
Network Working Group C. Davis
Request for Comments: 1876 Kapor Enterprises
Updates: 1034, 1035 P. Vixie
Category: Experimental Vixie Enterprises
 T. Goodwin
 FORE Systems
 I. Dickinson
 University of Warwick
 January 1996

 A Means for Expressing Location Information in the Domain Name System

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. This memo does not specify an Internet standard of any
 kind. Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

1. Abstract

 This memo defines a new DNS RR type for experimental purposes. This
 RFC describes a mechanism to allow the DNS to carry location
 information about hosts, networks, and subnets. Such information for
 a small subset of hosts is currently contained in the flat-file UUCP
 maps. However, just as the DNS replaced the use of HOSTS.TXT to
 carry host and network address information, it is possible to replace
 the UUCP maps as carriers of location information.

 This RFC defines the format of a new Resource Record (RR) for the
 Domain Name System (DNS), and reserves a corresponding DNS type
 mnemonic (LOC) and numerical code (29).

 This RFC assumes that the reader is familiar with the DNS [RFC 1034,
 RFC 1035]. The data shown in our examples is for pedagogical use and
 does not necessarily reflect the real Internet.

Davis, et al Experimental [Page 1]

RFC 1876 Location Information in the DNS January 1996

2. RDATA Format

 MSB LSB
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 0| VERSION | SIZE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 2| HORIZ PRE | VERT PRE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 4| LATITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 6| LATITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 8| LONGITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 10| LONGITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 12| ALTITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 14| ALTITUDE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 (octet)

where:

VERSION Version number of the representation. This must be zero.
 Implementations are required to check this field and make
 no assumptions about the format of unrecognized versions.

SIZE The diameter of a sphere enclosing the described entity, in
 centimeters, expressed as a pair of four-bit unsigned
 integers, each ranging from zero to nine, with the most
 significant four bits representing the base and the second
 number representing the power of ten by which to multiply
 the base. This allows sizes from 0e0 (<1cm) to 9e9
 (90,000km) to be expressed. This representation was chosen
 such that the hexadecimal representation can be read by
 eye; 0x15 = 1e5. Four-bit values greater than 9 are
 undefined, as are values with a base of zero and a non-zero
 exponent.

 Since 20000000m (represented by the value 0x29) is greater
 than the equatorial diameter of the WGS 84 ellipsoid
 (12756274m), it is therefore suitable for use as a
 "worldwide" size.

HORIZ PRE The horizontal precision of the data, in centimeters,
 expressed using the same representation as SIZE. This is
 the diameter of the horizontal "circle of error", rather

Davis, et al Experimental [Page 2]

RFC 1876 Location Information in the DNS January 1996

 than a "plus or minus" value. (This was chosen to match
 the interpretation of SIZE; to get a "plus or minus" value,
 divide by 2.)

VERT PRE The vertical precision of the data, in centimeters,
 expressed using the sane representation as for SIZE. This
 is the total potential vertical error, rather than a "plus
 or minus" value. (This was chosen to match the
 interpretation of SIZE; to get a "plus or minus" value,
 divide by 2.) Note that if altitude above or below sea
 level is used as an approximation for altitude relative to
 the [WGS 84] ellipsoid, the precision value should be
 adjusted.

LATITUDE The latitude of the center of the sphere described by the
 SIZE field, expressed as a 32-bit integer, most significant
 octet first (network standard byte order), in thousandths
 of a second of arc. 2^31 represents the equator; numbers
 above that are north latitude.

LONGITUDE The longitude of the center of the sphere described by the
 SIZE field, expressed as a 32-bit integer, most significant
 octet first (network standard byte order), in thousandths
 of a second of arc, rounded away from the prime meridian.
 2^31 represents the prime meridian; numbers above that are
 east longitude.

ALTITUDE The altitude of the center of the sphere described by the
 SIZE field, expressed as a 32-bit integer, most significant
 octet first (network standard byte order), in centimeters,
 from a base of 100,000m below the [WGS 84] reference
 spheroid used by GPS (semimajor axis a=6378137.0,
 reciprocal flattening rf=298.257223563). Altitude above
 (or below) sea level may be used as an approximation of
 altitude relative to the the [WGS 84] spheroid, though due
 to the Earth’s surface not being a perfect spheroid, there
 will be differences. (For example, the geoid (which sea
 level approximates) for the continental US ranges from 10
 meters to 50 meters below the [WGS 84] spheroid.
 Adjustments to ALTITUDE and/or VERT PRE will be necessary
 in most cases. The Defense Mapping Agency publishes geoid
 height values relative to the [WGS 84] ellipsoid.

Davis, et al Experimental [Page 3]

RFC 1876 Location Information in the DNS January 1996

3. Master File Format

 The LOC record is expressed in a master file in the following format:

 <owner> <TTL> <class> LOC (d1 [m1 [s1]] {"N"|"S"} d2 [m2 [s2]]
 {"E"|"W"} alt["m"] [siz["m"] [hp["m"]
 [vp["m"]]]])

 (The parentheses are used for multi-line data as specified in [RFC
 1035] section 5.1.)

 where:

 d1: [0 .. 90] (degrees latitude)
 d2: [0 .. 180] (degrees longitude)
 m1, m2: [0 .. 59] (minutes latitude/longitude)
 s1, s2: [0 .. 59.999] (seconds latitude/longitude)
 alt: [-100000.00 .. 42849672.95] BY .01 (altitude in meters)
 siz, hp, vp: [0 .. 90000000.00] (size/precision in meters)

 If omitted, minutes and seconds default to zero, size defaults to 1m,
 horizontal precision defaults to 10000m, and vertical precision
 defaults to 10m. These defaults are chosen to represent typical
 ZIP/postal code area sizes, since it is often easy to find
 approximate geographical location by ZIP/postal code.

4. Example Data

;;;
;;; note that these data would not all appear in one zone file
;;;

;; network LOC RR derived from ZIP data. note use of precision defaults
cambridge-net.kei.com. LOC 42 21 54 N 71 06 18 W -24m 30m

;; higher-precision host LOC RR. note use of vertical precision default
loiosh.kei.com. LOC 42 21 43.952 N 71 5 6.344 W
 -24m 1m 200m

pipex.net. LOC 52 14 05 N 00 08 50 E 10m

curtin.edu.au. LOC 32 7 19 S 116 2 25 E 10m

rwy04L.logan-airport.boston. LOC 42 21 28.764 N 71 00 51.617 W
 -44m 2000m

Davis, et al Experimental [Page 4]

RFC 1876 Location Information in the DNS January 1996

5. Application use of the LOC RR

5.1 Suggested Uses

 Some uses for the LOC RR have already been suggested, including the
 USENET backbone flow maps, a "visual traceroute" application showing
 the geographical path of an IP packet, and network management
 applications that could use LOC RRs to generate a map of hosts and
 routers being managed.

5.2 Search Algorithms

 This section specifies how to use the DNS to translate domain names
 and/or IP addresses into location information.

 If an application wishes to have a "fallback" behavior, displaying a
 less precise or larger area when a host does not have an associated
 LOC RR, it MAY support use of the algorithm in section 5.2.3, as
 noted in sections 5.2.1 and 5.2.2. If fallback is desired, this
 behaviour is the RECOMMENDED default, but in some cases it may need
 to be modified based on the specific requirements of the application
 involved.

 This search algorithm is designed to allow network administrators to
 specify the location of a network or subnet without requiring LOC RR
 data for each individual host. For example, a computer lab with 24
 workstations, all of which are on the same subnet and in basically
 the same location, would only need a LOC RR for the subnet.
 (However, if the file server’s location has been more precisely
 measured, a separate LOC RR for it can be placed in the DNS.)

5.2.1 Searching by Name

 If the application is beginning with a name, rather than an IP
 address (as the USENET backbone flow maps do), it MUST check for a
 LOC RR associated with that name. (CNAME records should be followed
 as for any other RR type.)

 If there is no LOC RR for that name, all A records (if any)
 associated with the name MAY be checked for network (or subnet) LOC
 RRs using the "Searching by Network or Subnet" algorithm (5.2.3). If
 multiple A records exist and have associated network or subnet LOC
 RRs, the application may choose to use any, some, or all of the LOC
 RRs found, possibly in combination. It is suggested that multi-homed
 hosts have LOC RRs for their name in the DNS to avoid any ambiguity
 in these cases.

Davis, et al Experimental [Page 5]

RFC 1876 Location Information in the DNS January 1996

 Note that domain names that do not have associated A records must
 have a LOC RR associated with their name in order for location
 information to be accessible.

5.2.2 Searching by Address

 If the application is beginning with an IP address (as a "visual
 traceroute" application might be) it MUST first map the address to a
 name using the IN-ADDR.ARPA namespace (see [RFC 1034], section
 5.2.1), then check for a LOC RR associated with that name.

 If there is no LOC RR for the name, the address MAY be checked for
 network (or subnet) LOC RRs using the "Searching by Network or
 Subnet" algorithm (5.2.3).

5.2.3 Searching by Network or Subnet

 Even if a host’s name does not have any associated LOC RRs, the
 network(s) or subnet(s) it is on may. If the application wishes to
 search for such less specific data, the following algorithm SHOULD be
 followed to find a network or subnet LOC RR associated with the IP
 address. This algorithm is adapted slightly from that specified in
 [RFC 1101], sections 4.3 and 4.4.

 Since subnet LOC RRs are (if present) more specific than network LOC
 RRs, it is best to use them if available. In order to do so, we
 build a stack of network and subnet names found while performing the
 [RFC 1101] search, then work our way down the stack until a LOC RR is
 found.

 1. create a host-zero address using the network portion of the IP
 address (one, two, or three bytes for class A, B, or C networks,
 respectively). For example, for the host 128.9.2.17, on the class
 B network 128.9, this would result in the address "128.9.0.0".

 2. Reverse the octets, suffix IN-ADDR.ARPA, and query for PTR and A
 records. Retrieve:

 0.0.9.128.IN-ADDR.ARPA. PTR isi-net.isi.edu.
 A 255.255.255.0

 Push the name "isi-net.isi.edu" onto the stack of names to be
 searched for LOC RRs later.

Davis, et al Experimental [Page 6]

RFC 1876 Location Information in the DNS January 1996

 3. Since an A RR was found, repeat using mask from RR
 (255.255.255.0), constructing a query for 0.2.9.128.IN-ADDR.ARPA.
 Retrieve:

 0.2.9.128.IN-ADDR.ARPA. PTR div2-subnet.isi.edu.
 A 255.255.255.240

 Push the name "div2-subnet.isi.edu" onto the stack of names to be
 searched for LOC RRs later.

 4. Since another A RR was found, repeat using mask 255.255.255.240
 (x’FFFFFFF0’), constructing a query for 16.2.9.128.IN-ADDR.ARPA.
 Retrieve:

 16.2.9.128.IN-ADDR.ARPA. PTR inc-subsubnet.isi.edu.

 Push the name "inc-subsubnet.isi.edu" onto the stack of names to
 be searched for LOC RRs later.

 5. Since no A RR is present at 16.2.9.128.IN-ADDR.ARPA., there are no
 more subnet levels to search. We now pop the top name from the
 stack and check for an associated LOC RR. Repeat until a LOC RR
 is found.

 In this case, assume that inc-subsubnet.isi.edu does not have an
 associated LOC RR, but that div2-subnet.isi.edu does. We will
 then use div2-subnet.isi.edu’s LOC RR as an approximation of this
 host’s location. (Note that even if isi-net.isi.edu has a LOC RR,
 it will not be used if a subnet also has a LOC RR.)

5.3 Applicability to non-IN Classes and non-IP Addresses

 The LOC record is defined for all RR classes, and may be used with
 non-IN classes such as HS and CH. The semantics of such use are not
 defined by this memo.

 The search algorithm in section 5.2.3 may be adapted to other
 addressing schemes by extending [RFC 1101]’s encoding of network
 names to cover those schemes. Such extensions are not defined by
 this memo.

Davis, et al Experimental [Page 7]

RFC 1876 Location Information in the DNS January 1996

6. References

 [RFC 1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, USC/Information Sciences Institute,
 November 1987.

 [RFC 1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1035, USC/Information Sciences
 Institute, November 1987.

 [RFC 1101] Mockapetris, P., "DNS Encoding of Network Names and Other
 Types", RFC 1101, USC/Information Sciences Institute,
 April 1989.

 [WGS 84] United States Department of Defense; DoD WGS-1984 - Its
 Definition and Relationships with Local Geodetic Systems;
 Washington, D.C.; 1985; Report AD-A188 815 DMA; 6127; 7-R-
 138-R; CV, KV;

7. Security Considerations

 High-precision LOC RR information could be used to plan a penetration
 of physical security, leading to potential denial-of-machine attacks.
 To avoid any appearance of suggesting this method to potential
 attackers, we declined the opportunity to name this RR "ICBM".

8. Authors’ Addresses

 The authors as a group can be reached as <loc@pipex.net>.

 Christopher Davis
 Kapor Enterprises, Inc.
 238 Main Street, Suite 400
 Cambridge, MA 02142

 Phone: +1 617 576 4532
 EMail: ckd@kei.com

 Paul Vixie
 Vixie Enterprises
 Star Route Box 159A
 Woodside, CA 94062

 Phone: +1 415 747 0204
 EMail: paul@vix.com

Davis, et al Experimental [Page 8]

RFC 1876 Location Information in the DNS January 1996

 Tim Goodwin
 Public IP Exchange Ltd (PIPEX)
 216 The Science Park
 Cambridge CB4 4WA
 UK

 Phone: +44 1223 250250
 EMail: tim@pipex.net

 Ian Dickinson
 FORE Systems
 2475 The Crescent
 Solihull Parkway
 Birmingham Business Park
 B37 7YE
 UK

 Phone: +44 121 717 4444
 EMail: idickins@fore.co.uk

Davis, et al Experimental [Page 9]

RFC 1876 Location Information in the DNS January 1996

Appendix A: Sample Conversion Routines

/*
 * routines to convert between on-the-wire RR format and zone file
 * format. Does not contain conversion to/from decimal degrees;
 * divide or multiply by 60*60*1000 for that.
 */

static unsigned int poweroften[10] = {1, 10, 100, 1000, 10000, 100000,
 1000000,10000000,100000000,1000000000};

/* takes an XeY precision/size value, returns a string representation.*/
static const char *
precsize_ntoa(prec)
 u_int8_t prec;
{
 static char retbuf[sizeof("90000000.00")];
 unsigned long val;
 int mantissa, exponent;

 mantissa = (int)((prec >> 4) & 0x0f) % 10;
 exponent = (int)((prec >> 0) & 0x0f) % 10;

 val = mantissa * poweroften[exponent];

 (void) sprintf(retbuf,"%d.%.2d", val/100, val%100);
 return (retbuf);
}

/* converts ascii size/precision X * 10**Y(cm) to 0xXY. moves pointer.*/
static u_int8_t
precsize_aton(strptr)
 char **strptr;
{
 unsigned int mval = 0, cmval = 0;
 u_int8_t retval = 0;
 register char *cp;
 register int exponent;
 register int mantissa;

 cp = *strptr;

 while (isdigit(*cp))
 mval = mval * 10 + (*cp++ - ’0’);

 if (*cp == ’.’) { /* centimeters */
 cp++;
 if (isdigit(*cp)) {

Davis, et al Experimental [Page 10]

RFC 1876 Location Information in the DNS January 1996

 cmval = (*cp++ - ’0’) * 10;
 if (isdigit(*cp)) {
 cmval += (*cp++ - ’0’);
 }
 }
 }
 cmval = (mval * 100) + cmval;

 for (exponent = 0; exponent < 9; exponent++)
 if (cmval < poweroften[exponent+1])
 break;

 mantissa = cmval / poweroften[exponent];
 if (mantissa > 9)
 mantissa = 9;

 retval = (mantissa << 4) | exponent;

 *strptr = cp;

 return (retval);
}

/* converts ascii lat/lon to unsigned encoded 32-bit number.
 * moves pointer. */
static u_int32_t
latlon2ul(latlonstrptr,which)
 char **latlonstrptr;
 int *which;
{
 register char *cp;
 u_int32_t retval;
 int deg = 0, min = 0, secs = 0, secsfrac = 0;

 cp = *latlonstrptr;

 while (isdigit(*cp))
 deg = deg * 10 + (*cp++ - ’0’);

 while (isspace(*cp))
 cp++;

 if (!(isdigit(*cp)))
 goto fndhemi;

 while (isdigit(*cp))
 min = min * 10 + (*cp++ - ’0’);

Davis, et al Experimental [Page 11]

RFC 1876 Location Information in the DNS January 1996

 while (isspace(*cp))
 cp++;

 if (!(isdigit(*cp)))
 goto fndhemi;

 while (isdigit(*cp))
 secs = secs * 10 + (*cp++ - ’0’);

 if (*cp == ’.’) { /* decimal seconds */
 cp++;
 if (isdigit(*cp)) {
 secsfrac = (*cp++ - ’0’) * 100;
 if (isdigit(*cp)) {
 secsfrac += (*cp++ - ’0’) * 10;
 if (isdigit(*cp)) {
 secsfrac += (*cp++ - ’0’);
 }
 }
 }
 }

 while (!isspace(*cp)) /* if any trailing garbage */
 cp++;

 while (isspace(*cp))
 cp++;

 fndhemi:
 switch (*cp) {
 case ’N’: case ’n’:
 case ’E’: case ’e’:
 retval = ((unsigned)1<<31)
 + (((((deg * 60) + min) * 60) + secs) * 1000)
 + secsfrac;
 break;
 case ’S’: case ’s’:
 case ’W’: case ’w’:
 retval = ((unsigned)1<<31)
 - (((((deg * 60) + min) * 60) + secs) * 1000)
 - secsfrac;
 break;
 default:
 retval = 0; /* invalid value -- indicates error */
 break;
 }

 switch (*cp) {

Davis, et al Experimental [Page 12]

RFC 1876 Location Information in the DNS January 1996

 case ’N’: case ’n’:
 case ’S’: case ’s’:
 which = 1; / latitude */
 break;
 case ’E’: case ’e’:
 case ’W’: case ’w’:
 which = 2; / longitude */
 break;
 default:
 which = 0; / error */
 break;
 }

 cp++; /* skip the hemisphere */

 while (!isspace(*cp)) /* if any trailing garbage */
 cp++;

 while (isspace(*cp)) /* move to next field */
 cp++;

 *latlonstrptr = cp;

 return (retval);
}

/* converts a zone file representation in a string to an RDATA
 * on-the-wire representation. */
u_int32_t
loc_aton(ascii, binary)
 const char *ascii;
 u_char *binary;
{
 const char *cp, *maxcp;
 u_char *bcp;

 u_int32_t latit = 0, longit = 0, alt = 0;
 u_int32_t lltemp1 = 0, lltemp2 = 0;
 int altmeters = 0, altfrac = 0, altsign = 1;
 u_int8_t hp = 0x16; /* default = 1e6 cm = 10000.00m = 10km */
 u_int8_t vp = 0x13; /* default = 1e3 cm = 10.00m */
 u_int8_t siz = 0x12; /* default = 1e2 cm = 1.00m */
 int which1 = 0, which2 = 0;

 cp = ascii;
 maxcp = cp + strlen(ascii);

 lltemp1 = latlon2ul(&cp, &which1);

Davis, et al Experimental [Page 13]

RFC 1876 Location Information in the DNS January 1996

 lltemp2 = latlon2ul(&cp, &which2);

 switch (which1 + which2) {
 case 3: /* 1 + 2, the only valid combination */
 if ((which1 == 1) && (which2 == 2)) { /* normal case */
 latit = lltemp1;
 longit = lltemp2;
 } else if ((which1 == 2) && (which2 == 1)) {/*reversed*/
 longit = lltemp1;
 latit = lltemp2;
 } else { /* some kind of brokenness */
 return 0;
 }
 break;
 default: /* we didn’t get one of each */
 return 0;
 }

 /* altitude */
 if (*cp == ’-’) {
 altsign = -1;
 cp++;
 }

 if (*cp == ’+’)
 cp++;

 while (isdigit(*cp))
 altmeters = altmeters * 10 + (*cp++ - ’0’);

 if (*cp == ’.’) { /* decimal meters */
 cp++;
 if (isdigit(*cp)) {
 altfrac = (*cp++ - ’0’) * 10;
 if (isdigit(*cp)) {
 altfrac += (*cp++ - ’0’);
 }
 }
 }

 alt = (10000000 + (altsign * (altmeters * 100 + altfrac)));

 while (!isspace(*cp) && (cp < maxcp))
 /* if trailing garbage or m */
 cp++;

 while (isspace(*cp) && (cp < maxcp))
 cp++;

Davis, et al Experimental [Page 14]

RFC 1876 Location Information in the DNS January 1996

 if (cp >= maxcp)
 goto defaults;

 siz = precsize_aton(&cp);

 while (!isspace(*cp) && (cp < maxcp))/*if trailing garbage or m*/
 cp++;

 while (isspace(*cp) && (cp < maxcp))
 cp++;

 if (cp >= maxcp)
 goto defaults;

 hp = precsize_aton(&cp);

 while (!isspace(*cp) && (cp < maxcp))/*if trailing garbage or m*/
 cp++;

 while (isspace(*cp) && (cp < maxcp))
 cp++;

 if (cp >= maxcp)
 goto defaults;

 vp = precsize_aton(&cp);

 defaults:

 bcp = binary;
 bcp++ = (u_int8_t) 0; / version byte */
 *bcp++ = siz;
 *bcp++ = hp;
 *bcp++ = vp;
 PUTLONG(latit,bcp);
 PUTLONG(longit,bcp);
 PUTLONG(alt,bcp);

 return (16); /* size of RR in octets */
}

/* takes an on-the-wire LOC RR and prints it in zone file
 * (human readable) format. */
char *
loc_ntoa(binary,ascii)
 const u_char *binary;
 char *ascii;
{

Davis, et al Experimental [Page 15]

RFC 1876 Location Information in the DNS January 1996

 static char tmpbuf[255*3];

 register char *cp;
 register const u_char *rcp;

 int latdeg, latmin, latsec, latsecfrac;
 int longdeg, longmin, longsec, longsecfrac;
 char northsouth, eastwest;
 int altmeters, altfrac, altsign;

 const int referencealt = 100000 * 100;

 int32_t latval, longval, altval;
 u_int32_t templ;
 u_int8_t sizeval, hpval, vpval, versionval;

 char *sizestr, *hpstr, *vpstr;

 rcp = binary;
 if (ascii)
 cp = ascii;
 else {
 cp = tmpbuf;
 }

 versionval = *rcp++;

 if (versionval) {
 sprintf(cp,"; error: unknown LOC RR version");
 return (cp);
 }

 sizeval = *rcp++;

 hpval = *rcp++;
 vpval = *rcp++;

 GETLONG(templ,rcp);
 latval = (templ - ((unsigned)1<<31));

 GETLONG(templ,rcp);
 longval = (templ - ((unsigned)1<<31));

 GETLONG(templ,rcp);
 if (templ < referencealt) { /* below WGS 84 spheroid */
 altval = referencealt - templ;
 altsign = -1;
 } else {

Davis, et al Experimental [Page 16]

RFC 1876 Location Information in the DNS January 1996

 altval = templ - referencealt;
 altsign = 1;
 }

 if (latval < 0) {
 northsouth = ’S’;
 latval = -latval;
 }
 else
 northsouth = ’N’;

 latsecfrac = latval % 1000;
 latval = latval / 1000;
 latsec = latval % 60;
 latval = latval / 60;
 latmin = latval % 60;
 latval = latval / 60;
 latdeg = latval;

 if (longval < 0) {
 eastwest = ’W’;
 longval = -longval;
 }
 else
 eastwest = ’E’;

 longsecfrac = longval % 1000;
 longval = longval / 1000;
 longsec = longval % 60;
 longval = longval / 60;
 longmin = longval % 60;
 longval = longval / 60;
 longdeg = longval;

 altfrac = altval % 100;
 altmeters = (altval / 100) * altsign;

 sizestr = savestr(precsize_ntoa(sizeval));
 hpstr = savestr(precsize_ntoa(hpval));
 vpstr = savestr(precsize_ntoa(vpval));

 sprintf(cp,
 "%d %.2d %.2d.%.3d %c %d %.2d %.2d.%.3d %c %d.%.2dm
 %sm %sm %sm",
 latdeg, latmin, latsec, latsecfrac, northsouth,
 longdeg, longmin, longsec, longsecfrac, eastwest,
 altmeters, altfrac, sizestr, hpstr, vpstr);

Davis, et al Experimental [Page 17]

RFC 1876 Location Information in the DNS January 1996

 free(sizestr);
 free(hpstr);
 free(vpstr);

 return (cp);
}

Davis, et al Experimental [Page 18]

