCH command, as opposed to UID
 SEARCH, due to its smaller representation. Such usage might prove
 useful in monitoring the number of flagged, but unanswered, messages,
 for example, with "SEARCH RETURN (UPDATE COUNT) FLAGGED UNANSWERED".

Cridland & King Standards Track [Page 15]

RFC 5267 IMAP CONTEXT July 2008

A.5. Resynchronizing Contexts

 The creation of a context, and immediate access to it, can all be
 accomplished in a single round-trip. Therefore, whilst it is
 possible to elide resynchronization if no changes have occurred, it
 is simpler in most cases to resynchronize by simply recreating the
 context.

Appendix B. Server Implementation Notes

 Although a server may cache the results, this is neither mandated nor
 required, especially when the client uses SEARCH or UID SEARCH
 commands. UPDATE processing, for example, can be achieved
 efficiently by comparison of the old flag state (if any) and the new,
 and PARTIAL can be achieved by re-running the search until the
 suitable window is required. This is a result of there being no
 snapshot facility.

 For example, on a new message, the server can simply test for matches
 against all current UPDATE context search programs, and for any that
 match, send the ADDTO return data.

 Similarly, for a flag change on an existing message, the server can
 check whether the message matched with its old flags, whether it
 matches with new flags, and provide ADDTO or REMOVEFROM return data
 accordingly if these results differ.

 For PARTIAL requests, the server can perform a full search,
 discarding results until the lower bound is hit, and stopping the
 search when sufficient results have been obtained.

 With some additional state, it is possible to restart PARTIAL
 searches, thus avoiding performing the initial discard phase.

 For the best performance, however, caching the full search results is
 needed, which can allow for faster responses at the expense of
 memory. One reasonable strategy would be to balance this trade-off
 at run-time, discarding search results after a suitable timeout, and
 regenerating them as required.

 This yields state requirements of storing the search program for any
 UPDATE contexts, and optionally storing both search program and
 (updated) results for further contexts as required.

Cridland & King Standards Track [Page 16]

RFC 5267 IMAP CONTEXT July 2008

 Note that in the absence of a server-side results cache, it may be
 impossible to know if an expunged message previously matched unless
 the original message is still available. Therefore, some
 implementations may be forced into using a results cache in many
 circumstances.

 UPDATE contexts created with SORT or UID SORT will almost certainly
 require some form of results caching, however.

Authors’ Addresses

 Dave Cridland
 Isode Limited
 5 Castle Business Village
 36, Station Road
 Hampton, Middlesex TW12 2BX
 GB

 EMail: dave.cridland@isode.com

 Curtis King
 Isode Limited
 5 Castle Business Village
 36, Station Road
 Hampton, Middlesex TW12 2BX
 GB

 EMail: cking@mumbo.ca

Cridland & King Standards Track [Page 17]

RFC 5267 IMAP CONTEXT July 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Cridland & King Standards Track [Page 18]

