
Network Working Group W. Polk
Request for Comments: 3279 NIST
Obsoletes: 2528 R. Housley
Category: Standards Track RSA Laboratories
 L. Bassham
 NIST
 April 2002

 Algorithms and Identifiers for the
 Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL) Profile

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document specifies algorithm identifiers and ASN.1 encoding
 formats for digital signatures and subject public keys used in the
 Internet X.509 Public Key Infrastructure (PKI). Digital signatures
 are used to sign certificates and certificate revocation list (CRLs).
 Certificates include the public key of the named subject.

Table of Contents

 1 Introduction . 2
 2 Algorithm Support . 3
 2.1 One-Way Hash Functions 3
 2.1.1 MD2 One-Way Hash Functions 3
 2.1.2 MD5 One-Way Hash Functions 4
 2.1.3 SHA-1 One-Way Hash Functions 4
 2.2 Signature Algorithms 4
 2.2.1 RSA Signature Algorithm 5
 2.2.2 DSA Signature Algorithm 6
 2.2.3 Elliptic Curve Digital Signature Algorithm 7
 2.3 Subject Public Key Algorithms 7
 2.3.1 RSA Keys . 8
 2.3.2 DSA Signature Keys 9
 2.3.3 Diffie-Hellman Key Exchange Keys 10

Polk, et al. Standards Track [Page 1]

RFC 3279 Algorithms and Identifiers April 2002

 2.3.4 KEA Public Keys 11
 2.3.5 ECDSA and ECDH Public Keys 13
 3 ASN.1 Module . 18
 4 References . 24
 5 Security Considerations 25
 6 Intellectual Property Rights 26
 7 Author Addresses . 26
 8 Full Copyright Statement 27

1 Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC 2119].

 This document specifies algorithm identifiers and ASN.1 [X.660]
 encoding formats for digital signatures and subject public keys used
 in the Internet X.509 Public Key Infrastructure (PKI). This
 specification supplements [RFC 3280], "Internet X.509 Public Key
 Infrastructure: Certificate and Certificate Revocation List (CRL)
 Profile." Implementations of this specification MUST also conform to
 RFC 3280.

 This specification defines the contents of the signatureAlgorithm,
 signatureValue, signature, and subjectPublicKeyInfo fields within
 Internet X.509 certificates and CRLs.

 This document identifies one-way hash functions for use in the
 generation of digital signatures. These algorithms are used in
 conjunction with digital signature algorithms.

 This specification describes the encoding of digital signatures
 generated with the following cryptographic algorithms:

 * Rivest-Shamir-Adelman (RSA);
 * Digital Signature Algorithm (DSA); and
 * Elliptic Curve Digital Signature Algorithm (ECDSA).

 This document specifies the contents of the subjectPublicKeyInfo
 field in Internet X.509 certificates. For each algorithm, the
 appropriate alternatives for the the keyUsage extension are provided.
 This specification describes encoding formats for public keys used
 with the following cryptographic algorithms:

 * Rivest-Shamir-Adelman (RSA);
 * Digital Signature Algorithm (DSA);
 * Diffie-Hellman (DH);
 * Key Encryption Algorithm (KEA);

Polk, et al. Standards Track [Page 2]

RFC 3279 Algorithms and Identifiers April 2002

 * Elliptic Curve Digital Signature Algorithm (ECDSA); and
 * Elliptic Curve Diffie-Hellman (ECDH).

2 Algorithm Support

 This section describes cryptographic algorithms which may be used
 with the Internet X.509 certificate and CRL profile [RFC 3280]. This
 section describes one-way hash functions and digital signature
 algorithms which may be used to sign certificates and CRLs, and
 identifies object identifiers (OIDs) for public keys contained in a
 certificate.

 Conforming CAs and applications MUST, at a minimum, support digital
 signatures and public keys for one of the specified algorithms. When
 using any of the algorithms identified in this specification,
 conforming CAs and applications MUST support them as described.

2.1 One-way Hash Functions

 This section identifies one-way hash functions for use in the
 Internet X.509 PKI. One-way hash functions are also called message
 digest algorithms. SHA-1 is the preferred one-way hash function for
 the Internet X.509 PKI. However, PEM uses MD2 for certificates [RFC
 1422] [RFC 1423] and MD5 is used in other legacy applications. For
 these reasons, MD2 and MD5 are included in this profile. The data
 that is hashed for certificate and CRL signing is fully described in
 [RFC 3280].

2.1.1 MD2 One-way Hash Function

 MD2 was developed by Ron Rivest for RSA Security. RSA Security has
 recently placed the MD2 algorithm in the public domain. Previously,
 RSA Data Security had granted license for use of MD2 for non-
 commercial Internet Privacy-Enhanced Mail (PEM). MD2 may continue to
 be used with PEM certificates, but SHA-1 is preferred. MD2 produces
 a 128-bit "hash" of the input. MD2 is fully described in [RFC 1319].

 At the Selected Areas in Cryptography ’95 conference in May 1995,
 Rogier and Chauvaud presented an attack on MD2 that can nearly find
 collisions [RC95]. Collisions occur when one can find two different
 messages that generate the same message digest. A checksum operation
 in MD2 is the only remaining obstacle to the success of the attack.
 For this reason, the use of MD2 for new applications is discouraged.
 It is still reasonable to use MD2 to verify existing signatures, as
 the ability to find collisions in MD2 does not enable an attacker to
 find new messages having a previously computed hash value.

Polk, et al. Standards Track [Page 3]

RFC 3279 Algorithms and Identifiers April 2002

2.1.2 MD5 One-way Hash Function

 MD5 was developed by Ron Rivest for RSA Security. RSA Security has
 placed the MD5 algorithm in the public domain. MD5 produces a 128-
 bit "hash" of the input. MD5 is fully described in [RFC 1321].

 Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5,
 but there are no other known cryptanalytic results. The use of MD5
 for new applications is discouraged. It is still reasonable to use
 MD5 to verify existing signatures.

2.1.3 SHA-1 One-way Hash Function

 SHA-1 was developed by the U.S. Government. SHA-1 produces a 160-bit
 "hash" of the input. SHA-1 is fully described in [FIPS 180-1]. RFC
 3174 [RFC 3174] also describes SHA-1, and it provides an
 implementation of the algorithm.

2.2 Signature Algorithms

 Certificates and CRLs conforming to [RFC 3280] may be signed with any
 public key signature algorithm. The certificate or CRL indicates the
 algorithm through an algorithm identifier which appears in the
 signatureAlgorithm field within the Certificate or CertificateList.
 This algorithm identifier is an OID and has optionally associated
 parameters. This section identifies algorithm identifiers and
 parameters that MUST be used in the signatureAlgorithm field in a
 Certificate or CertificateList.

 Signature algorithms are always used in conjunction with a one-way
 hash function.

 This section identifies OIDS for RSA, DSA, and ECDSA. The contents
 of the parameters component for each algorithm vary; details are
 provided for each algorithm.

 The data to be signed (e.g., the one-way hash function output value)
 is formatted for the signature algorithm to be used. Then, a private
 key operation (e.g., RSA encryption) is performed to generate the
 signature value. This signature value is then ASN.1 encoded as a BIT
 STRING and included in the Certificate or CertificateList in the
 signature field.

Polk, et al. Standards Track [Page 4]

RFC 3279 Algorithms and Identifiers April 2002

2.2.1 RSA Signature Algorithm

 The RSA algorithm is named for its inventors: Rivest, Shamir, and
 Adleman. This profile includes three signature algorithms based on
 the RSA asymmetric encryption algorithm. The signature algorithms
 combine RSA with either the MD2, MD5, or the SHA-1 one-way hash
 functions.

 The signature algorithm with SHA-1 and the RSA encryption algorithm
 is implemented using the padding and encoding conventions described
 in PKCS #1 [RFC 2313]. The message digest is computed using the
 SHA-1 hash algorithm.

 The RSA signature algorithm, as specified in PKCS #1 [RFC 2313]
 includes a data encoding step. In this step, the message digest and
 the OID for the one-way hash function used to compute the digest are
 combined. When performing the data encoding step, the md2, md5, and
 id-sha1 OIDs MUST be used to specify the MD2, MD5, and SHA-1 one-way
 hash functions, respectively:

 md2 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 2 }

 md5 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 5 }

 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) 26 }

 The signature algorithm with MD2 and the RSA encryption algorithm is
 defined in PKCS #1 [RFC 2313]. As defined in PKCS #1 [RFC 2313], the
 ASN.1 OID used to identify this signature algorithm is:

 md2WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 2 }

 The signature algorithm with MD5 and the RSA encryption algorithm is
 defined in PKCS #1 [RFC 2313]. As defined in PKCS #1 [RFC 2313], the
 ASN.1 OID used to identify this signature algorithm is:

 md5WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 4 }

Polk, et al. Standards Track [Page 5]

RFC 3279 Algorithms and Identifiers April 2002

 The ASN.1 object identifier used to identify this signature algorithm
 is:

 sha-1WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-1(1) 5 }

 When any of these three OIDs appears within the ASN.1 type
 AlgorithmIdentifier, the parameters component of that type SHALL be
 the ASN.1 type NULL.

 The RSA signature generation process and the encoding of the result
 is described in detail in PKCS #1 [RFC 2313].

2.2.2 DSA Signature Algorithm

 The Digital Signature Algorithm (DSA) is defined in the Digital
 Signature Standard (DSS). DSA was developed by the U.S. Government,
 and DSA is used in conjunction with the SHA-1 one-way hash function.
 DSA is fully described in [FIPS 186]. The ASN.1 OID used to identify
 this signature algorithm is:

 id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57 (10040)
 x9cm(4) 3 }

 When the id-dsa-with-sha1 algorithm identifier appears as the
 algorithm field in an AlgorithmIdentifier, the encoding SHALL omit
 the parameters field. That is, the AlgorithmIdentifier SHALL be a
 SEQUENCE of one component: the OBJECT IDENTIFIER id-dsa-with-sha1.

 The DSA parameters in the subjectPublicKeyInfo field of the
 certificate of the issuer SHALL apply to the verification of the
 signature.

 When signing, the DSA algorithm generates two values. These values
 are commonly referred to as r and s. To easily transfer these two
 values as one signature, they SHALL be ASN.1 encoded using the
 following ASN.1 structure:

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

Polk, et al. Standards Track [Page 6]

RFC 3279 Algorithms and Identifiers April 2002

2.2.3 ECDSA Signature Algorithm

 The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
 [X9.62]. The ASN.1 object identifiers used to identify ECDSA are
 defined in the following arc:

 ansi-X9-62 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) 10045 }

 id-ecSigType OBJECT IDENTIFIER ::= {
 ansi-X9-62 signatures(4) }

 ECDSA is used in conjunction with the SHA-1 one-way hash function.
 The ASN.1 object identifier used to identify ECDSA with SHA-1 is:

 ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
 id-ecSigType 1 }

 When the ecdsa-with-SHA1 algorithm identifier appears as the
 algorithm field in an AlgorithmIdentifier, the encoding MUST omit the
 parameters field. That is, the AlgorithmIdentifier SHALL be a
 SEQUENCE of one component: the OBJECT IDENTIFIER ecdsa-with-SHA1.

 The elliptic curve parameters in the subjectPublicKeyInfo field of
 the certificate of the issuer SHALL apply to the verification of the
 signature.

 When signing, the ECDSA algorithm generates two values. These values
 are commonly referred to as r and s. To easily transfer these two
 values as one signature, they MUST be ASN.1 encoded using the
 following ASN.1 structure:

 Ecdsa-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

2.3 Subject Public Key Algorithms

 Certificates conforming to [RFC 3280] may convey a public key for any
 public key algorithm. The certificate indicates the algorithm
 through an algorithm identifier. This algorithm identifier is an OID
 and optionally associated parameters.

 This section identifies preferred OIDs and parameters for the RSA,
 DSA, Diffie-Hellman, KEA, ECDSA, and ECDH algorithms. Conforming CAs
 MUST use the identified OIDs when issuing certificates containing

Polk, et al. Standards Track [Page 7]

RFC 3279 Algorithms and Identifiers April 2002

 public keys for these algorithms. Conforming applications supporting
 any of these algorithms MUST, at a minimum, recognize the OID
 identified in this section.

2.3.1 RSA Keys

 The OID rsaEncryption identifies RSA public keys.

 pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) 1 }

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

 The rsaEncryption OID is intended to be used in the algorithm field
 of a value of type AlgorithmIdentifier. The parameters field MUST
 have ASN.1 type NULL for this algorithm identifier.

 The RSA public key MUST be encoded using the ASN.1 type RSAPublicKey:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

 where modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is the value of the BIT
 STRING subjectPublicKey.

 This OID is used in public key certificates for both RSA signature
 keys and RSA encryption keys. The intended application for the key
 MAY be indicated in the key usage field (see [RFC 3280]). The use of
 a single key for both signature and encryption purposes is not
 recommended, but is not forbidden.

 If the keyUsage extension is present in an end entity certificate
 which conveys an RSA public key, any combination of the following
 values MAY be present:

 digitalSignature;
 nonRepudiation;
 keyEncipherment; and
 dataEncipherment.

 If the keyUsage extension is present in a CA or CRL issuer
 certificate which conveys an RSA public key, any combination of the
 following values MAY be present:

 digitalSignature;
 nonRepudiation;

Polk, et al. Standards Track [Page 8]

RFC 3279 Algorithms and Identifiers April 2002

 keyEncipherment;
 dataEncipherment;
 keyCertSign; and
 cRLSign.

 However, this specification RECOMMENDS that if keyCertSign or cRLSign
 is present, both keyEncipherment and dataEncipherment SHOULD NOT be
 present.

2.3.2 DSA Signature Keys

 The Digital Signature Algorithm (DSA) is defined in the Digital
 Signature Standard (DSS) [FIPS 186]. The DSA OID supported by this
 profile is:

 id-dsa OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

 The id-dsa algorithm syntax includes optional domain parameters.
 These parameters are commonly referred to as p, q, and g. When
 omitted, the parameters component MUST be omitted entirely. That is,
 the AlgorithmIdentifier MUST be a SEQUENCE of one component: the
 OBJECT IDENTIFIER id-dsa.

 If the DSA domain parameters are present in the subjectPublicKeyInfo
 AlgorithmIdentifier, the parameters are included using the following
 ASN.1 structure:

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

 The AlgorithmIdentifier within subjectPublicKeyInfo is the only place
 within a certificate where the parameters may be used. If the DSA
 algorithm parameters are omitted from the subjectPublicKeyInfo
 AlgorithmIdentifier and the CA signed the subject certificate using
 DSA, then the certificate issuer’s DSA parameters apply to the
 subject’s DSA key. If the DSA domain parameters are omitted from the
 SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
 subject certificate using a signature algorithm other than DSA, then
 the subject’s DSA domain parameters are distributed by other means.
 If the subjectPublicKeyInfo AlgorithmIdentifier field omits the
 parameters component, the CA signed the subject with a signature
 algorithm other than DSA, and the subject’s DSA parameters are not
 available through other means, then clients MUST reject the
 certificate.

Polk, et al. Standards Track [Page 9]

RFC 3279 Algorithms and Identifiers April 2002

 The DSA public key MUST be ASN.1 DER encoded as an INTEGER; this
 encoding shall be used as the contents (i.e., the value) of the
 subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
 data element.

 DSAPublicKey ::= INTEGER -- public key, Y

 If the keyUsage extension is present in an end entity certificate
 which conveys a DSA public key, any combination of the following
 values MAY be present:

 digitalSignature;
 nonRepudiation;

 If the keyUsage extension is present in a CA or CRL issuer
 certificate which conveys a DSA public key, any combination of the
 following values MAY be present:

 digitalSignature;
 nonRepudiation;
 keyCertSign; and
 cRLSign.

2.3.3 Diffie-Hellman Key Exchange Keys

 The Diffie-Hellman OID supported by this profile is defined in
 [X9.42].

 dhpublicnumber OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) ansi-x942(10046) number-type(2) 1 }

 The dhpublicnumber OID is intended to be used in the algorithm field
 of a value of type AlgorithmIdentifier. The parameters field of that
 type, which has the algorithm-specific syntax ANY DEFINED BY
 algorithm, have the ASN.1 type DomainParameters for this algorithm.

 DomainParameters ::= SEQUENCE {
 p INTEGER, -- odd prime, p=jq +1
 g INTEGER, -- generator, g
 q INTEGER, -- factor of p-1
 j INTEGER OPTIONAL, -- subgroup factor
 validationParms ValidationParms OPTIONAL }

 ValidationParms ::= SEQUENCE {
 seed BIT STRING,
 pgenCounter INTEGER }

Polk, et al. Standards Track [Page 10]

RFC 3279 Algorithms and Identifiers April 2002

 The fields of type DomainParameters have the following meanings:

 p identifies the prime p defining the Galois field;

 g specifies the generator of the multiplicative subgroup of order
 g;

 q specifies the prime factor of p-1;

 j optionally specifies the value that satisfies the equation
 p=jq+1 to support the optional verification of group parameters;

 seed optionally specifies the bit string parameter used as the
 seed for the domain parameter generation process; and

 pgenCounter optionally specifies the integer value output as part
 of the of the domain parameter prime generation process.

 If either of the domain parameter generation components (pgenCounter
 or seed) is provided, the other MUST be present as well.

 The Diffie-Hellman public key MUST be ASN.1 encoded as an INTEGER;
 this encoding shall be used as the contents (i.e., the value) of the
 subjectPublicKey component (a BIT STRING) of the SubjectPublicKeyInfo
 data element.

 DHPublicKey ::= INTEGER -- public key, y = g^x mod p

 If the keyUsage extension is present in a certificate which conveys a
 DH public key, the following values may be present:

 keyAgreement;
 encipherOnly; and
 decipherOnly.

 If present, the keyUsage extension MUST assert keyAgreement and MAY
 assert either encipherOnly and decipherOnly. The keyUsage extension
 MUST NOT assert both encipherOnly and decipherOnly.

2.3.4 KEA Public Keys

 This section identifies the preferred OID and parameters for the
 inclusion of a KEA public key in a certificate. The Key Exchange
 Algorithm (KEA) is a key agreement algorithm. Two parties may
 generate a "pairwise key" if and only if they share the same KEA
 parameters. The KEA parameters are not included in a certificate;
 instead a domain identifier is supplied in the parameters field.

Polk, et al. Standards Track [Page 11]

RFC 3279 Algorithms and Identifiers April 2002

 When the SubjectPublicKeyInfo field contains a KEA key, the algorithm
 identifier and parameters SHALL be as defined in [SDN.701r]:

 id-keyExchangeAlgorithm OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 1 22 }

 KEA-Parms-Id ::= OCTET STRING

 CAs MUST populate the parameters field of the AlgorithmIdentifier
 within the SubjectPublicKeyInfo field of each certificate containing
 a KEA public key with an 80-bit parameter identifier (OCTET STRING),
 also known as the domain identifier. The domain identifier is
 computed in three steps:

 (1) the KEA domain parameters (p, q, and g) are DER encoded using
 the Dss-Parms structure;

 (2) a 160-bit SHA-1 hash is generated from the parameters; and

 (3) the 160-bit hash is reduced to 80-bits by performing an
 "exclusive or" of the 80 high order bits with the 80 low order
 bits.

 The resulting value is encoded such that the most significant byte of
 the 80-bit value is the first octet in the octet string. The Dss-
 Parms is provided above in Section 2.3.2.

 A KEA public key, y, is conveyed in the subjectPublicKey BIT STRING
 such that the most significant bit (MSB) of y becomes the MSB of the
 BIT STRING value field and the least significant bit (LSB) of y
 becomes the LSB of the BIT STRING value field. This results in the
 following encoding:

 BIT STRING tag;
 BIT STRING length;
 0 (indicating that there are zero unused bits in the final octet
 of y); and
 BIT STRING value field including y.

 The key usage extension may optionally appear in a KEA certificate.
 If a KEA certificate includes the keyUsage extension, only the
 following values may be asserted:

 keyAgreement;
 encipherOnly; and
 decipherOnly.

Polk, et al. Standards Track [Page 12]

RFC 3279 Algorithms and Identifiers April 2002

 If present, the keyUsage extension MUST assert keyAgreement and MAY
 assert either encipherOnly and decipherOnly. The keyUsage extension
 MUST NOT assert both encipherOnly and decipherOnly.

2.3.5 ECDSA and ECDH Keys

 This section identifies the preferred OID and parameter encoding for
 the inclusion of an ECDSA or ECDH public key in a certificate. The
 Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
 [X9.62]. ECDSA is the elliptic curve mathematical analog of the
 Digital Signature Algorithm [FIPS 186]. The Elliptic Curve Diffie
 Hellman (ECDH) algorithm is a key agreement algorithm defined in
 [X9.63].

 ECDH is the elliptic curve mathematical analog of the Diffie-Hellman
 key agreement algorithm as specified in [X9.42]. The ECDSA and ECDH
 specifications use the same OIDs and parameter encodings. The ASN.1
 object identifiers used to identify these public keys are defined in
 the following arc:

 ansi-X9-62 OBJECT IDENTIFIER ::=
 { iso(1) member-body(2) us(840) 10045 }

 When certificates contain an ECDSA or ECDH public key, the
 id-ecPublicKey algorithm identifier MUST be used. The id-ecPublicKey
 algorithm identifier is defined as follows:

 id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }

 id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

 This OID is used in public key certificates for both ECDSA signature
 keys and ECDH encryption keys. The intended application for the key
 may be indicated in the key usage field (see [RFC 3280]). The use of
 a single key for both signature and encryption purposes is not
 recommended, but is not forbidden.

 ECDSA and ECDH require use of certain parameters with the public key.
 The parameters may be inherited from the issuer, implicitly included
 through reference to a "named curve," or explicitly included in the
 certificate.

 EcpkParameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve OBJECT IDENTIFIER,
 implicitlyCA NULL }

Polk, et al. Standards Track [Page 13]

RFC 3279 Algorithms and Identifiers April 2002

 When the parameters are inherited, the parameters field SHALL contain
 implictlyCA, which is the ASN.1 value NULL. When parameters are
 specified by reference, the parameters field SHALL contain the
 named-Curve choice, which is an object identifier. When the
 parameters are explicitly included, they SHALL be encoded in the
 ASN.1 structure ECParameters:

 ECParameters ::= SEQUENCE {
 version ECPVer, -- version is always 1
 fieldID FieldID, -- identifies the finite field over
 -- which the curve is defined
 curve Curve, -- coefficients a and b of the
 -- elliptic curve
 base ECPoint, -- specifies the base point P
 -- on the elliptic curve
 order INTEGER, -- the order n of the base point
 cofactor INTEGER OPTIONAL -- The integer h = #E(Fq)/n
 }

 ECPVer ::= INTEGER {ecpVer1(1)}

 Curve ::= SEQUENCE {
 a FieldElement,
 b FieldElement,
 seed BIT STRING OPTIONAL }

 FieldElement ::= OCTET STRING

 ECPoint ::= OCTET STRING

 The value of FieldElement SHALL be the octet string representation of
 a field element following the conversion routine in [X9.62], Section
 4.3.3. The value of ECPoint SHALL be the octet string representation
 of an elliptic curve point following the conversion routine in
 [X9.62], Section 4.3.6. Note that this octet string may represent an
 elliptic curve point in compressed or uncompressed form.

 Implementations that support elliptic curve according to this
 specification MUST support the uncompressed form and MAY support the
 compressed form.

 The components of type ECParameters have the following meanings:

 version specifies the version number of the elliptic curve
 parameters. It MUST have the value 1 (ecpVer1).

Polk, et al. Standards Track [Page 14]

RFC 3279 Algorithms and Identifiers April 2002

 fieldID identifies the finite field over which the elliptic curve
 is defined. Finite fields are represented by values of the
 parameterized type FieldID, constrained to the values of the
 objects defined in the information object set FieldTypes.
 Additional detail regarding fieldID is provided below.

 curve specifies the coefficients a and b of the elliptic curve E.
 Each coefficient is represented as a value of type FieldElement,
 an OCTET STRING. seed is an optional parameter used to derive the
 coefficients of a randomly generated elliptic curve.

 base specifies the base point P on the elliptic curve. The base
 point is represented as a value of type ECPoint, an OCTET STRING.

 order specifies the order n of the base point.

 cofactor is the integer h = #E(Fq)/n. This parameter is specified
 as OPTIONAL. However, the cofactor MUST be included in ECDH
 public key parameters. The cofactor is not required to support
 ECDSA, except in parameter validation. The cofactor MAY be
 included to support parameter validation for ECDSA keys.
 Parameter validation is not required by this specification.

 The AlgorithmIdentifier within SubjectPublicKeyInfo is the only place
 within a certificate where the parameters may be used. If the
 elliptic curve parameters are specified as implicitlyCA in the
 SubjectPublicKeyInfo AlgorithmIdentifier and the CA signed the
 subject certificate using ECDSA, then the certificate issuer’s ECDSA
 parameters apply to the subject’s ECDSA key. If the elliptic curve
 parameters are specified as implicitlyCA in the SubjectPublicKeyInfo
 AlgorithmIdentifier and the CA signed the certificate using a
 signature algorithm other than ECDSA, then clients MUST not make use
 of the elliptic curve public key.

 FieldID ::= SEQUENCE {
 fieldType OBJECT IDENTIFIER,
 parameters ANY DEFINED BY fieldType }

 FieldID is a SEQUENCE of two components, fieldType and parameters.
 The fieldType contains an object identifier value that uniquely
 identifies the type contained in the parameters.

 The object identifier id-fieldType specifies an arc containing the
 object identifiers of each field type. It has the following value:

 id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

Polk, et al. Standards Track [Page 15]

RFC 3279 Algorithms and Identifiers April 2002

 The object identifiers prime-field and characteristic-two-field name
 the two kinds of fields defined in this Standard. They have the
 following values:

 prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

 Prime-p ::= INTEGER -- Field size p (p in bits)

 characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

 Characteristic-two ::= SEQUENCE {
 m INTEGER, -- Field size 2^m
 basis OBJECT IDENTIFIER,
 parameters ANY DEFINED BY basis }

 The object identifier id-characteristic-two-basis specifies an arc
 containing the object identifiers for each type of basis for the
 characteristic-two finite fields. It has the following value:

 id-characteristic-two-basis OBJECT IDENTIFIER ::= {
 characteristic-two-field basisType(1) }

 The object identifiers gnBasis, tpBasis and ppBasis name the three
 kinds of basis for characteristic-two finite fields defined by
 [X9.62]. They have the following values:

 gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }

 -- for gnBasis, the value of the parameters field is NULL

 tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }

 -- type of parameters field for tpBasis is Trinomial

 Trinomial ::= INTEGER

 ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

 -- type of parameters field for ppBasis is Pentanomial

 Pentanomial ::= SEQUENCE {
 k1 INTEGER,
 k2 INTEGER,
 k3 INTEGER }

Polk, et al. Standards Track [Page 16]

RFC 3279 Algorithms and Identifiers April 2002

 The elliptic curve public key (an ECPoint which is an OCTET STRING)
 is mapped to a subjectPublicKey (a BIT STRING) as follows: the most
 significant bit of the OCTET STRING becomes the most significant bit
 of the BIT STRING, and the least significant bit of the OCTET STRING
 becomes the least significant bit of the BIT STRING. Note that this
 octet string may represent an elliptic curve point in compressed or
 uncompressed form. Implementations that support elliptic curve
 according to this specification MUST support the uncompressed form
 and MAY support the compressed form.

 If the keyUsage extension is present in a CA or CRL issuer
 certificate which conveys an elliptic curve public key, any
 combination of the following values MAY be present:

 digitalSignature;
 nonRepudiation; and
 keyAgreement.

 If the keyAgreement value is present, either of the following values
 MAY be present:

 encipherOnly; and
 decipherOnly.

 The keyUsage extension MUST NOT assert both encipherOnly and
 decipherOnly.

 If the keyUsage extension is present in a CA certificate which
 conveys an elliptic curve public key, any combination of the
 following values MAY be present:

 digitalSignature;
 nonRepudiation;
 keyAgreement;
 keyCertSign; and
 cRLSign.

 As above, if the keyUsage extension asserts keyAgreement then it MAY
 assert either encipherOnly and decipherOnly. However, this
 specification RECOMMENDS that if keyCertSign or cRLSign is present,
 keyAgreement, encipherOnly, and decipherOnly SHOULD NOT be present.

Polk, et al. Standards Track [Page 17]

RFC 3279 Algorithms and Identifiers April 2002

3 ASN.1 Module

 PKIX1Algorithms88 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-algorithms(17) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 -- EXPORTS All;

 -- IMPORTS NONE;

 --
 -- One-way Hash Functions
 --

 md2 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 2 }

 md5 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 digestAlgorithm(2) 5 }

 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) 26 }

 --
 -- DSA Keys and Signatures
 --

 -- OID for DSA public key

 id-dsa OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57(10040) x9algorithm(4) 1 }

 -- encoding for DSA public key

 DSAPublicKey ::= INTEGER -- public key, y

 Dss-Parms ::= SEQUENCE {
 p INTEGER,
 q INTEGER,
 g INTEGER }

Polk, et al. Standards Track [Page 18]

RFC 3279 Algorithms and Identifiers April 2002

 -- OID for DSA signature generated with SHA-1 hash

 id-dsa-with-sha1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) x9-57 (10040) x9algorithm(4) 3 }

 -- encoding for DSA signature generated with SHA-1 hash

 Dss-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 --
 -- RSA Keys and Signatures
 --

 -- arc for RSA public key and RSA signature OIDs

 pkcs-1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

 -- OID for RSA public keys

 rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

 -- OID for RSA signature generated with MD2 hash

 md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }

 -- OID for RSA signature generated with MD5 hash

 md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }

 -- OID for RSA signature generated with SHA-1 hash

 sha1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }

 -- encoding for RSA public key

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER } -- e

Polk, et al. Standards Track [Page 19]

RFC 3279 Algorithms and Identifiers April 2002

 --
 -- Diffie-Hellman Keys
 --

 dhpublicnumber OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) ansi-x942(10046)
 number-type(2) 1 }

 -- encoding for DSA public key

 DHPublicKey ::= INTEGER -- public key, y = g^x mod p

 DomainParameters ::= SEQUENCE {
 p INTEGER, -- odd prime, p=jq +1
 g INTEGER, -- generator, g
 q INTEGER, -- factor of p-1
 j INTEGER OPTIONAL, -- subgroup factor, j>= 2
 validationParms ValidationParms OPTIONAL }

 ValidationParms ::= SEQUENCE {
 seed BIT STRING,
 pgenCounter INTEGER }

 --
 -- KEA Keys
 --

 id-keyExchangeAlgorithm OBJECT IDENTIFIER ::=
 { 2 16 840 1 101 2 1 1 22 }

 KEA-Parms-Id ::= OCTET STRING

 --
 -- Elliptic Curve Keys, Signatures, and Curves
 --

 ansi-X9-62 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) 10045 }

 FieldID ::= SEQUENCE { -- Finite field
 fieldType OBJECT IDENTIFIER,
 parameters ANY DEFINED BY fieldType }

 -- Arc for ECDSA signature OIDS

 id-ecSigType OBJECT IDENTIFIER ::= { ansi-X9-62 signatures(4) }

Polk, et al. Standards Track [Page 20]

RFC 3279 Algorithms and Identifiers April 2002

 -- OID for ECDSA signatures with SHA-1

 ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

 -- OID for an elliptic curve signature
 -- format for the value of an ECDSA signature value

 ECDSA-Sig-Value ::= SEQUENCE {
 r INTEGER,
 s INTEGER }

 -- recognized field type OIDs are defined in the following arc

 id-fieldType OBJECT IDENTIFIER ::= { ansi-X9-62 fieldType(1) }

 -- where fieldType is prime-field, the parameters are of type Prime-p

 prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

 Prime-p ::= INTEGER -- Finite field F(p), where p is an odd prime

 -- where fieldType is characteristic-two-field, the parameters are
 -- of type Characteristic-two

 characteristic-two-field OBJECT IDENTIFIER ::= { id-fieldType 2 }

 Characteristic-two ::= SEQUENCE {
 m INTEGER, -- Field size 2^m
 basis OBJECT IDENTIFIER,
 parameters ANY DEFINED BY basis }

 -- recognized basis type OIDs are defined in the following arc

 id-characteristic-two-basis OBJECT IDENTIFIER ::= {
 characteristic-two-field basisType(3) }

 -- gnbasis is identified by OID gnBasis and indicates
 -- parameters are NULL

 gnBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 1 }

 -- parameters for this basis are NULL

 -- trinomial basis is identified by OID tpBasis and indicates
 -- parameters of type Pentanomial

 tpBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 2 }

Polk, et al. Standards Track [Page 21]

RFC 3279 Algorithms and Identifiers April 2002

 -- Trinomial basis representation of F2^m
 -- Integer k for reduction polynomial xm + xk + 1

 Trinomial ::= INTEGER

 -- for pentanomial basis is identified by OID ppBasis and indicates
 -- parameters of type Pentanomial

 ppBasis OBJECT IDENTIFIER ::= { id-characteristic-two-basis 3 }

 -- Pentanomial basis representation of F2^m
 -- reduction polynomial integers k1, k2, k3
 -- f(x) = x**m + x**k3 + x**k2 + x**k1 + 1

 Pentanomial ::= SEQUENCE {
 k1 INTEGER,
 k2 INTEGER,
 k3 INTEGER }

 -- The object identifiers gnBasis, tpBasis and ppBasis name
 -- three kinds of basis for characteristic-two finite fields

 FieldElement ::= OCTET STRING -- Finite field element

 ECPoint ::= OCTET STRING -- Elliptic curve point

 -- Elliptic Curve parameters may be specified explicitly,
 -- specified implicitly through a "named curve", or
 -- inherited from the CA

 EcpkParameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve OBJECT IDENTIFIER,
 implicitlyCA NULL }

 ECParameters ::= SEQUENCE { -- Elliptic curve parameters
 version ECPVer,
 fieldID FieldID,
 curve Curve,
 base ECPoint, -- Base point G
 order INTEGER, -- Order n of the base point
 cofactor INTEGER OPTIONAL } -- The integer h = #E(Fq)/n

 ECPVer ::= INTEGER {ecpVer1(1)}

Polk, et al. Standards Track [Page 22]

RFC 3279 Algorithms and Identifiers April 2002

 Curve ::= SEQUENCE {
 a FieldElement, -- Elliptic curve coefficient a
 b FieldElement, -- Elliptic curve coefficient b
 seed BIT STRING OPTIONAL }

 id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) }

 id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }

 -- Named Elliptic Curves in ANSI X9.62.

 ellipticCurve OBJECT IDENTIFIER ::= { ansi-X9-62 curves(3) }

 c-TwoCurve OBJECT IDENTIFIER ::= {
 ellipticCurve characteristicTwo(0) }

 c2pnb163v1 OBJECT IDENTIFIER ::= { c-TwoCurve 1 }
 c2pnb163v2 OBJECT IDENTIFIER ::= { c-TwoCurve 2 }
 c2pnb163v3 OBJECT IDENTIFIER ::= { c-TwoCurve 3 }
 c2pnb176w1 OBJECT IDENTIFIER ::= { c-TwoCurve 4 }
 c2tnb191v1 OBJECT IDENTIFIER ::= { c-TwoCurve 5 }
 c2tnb191v2 OBJECT IDENTIFIER ::= { c-TwoCurve 6 }
 c2tnb191v3 OBJECT IDENTIFIER ::= { c-TwoCurve 7 }
 c2onb191v4 OBJECT IDENTIFIER ::= { c-TwoCurve 8 }
 c2onb191v5 OBJECT IDENTIFIER ::= { c-TwoCurve 9 }
 c2pnb208w1 OBJECT IDENTIFIER ::= { c-TwoCurve 10 }
 c2tnb239v1 OBJECT IDENTIFIER ::= { c-TwoCurve 11 }
 c2tnb239v2 OBJECT IDENTIFIER ::= { c-TwoCurve 12 }
 c2tnb239v3 OBJECT IDENTIFIER ::= { c-TwoCurve 13 }
 c2onb239v4 OBJECT IDENTIFIER ::= { c-TwoCurve 14 }
 c2onb239v5 OBJECT IDENTIFIER ::= { c-TwoCurve 15 }
 c2pnb272w1 OBJECT IDENTIFIER ::= { c-TwoCurve 16 }
 c2pnb304w1 OBJECT IDENTIFIER ::= { c-TwoCurve 17 }
 c2tnb359v1 OBJECT IDENTIFIER ::= { c-TwoCurve 18 }
 c2pnb368w1 OBJECT IDENTIFIER ::= { c-TwoCurve 19 }
 c2tnb431r1 OBJECT IDENTIFIER ::= { c-TwoCurve 20 }

 primeCurve OBJECT IDENTIFIER ::= { ellipticCurve prime(1) }

 prime192v1 OBJECT IDENTIFIER ::= { primeCurve 1 }
 prime192v2 OBJECT IDENTIFIER ::= { primeCurve 2 }
 prime192v3 OBJECT IDENTIFIER ::= { primeCurve 3 }
 prime239v1 OBJECT IDENTIFIER ::= { primeCurve 4 }
 prime239v2 OBJECT IDENTIFIER ::= { primeCurve 5 }
 prime239v3 OBJECT IDENTIFIER ::= { primeCurve 6 }
 prime256v1 OBJECT IDENTIFIER ::= { primeCurve 7 }

 END

Polk, et al. Standards Track [Page 23]

RFC 3279 Algorithms and Identifiers April 2002

4 References

 [FIPS 180-1] Federal Information Processing Standards Publication
 (FIPS PUB) 180-1, Secure Hash Standard, 17 April 1995.
 [Supersedes FIPS PUB 180 dated 11 May 1993.]

 [FIPS 186-2] Federal Information Processing Standards Publication
 (FIPS PUB) 186, Digital Signature Standard, 27 January
 2000. [Supersedes FIPS PUB 186-1 dated 15 December
 1998.]

 [P1363] IEEE P1363, "Standard Specifications for Public-Key
 Cryptography", 2001.

 [RC95] Rogier, N. and Chauvaud, P., "The compression function
 of MD2 is not collision free," Presented at Selected
 Areas in Cryptography ’95, May 1995.

 [RFC 1034] Mockapetris, P., "Domain Names - Concepts and
 Facilities", STD 13, RFC 1034, November 1987.

 [RFC 1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC
 1319, April 1992.

 [RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
 1321, April 1992.

 [RFC 1422] Kent, S., "Privacy Enhancement for Internet Electronic
 Mail: Part II: Certificate-Based Key Management", RFC
 1422, February 1993.

 [RFC 1423] Balenson, D., "Privacy Enhancement for Internet
 Electronic Mail: Part III: Algorithms, Modes, and
 Identifiers", RFC 1423, February 1993.

 [RFC 2119] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC 2313] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
 RFC 2313, March 1998.

 [RFC 2459] Housley, R., Ford, W., Polk, W. and D. Solo "Internet
 X.509 Public Key Infrastructure: Certificate and CRL
 Profile", RFC 2459, January, 1999.

 [RFC 3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

Polk, et al. Standards Track [Page 24]

RFC 3279 Algorithms and Identifiers April 2002

 [RFC 3280] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [SDN.701r] SDN.701, "Message Security Protocol 4.0", Revision A
 1997-02-06.

 [X.208] CCITT Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1), 1988.

 [X.660] ITU-T Recommendation X.660 Information Technology -
 ASN.1 encoding rules: Specification of Basic Encoding
 Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER), 1997.

 [X9.42] ANSI X9.42-2000, "Public Key Cryptography for The
 Financial Services Industry: Agreement of Symmetric
 Keys Using Discrete Logarithm Cryptography", December,
 1999.

 [X9.62] X9.62-1998, "Public Key Cryptography For The Financial
 Services Industry: The Elliptic Curve Digital
 Signature Algorithm (ECDSA)", January 7, 1999.

 [X9.63] ANSI X9.63-2001, "Public Key Cryptography For The
 Financial Services Industry: Key Agreement and Key
 Transport Using Elliptic Curve Cryptography", Work in
 Progress.

5 Security Considerations

 This specification does not constrain the size of public keys or
 their parameters for use in the Internet PKI. However, the key size
 selected impacts the strength achieved when implementing
 cryptographic services. Selection of appropriate key sizes is
 critical to implementing appropriate security.

 This specification does not identify particular elliptic curves for
 use in the Internet PKI. However, the particular curve selected
 impact the strength of the digital signatures. Some curves are
 cryptographically stronger than others!

 In general, use of "well-known" curves, such as the "named curves"
 from ANSI X9.62, is a sound strategy. For additional information,
 refer to X9.62 Appendix H.1.3, "Key Length Considerations" and
 Appendix A.1, "Avoiding Cryptographically Weak Keys".

Polk, et al. Standards Track [Page 25]

RFC 3279 Algorithms and Identifiers April 2002

 This specification supplements RFC 3280. The security considerations
 section of that document applies to this specification as well.

6 Intellectual Property Rights

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards- related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

7 Author Addresses:

 Tim Polk
 NIST
 100 Bureau Drive, Stop 8930
 Gaithersburg, MD 20899-8930
 USA
 EMail: tim.polk@nist.gov

 Russell Housley
 RSA Laboratories
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 EMail: rhousley@rsasecurity.com

 Larry Bassham
 NIST
 100 Bureau Drive, Stop 8930
 Gaithersburg, MD 20899-8930
 USA
 EMail: lbassham@nist.gov

Polk, et al. Standards Track [Page 26]

RFC 3279 Algorithms and Identifiers April 2002

8. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Polk, et al. Standards Track [Page 27]

